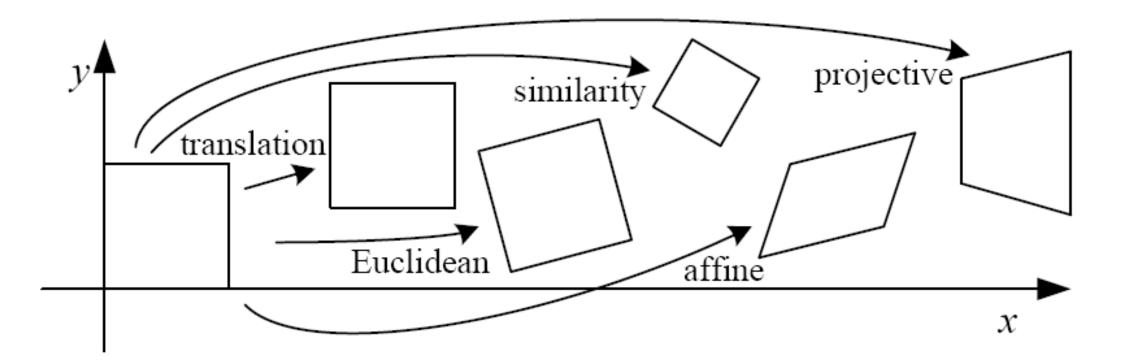
CS5670: Computer Vision

Transformations and warping



Reading

• Szeliski: Chapter 3.6

Announcements

- Project 2 out, due Monday, March 4, by 11:59pm on CMSX
 - Please form teams of 2, and create your team on CMSX
 - Please declare your group on CMSX by this Wednesday, 2/19
 - After Wednesday, we will randomly assign ungrouped students to groups
 - Feel free to use Piazza to form groups
 - Project demo last 10 minutes of class

Alternate Harris score

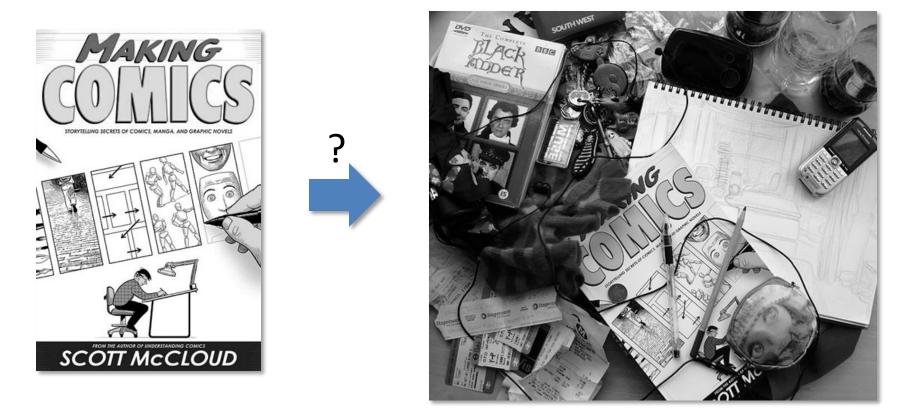
• For project 2, you will use an alternate definition of the Harris score:

$$R=\lambda_1\lambda_2-k\cdot(\lambda_1+\lambda_2)^2=\det(M)-k\cdot\mathrm{tr}(M)^2$$

Image alignment

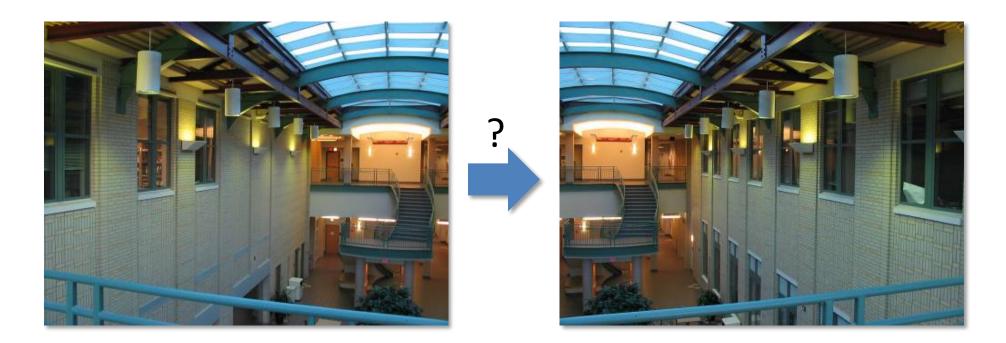
Why don't these image line up exactly?

