Images \& Image Filtering

Abe Davis,

Jan 27, 2020
CS5670: Introduction to Computer Vision

Today's Lecture

-What are images?

- How do they form?
- How can we represent them mathematically?
-What is image filtering?
- Why do we care?
- How do we perform it mathematically?

Today's Lecture

- What are image
- How do they
- How can we r
- What is image
- Why do we
- How do we

Side Note:

- Standing in for Noah today
- Slides are a mix of his slides from previous years and slides I made over the weekend
- If anything seems out of place, please don't hesitate to ask about it

Reading

-Szeliski, Chapter 3.1-3.2

Announcements

- You should have been invited to Piazza
- We will add students to CMS this week

Announcements

- Project 1 (Hybrid Images) will be released tomorrow
- This project will be done solo
- Other projects planned to be done in groups of 2
- More on what hybrid images are toward the end of this lecture

Announcements

- We provide a walkthrough for setting up a python environment for the project
- As a backup, we also have a course virtual machine (VM) for you to run the assignments
-The assignment also works on lab machines

What is an image?

What is an image?

What do they represent?

How do they represent it?

What is an image?

What do they represent?

How are Images Formed?

Observer
Image Plane

How are Images Formed?

Observer

Image Plane

Inage Plane

How are Images Formed?

Image Plane

How are Images Formed?

Observer
Image Plane

Thinking About Images as Functions

What is an image?

How do they represent it?

What is an image?

- A grid (matrix) of intensity values

255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: $0=$ black, $255=$ white)

What is an image?

- We can think of a (grayscale) image as a function, f, from R^{2} to R :
$-f(x, y)$ gives the intensity at position (x, y)

3D view

- A digital image is a discrete (sampled, quantized) version of this function

Image transformations

- As with any function, we can apply operators to an image

- Today we'll talk about a special kind of operator, convolution (linear filtering)

Filters

- Filtering
- Form a new image whose pixels are a combination of the original pixels
- Why?
- To get useful information from images
- E.g., extract edges or contours (to understand shape)
- To enhance the image
- E.g., to remove noise
- E.g., to sharpen and "enhance image" a la CSI (sort of...)

Examples of Image Processing problems

- Image Restoration
- denoising
- deblurring
- Image Compression
- JPEG, JPEG2000, MPEG..
- Computing Field Properties
- optical flow
- disparity
- Locating Structural Features
- corners
- edges

Question: Noise reduction

- Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!
What's the next best thing?

Image Filtering:
 Thinking About Areas Instead of Just Points

Abe Davis
CS5670: Intro to Computer Vision

Putting Pixels in Context

\square

A single pixel doesn't tell us much out of context...

How do we represent this context mathematically?

Image Filtering: Operations on Image Regions

- Transforms each pixel into some function of the neighborhood around it

$$
p^{\prime}=f_{p}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

Image Filtering: Operations on Image Regions

- Transforms each pixel into some function of the neighborhood around it

$$
p^{\prime}=f_{p}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

Image Filtering: Operations on Image Regions

- Transforms each pixel into some function of the neighborhood around it

$$
p^{\prime}=f_{p}\left(x_{1}, x_{2}, \ldots, x_{9}\right)
$$

Linear Filtering

- Filters where the function $p^{\prime}=f_{p}\left(x_{1}, x_{2}, \ldots, x_{9}\right)$ is just a linear combination

Linear filtering

- One simple version of filtering: linear filtering (cross-correlation, convolution)
- Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")

10	5	3				
4	6	1				
1	1	8	\quad	0	0	0
:---:	:---:	:---:				
0	0.5	0				
0	1	0.5				

Local image data

Modified image data

Cross-correlation

Let F be the image, H be the kernel (of size $2 k+1 \times 2 k+1$), and G be the output image

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i+u, j+v]
$$

This is called a cross-correlation operation:

$$
G=H \otimes F
$$

- Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

- Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

$$
G[i, j]=\sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i-u, j-v]
$$

This is called a convolution operation:

$$
G=H * F
$$

- Convolution is commutative and associative

Convolution

- Same as cross-correlation, except that the

- Associativity: $\left(A^{*} B\right)^{*} C=A^{*}\left(B^{*} C\right)$
- Commutativity: $\left(A^{*} B\right)=\left(B^{*} A\right)$
- Convolution is commutative and associative

Why Correlation is not Commutative

- What does it mean for filtering to be commutative?
- $f(A, B)=f(B, A)$

Question:
How do we make the same parts of A and B match up regardless of order?

