Images & Image Filtering

Abe Davis, Jan 27, 2020 CS5670: Introduction to Computer Vision

Today's Lecture

- What are images?
 - How do they form?
 - How can we represent them mathematically?
- What is image filtering?
 - Why do we care?
 - How do we perform it mathematically?

Today's Lecture

- What are image
 - How do they
 - How can we r
- What is imageWhy do we do
 - How do we

Side Note:

- Standing in for Noah today
- Slides are a mix of his slides from previous years and slides I made over the weekend
- If anything seems out of place, please don't hesitate to ask about it

• Szeliski, Chapter 3.1-3.2

Announcements

- You should have been invited to Piazza
- We will add students to CMS this week

Announcements

Project 1 (Hybrid Images) will be released tomorrow
This project will be done solo
Other projects planned to be done in groups of 2

 More on what hybrid images are toward the end of this lecture

Announcements

• We provide a walkthrough for setting up a python environment for the project

• As a backup, we also have a course virtual machine (VM) for you to run the assignments

• The assignment also works on lab machines

Scene element

What do they represent?

How do they represent it?

Scene element

What do they represent?

How do they represent it?

How are Images Formed?

Image Plane

Thinking About Images as Functions

Pixel Location

What do they represent?

How do they represent it?

• A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	175	173	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

We can think of a (grayscale) image as a function, *f*, from R² to R:

-f(x,y) gives the **intensity** at position (x,y)

3D view

 A digital image is a discrete (sampled, quantized) version of this function

Image transformations

• As with any function, we can apply operators to an image

 Today we'll talk about a special kind of operator, convolution (linear filtering)

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to remove noise
 - E.g., to sharpen and "enhance image" a la CSI (sort of...)

Examples of Image Processing problems

- Image Restoration
 - denoising
 - deblurring
- Image Compression
 - JPEG, JPEG2000, MPEG..
- Computing Field Properties
 - optical flow
 - disparity
- Locating Structural Features
 - corners
 - edges

Question: Noise reduction

• Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

What's the next best thing?

Image Filtering: Thinking About Areas Instead of Just Points

Abe Davis

CS5670: Intro to Computer Vision

Putting Pixels in Context

A single pixel doesn't tell us much out of context...

How do we represent this context mathematically?

Image Filtering: Operations on Image Regions

• Transforms each pixel into some function of the neighborhood around it

x_1	x_2	x_3	
x_4	x_5	x_6	
x_7	x_8	x_9	

 $p' = f_p(x_1, x_2, ..., x_9)$

Image Filtering: Operations on Image Regions

• Transforms each pixel into some function of the neighborhood around it

x_1	x_2	x_3	
x_4	x_5	x_6	
x_7	x_8	x_9	

 $p' = f_p(x_1, x_2, ..., x_9)$

Image Filtering: Operations on Image Regions

• Transforms each pixel into some function of the neighborhood around it

	x_1	x_2	x_3
	x_4	x_5	x_6
	x_7	x_8	x_9

 $p' = f_p(x_1, x_2, ..., x_9)$

Linear Filtering

• Filters where the function $p' = f_p(x_1, x_2, ..., x_9)$ is just a linear combination

	x_1	x_2	x_3
	x_4	x_5	x_6
	x_7	x_8	x_9

$$p' = f_p(x_1, x_2, ..., x_9)$$

Linear filtering

- One simple version of filtering: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

Cross-correlation

Let F be the image, H be the kernel (of size 2k+1 x 2k+1), and G be the output image $G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v]F[i + u, j + v]$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

• Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i - u, j - v]$$

This is called a **convolution** operation:

$$G = H * F$$

• Convolution is **commutative** and **associative**

Convolution

• Same as cross-correlation, except that the

• Convolution is **commutative** and **associative**

Why Correlation is not Commutative

- What does it mean for filtering to be commutative?
 - f(A,B) = f(B,A)

Question:

How do we make the same parts of A and B match up regardless of order?

Why Convolution is Commutative

- What does it mean for filtering to be commutative?
 - f(A,B) = f(B,A)

Answer: Flip one of them

Convolution

Mean filtering

F

G

F[x, y]

G[x, y]

0	0	Ö.	0	0	0	0	0	0	0
0	0	O	0	0	0	0	<u>0</u>	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	D	0	0	0
0	0	0	0	0	0	0	0	0	0

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	Ö	90	90	90	90	90	0	0
0	0	Q	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	Ö	0
0	0	Q	90	0	90	90	90	0	0
0	0	Ö	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	O	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10		
			-
			-

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	Q	0
0	0	Ö	90	90	90	90	90	Ö	0
0	0	0	90	0	90	90	90	0	0
0	0	Ö	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20			
			0			
1			a	a 13		0

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
° Ö	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	Ö	0
0	0	Q	90	0	90	90	90	Q	0
0	0	Ö	90	90	90	90	90	0	0
0	0	Q	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30			
	1	2	-			

0	0	0	0	0	0	0	0	0	0
0	0	0	10	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	Ö	90	90	90	90	90	Ö	0
Ŭ.	0	0	90	0	90	90	90	0	0
0	0	Ö	90	90	90	90	90	Ö	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	Ö	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30			
		_	3			-	 _	2
			<u> </u>			<u> </u>		
					_	_		-
-			u					
			<u></u>				 	

F[x, y]

G[x, y]

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
Ō	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	Q	0
0	0	Ö	90	90	90	90	90	Ö	0
.(ĝ	0	0	90	0	90	90	90	80	0
0	0	ö	90	90	90	90	90	Ö	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
Q	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

Original

Identical image

Original

Shifted left By 1 pixel

Source: D. Lowe

Can anyone guess a filter we might use to sharpen an image?

Source: D. Lowe

Original

Sharpening filter (accentuates edges)

Sharpening

before

after

Smoothing with box filter revisited

Smoothing with box filter revisited

Can anyone think of a better smoothing kernel?

Gaussian Kernel

Gaussian filters

Mean vs. Gaussian filtering

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

Sharpening revisited

• What does blurring take away?

Let's add it back:

(This "detail extraction" operation is also called a *high-pass filter*)

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

In other words:

Boosting the detail layer of an image (i.e., sharpening) can be represented as a single convolution

 $F + \alpha \left(F - F * H\right) = \left(1 + \alpha\right)F - \alpha \left(F * H\right) = F * \left(\left[1 + \alpha\right]e - \alpha H\right)$

"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Filters: Thresholding

$$g(m,n) = \begin{cases} 255, \ f(m,n) > A \\ 0 \quad otherwise \end{cases}$$

Filters: Thresholding

$$g(m,n) = \begin{cases} 255, \ f(m,n) > A \\ 0 \quad otherwise \end{cases}$$

Why is it Called Filtering?

Filtering lets us reason about images at different scales, e.g.:

- Mean filtering an image removes fine-scale detail and leaves only coarse-scale information
- Sharpening an image amplifies fine-scale details

Hybrid Images: Do These People Look Happy or Sad?

Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Hybrid Images: Do These People Look Happy or Sad?

Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Hybrid Images: Do These People Look Happy or Sad?

Hybrid Images, Oliva et al., <u>http://cvcl.mit.edu/hybridimage.htm</u>

Side Note: Remember Yanny and Laurel?

One Final Note: Non-Linear Filtering?

 Q: What's the most popular way to extend filtering to non-linear functions?

- A: Convolutional Neural Networks
 - Implemented as a series of convolutions separated by nonlinearities
 - More on this later in the course

****One more reason why we care about filtering and convolution****

Questions?