What is the geometric relationship between these two images?



Answer: Similarity transformation (translation, rotation, uniform scale)

What is the geometric relationship between these two images?



What is the geometric relationship between these two images?



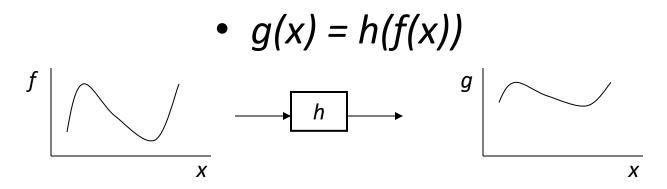
Very important for creating mosaics!

First, we need to know what this transformation is.

Second, we need to figure out how to compute it using feature matches.

Image Warping

• image filtering: change *range* of image

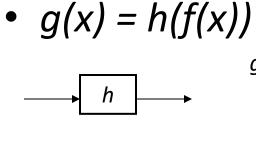


• image warping: change *domain* of image

$$f = g(x) = f(h(x))$$

Image Warping

• image filtering: change *range* of image



• image warping: change *domain* of image

•
$$g(x) = f(h(x))$$

Parametric (global) warping

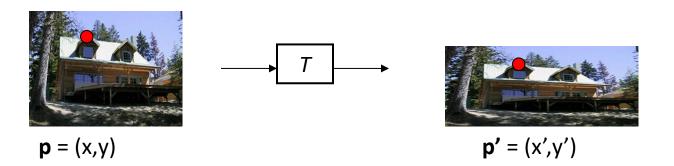
• Examples of parametric warps:

translation

rotation

aspect

Parametric (global) warping



• Transformation T is a coordinate-changing machine:

 $\mathbf{p}' = T(\mathbf{p})$

- What does it mean that *T* is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider *linear* xforms (can be represented by a 2x2 matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[\begin{array}{c} x' \\ y' \end{array}\right] = \mathbf{T} \left[\begin{array}{c} x \\ y \end{array}\right]$$

Common linear transformations

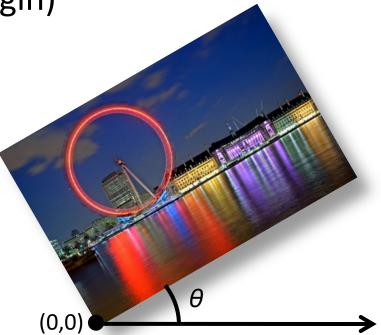
• Uniform scaling by *s*:

$$\mathbf{S} = \left[\begin{array}{cc} s & 0 \\ 0 & s \end{array} \right]$$

What is the inverse?

Common linear transformations

• Rotation by angle θ (about the origin)



$$\mathbf{R} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

What is the inverse? For rotations: $\mathbf{R}^{-1} = \mathbf{R}^{T}$

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D mirror about Y axis?

2D mirror across line y = x?

2x2 Matrices

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$\begin{array}{rcl} x' &=& x+t_x & \ y' &=& y+t_y \end{array}$$
 NO!

Translation is not a linear operation on 2D coordinates

All 2D Linear Transformations

- Linear transformations are combinations of ... \bullet
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