Why Convolution is Commutative

-What does it mean for filtering to be commutative?

- $f(A, B)=f(B, A)$

Answer:

Flip one of them

Convolution

Mean filtering

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

F

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

G

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$G[x, y]$

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Mean filtering/Moving average

$$
F[x, y]
$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

	0	10	20	30	30	30	20	10	
	0	20	40	60	60	60	40	20	
	0	30	60	90	90	90	60	30	
	0	30	50	80	80	90	60	30	
	0	30	50	80	80	90	60	30	
	0	20	30	50	50	60	40	20	
	10	20	30	30	30	30	20	10	
	10	10	10	0	0	0	0	0	

Linear filters: examples

Linear filters: examples

Linear filters: examples

Linear filters: examples

Original

Blur (with a mean filter)

Can anyone guess a filter we might use to sharpen an image?

Linear filters: examples

Original

Sharpening filter (accentuates edges)

Sharpening

before

after

Smoothing with box filter revisited

Smoothing with box filter revisited

Can anyone think of a better smoothing kernel?

Gaussian Kernel

Gaussian filters

Mean vs. Gaussian filtering

Gaussian filter

- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian

- Convolving twice with Gaussian kernel of width σ $=$ convolving once with kernel of width $\sigma \sqrt{2}$

Sharpening revisited

- What does blurring take away?

Let's add it back:

(This "detail extraction" operation is also called a high-pass filter)

Sharpen filter

$$
\begin{aligned}
& \text { Sharpening amount } \\
& \stackrel{\downarrow}{F}+\alpha+\underbrace{(\overbrace{\text { "detail layer" }}^{F-F * H}}_{\text {image }} \underset{\text { image }}{F-\alpha)}=(1+\alpha) F-\alpha(F * H)=F *([1+\alpha] e-\alpha H))
\end{aligned}
$$

Sharpen filter

Sharpen filter

Blurred

Sharpen filter

In other words:
Boosting the detail layer of an image (i.e., sharpening) can be represented as a single convolution

Sharpen filter

$$
F+\alpha(F-F * H)=(1+\alpha) F-\alpha(F * H)=F *([1+\alpha] e-\alpha H)
$$

Sharpen filter

"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Filters: Thresholding

$$
g(m, n)=\left\{\begin{array}{cc}
255, & f(m, n)>A \\
0 & \text { otherwise }
\end{array}\right.
$$

Filters: Thresholding

Question:

Is thresholding a linear filter?

$$
g(m, n)=\left\{\begin{array}{cc}
255, & f(m, n)>A \\
0 & \text { otherwise }
\end{array}\right.
$$

Why is it Called Filtering?

Filtering lets us reason about images at different scales, e.g.:

- Mean filtering an image removes fine-scale detail and leaves only coarse-scale information
- Sharpening an image amplifies fine-scale details

Hybrid Images: Do These People Look Happy or Sad?

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Hybrid Images: Do These People Look Happy or Sad?

Hybrid Images: Do These People Look Happy or Sad?

283

Side Note: Remember Yanny and Laurel?

What do you hearl?!
yanny LaUREL

One Final Note: Non-Linear Filtering?

- Q: What's the most popular way to extend filtering to non-linear functions?
- A: Convolutional Neural Networks
- Implemented as a series of convolutions separated by
 nonlinearities
- More on this later in the course
One more reason why we care about filtering and convolution

Questions?