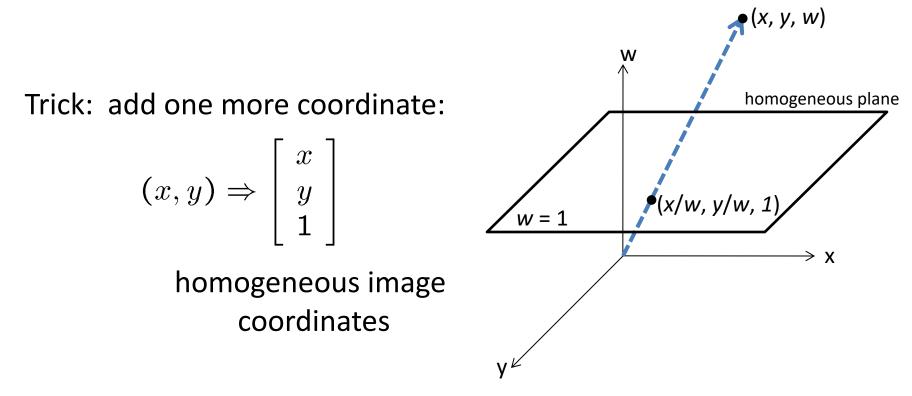
•

- Properties of linear transformations:
- Origin maps to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} e & f\\g & h\end{bmatrix} \begin{bmatrix} i & j\\k & l\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogeneous coordinates



Converting *from* homogeneous coordinates

$$\left[\begin{array}{c} x\\ y\\ w\end{array}\right] \Rightarrow (x/w, y/w)$$

Translation

• Solution: homogeneous coordinates to the rescue

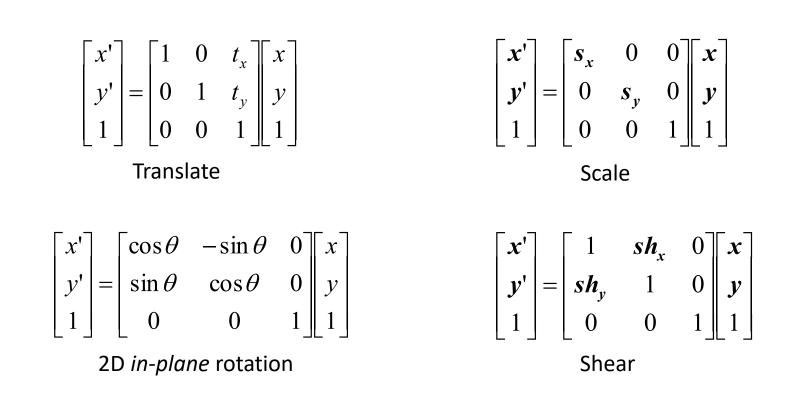
$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix}$$

Affine transformations

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$$

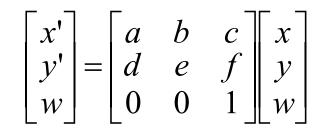
any transformation represented by a 3x3 matrix with last row [001] we call an *affine* transformation

Basic affine transformations



Affine transformations

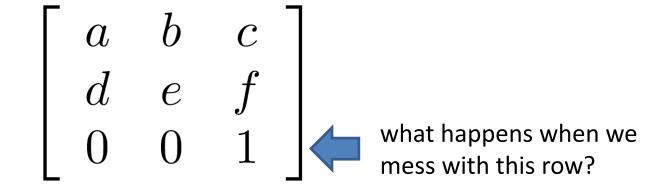
- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations



- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Is this an affine transformation?

Where do we go from here?

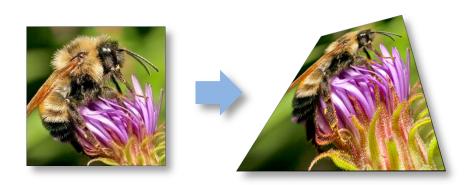


affine transformation

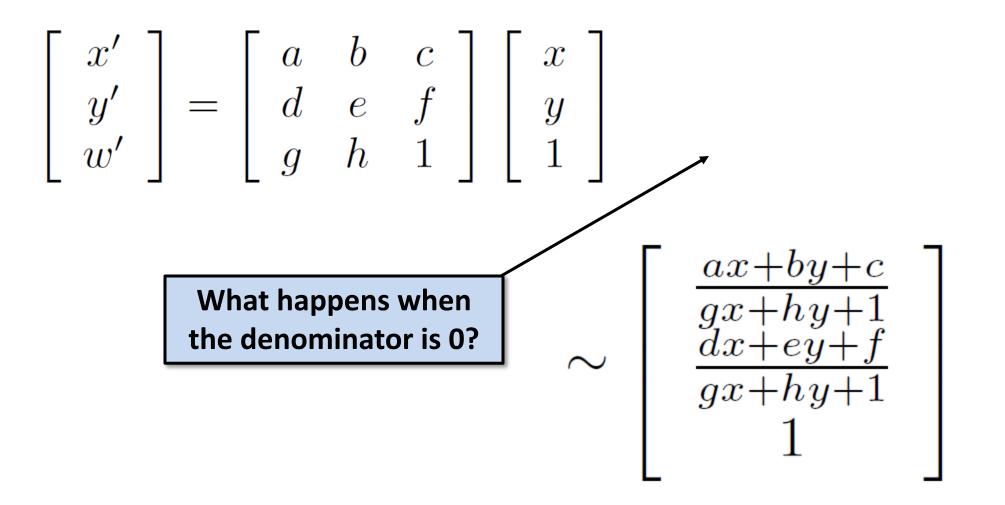
Projective Transformations *aka* Homographies *aka* Planar Perspective Maps

$$\mathbf{H} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & 1 \end{bmatrix}$$

Called a *homography* (or *planar perspective map*)



Homographies



Points at infinity

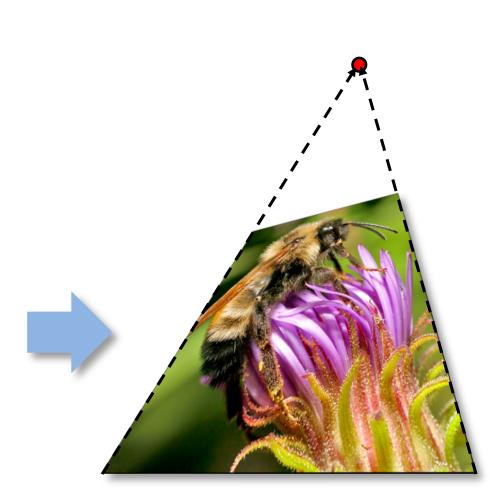
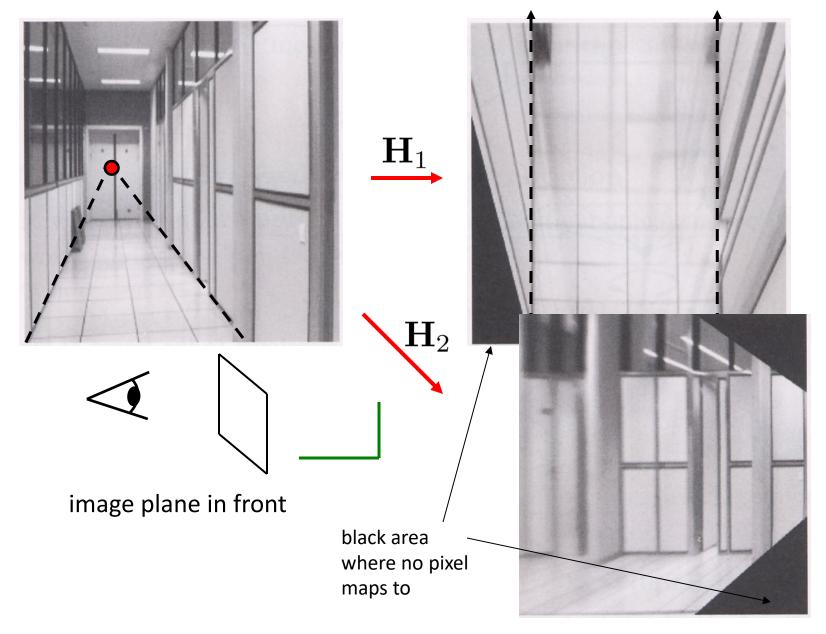


Image warping with homographies



Homographies

Homographies

- Homographies ...
 - Affine transformations, and
 - Projective warps

$$\begin{bmatrix} x'\\y'\\w'\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\g & h & 1\end{bmatrix} \begin{bmatrix} x\\y\\w\end{bmatrix}$$

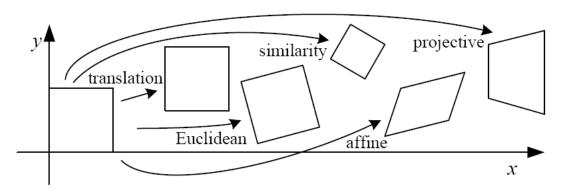
- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

Alternate formulation for homographies

$$\begin{bmatrix} x'_i \\ y'_i \\ 1 \end{bmatrix} \cong \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

where the length of the vector $[h_{00} h_{01} \dots h_{22}]$ is 1

2D image transformations



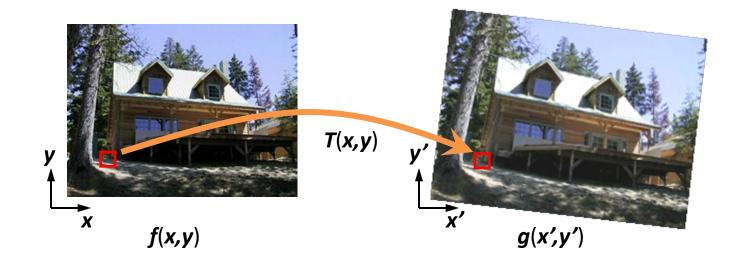
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c} I & t \end{array} igg]_{2 imes 3} \end{array}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. \left. s oldsymbol{R} \right t ight. ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

These transformations are a nested set of groups

• Closed under composition and inverse is a member

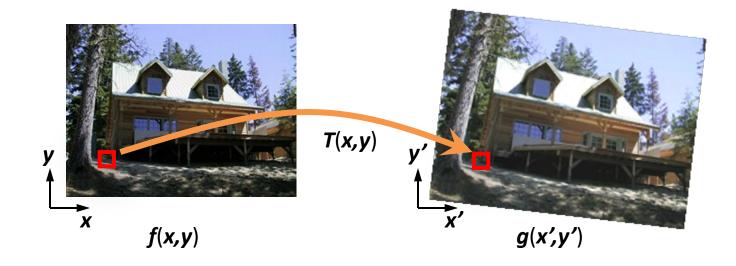
Implementing image warping

Given a coordinate xform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?



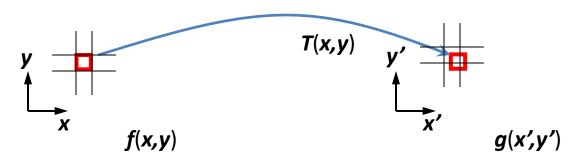
Forward Warping

- Send each pixel f(x) to its corresponding location (x',y') = T(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?



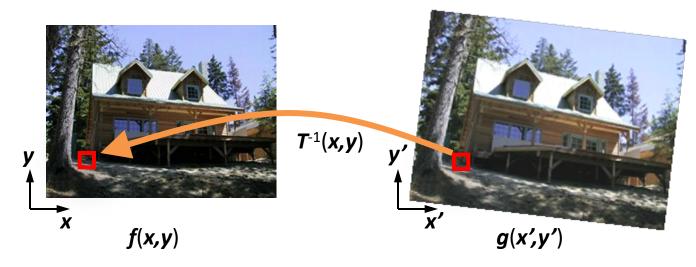
Forward Warping

- Send each pixel f(x,y) to its corresponding location x' = h(x,y) in g(x',y')
 - What if pixel lands "between" two pixels?
 - Answer: add "contribution" to several pixels, normalize later (*splatting*)
 - Can still result in holes



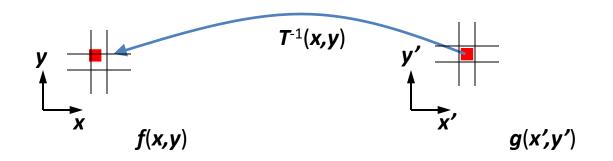
Inverse Warping

- Get each pixel g(x',y') from its corresponding location (x,y) = T⁻¹(x,y) in f(x,y)
 - Requires taking the inverse of the transform
 - What if pixel comes from "between" two pixels?



Inverse Warping

- Get each pixel g(x') from its corresponding location x' = h(x) in
 f(x)
 - What if pixel comes from "between" two pixels?
 - Answer: resample color value from interpolated (prefiltered) source image



Interpolation

- Possible interpolation filters:
 - nearest neighbor
 - bilinear
 - bicubic
 - sinc
- Needed to prevent "jaggies" and "texture crawl"

(with prefiltering)

Questions?