
Training, Transfer Learning,
& Generative Models

By Abe Davis
With some slides from

Jin Sun, Noah Snavely, Philipp Isola

• Project 5 (Convolutional Neural Networks) released today
• Due Wednesday, April 29

• Take-home final exam planned May 11-14

Announcements

• Visualizing Deep Classification
• A Review of Overfitting
• Regularization in Deep Learning
• How to Train Deep Nets
• Transfer Learning
• Generative Models
• Transpose Convolution

This Lecture (and maybe part of the next one)

Visualizing Linear Classification

Classification	Problem:
Separate	Red	&	Blue

Linear	Solution

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Visualizing Classification With a Neural Network

Classification	Results	for	Every	
Point	in	Original	Space

Classification	Results	for	Every	
Point	in	Transformed	Feature	Space

Example	Network

input

Hidden	Layer

Output

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

O
ut

pu
t y

 o
f N

eu
ro

n
fr

om
 H

id
de

n
La

ye
r

Output x of Neuron from Hidden Layer

Demo
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

• It’s easy to get high training
accuracy:
• Use a huge, fully connected

network with tons of layers
• Let it memorize your training data

• Its hard to get high test accuracy

What Makes Training Deep Nets Hard?

… …

This	would	be	an	example	
of	overfitting

• A fully connected layer can
generally represent the same
functions as a convolutional one
• Think of the convolutional layer

as a version of the FC layer with
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional	Layer Fully	Connected	Layer

A Review of Overfitting

Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function
• Let’s take some noisy samples of the function…

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form

• A Model with more parameters can
represent more functions

• E.g.,: if then

• More parameters will often reduce
training error but increase testing
error. This is overfitting.

• When overfitting happens, models do not
generalize well.

Overfitting: More Parameters, More Problems

P2 2 P15

<latexit sha1_base64="6BBEXEAhguQ3G68yFwsayvpJ/XE=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKix6LXjxGsB/QhrDZbtqlm026uymU0N/hxYMiXv0x3vw3btsctPXBwOO9GWbmBQlnStv2t1XY2t7Z3Svulw4Oj45PyqdnbRWnktAWiXksuwFWlDNBW5ppTruJpDgKOO0E4/uF35lSqVgsnvQsoV6Eh4KFjGBtJM/1a30mkOtnTmPulyt21V4CbRInJxXI4frlr/4gJmlEhSYcK9Vz7ER7GZaaEU7npX6qaILJGA9pz1CBI6q8bHn0HF0ZZYDCWJoSGi3V3xMZjpSaRYHpjLAeqXVvIf7n9VId3noZE0mqqSCrRWHKkY7RIgE0YJISzWeGYCKZuRWREZaYaJNTyYTgrL+8Sdq1qlOvNh7rleZdHkcRLuASrsGBG2jCA7jQAgITeIZXeLOm1ov1bn2sWgtWPnMOf2B9/gB6RJFF</latexit>

Degree 2 Fit

Degree 15 Fit

• More parameters let us represent a
larger space of functions

• The larger that space is, the harder
our optimization becomes

• This means we need:
• More data
• More compute resources
• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional	Layer Fully	Connected	Layer

Deep Learning: More Parameters, More Problems?

Convolutional	Layer Fully	Connected	Layer

A	convolutional	layer	
looks	for	components	of	

a	function	that	are	
spatially-invariant

• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better

constrain learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• …

How to Avoid Overfitting: Regularization

• “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional	Layer Fully	Connected	Layer

• At training time, randomly “drop”
(zero out) some fraction of the
connections in your network

• This will prevent your network
from relying too heavily on any
specific connections

• Encourages redundancy/consensus
across various paths through the
network

Regularization: Dropout

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014

Regularization: In the Loss Function

Regularization: In Data Preparation

Regularization: In Data Preparation

Regularization: In Data Preparation

Putting It All Together: How To Train Deep Nets

Training a Convolutional Neural Network

• Split and preprocess your data
• Choose your network architecture
• Initialize the weights
• Find a learning rate and regularization strength/strategy
• Minimize the loss and monitor the progress
• Fiddle with things until they work

Examples:
• Normalizing and centering Data
• Data Augmentation
• Random Cropping
• Mirror Flips

(1) Data Pre-Processing

(2) Choose your architecture

https://playground.tensorflow.org/
(we will come back to this later)

(2) Choose your architecture
Very common
modern choice

(3) Initialize Your Weights

(if you use ReLU activations, folks tend to initialize bias to small positive number)

(3) Start with a Small Portion of the Data

(3) Start with a Small Portion of the Data

(3) Start with a Small Portion of the Data

(4) Find a learning rate

• Too high won’t converge
• Too low will converge slowly

Aside: Some Training Vocabulary

• An Epoch is one complete pass through your training data

• An iteration of SGD happens on a batch of examples.

• The Batch Size is the number of examples in a single training batch.

• The number of iterations per epoch depends on the total number of
examples divided by the batch size.

(4b) Choosing a Learning Rate Schedule

(+batch size)

Questions?

Demo

https://playground.tensorflow.org/
(we will come back to this later)

Common modern approach:
start with a ResNet
architecture pre-trained on
ImageNet, and fine-tune on
your (smaller) dataset

Some Takeaways

Questions?

• Learn a transformation into
some compressed space
(encoder)
• Learn a transformation from

compressed space back to
original content (decoder)
• Loss function can be difference

between input and decoded
output

• Does not require labels!

Autoencoders: Unsupervised Dimensionality Reduction

• Good way to learn useful
features from large amounts of
unlabeled data
• E.g., for transfer learning

• We can do this with CNNs, but
we need some way to expand
feature dimensionality…
• For this we will use Transpose

Convolution

Autoencoders: Unsupervised Dimensionality Reduction

• Stride: The step size used when
computing the convolution
• Padding: What is assumed about

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: 0
Stride: 0

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic

• Stride: The step size used when
computing the convolution
• Padding: What is assumed about

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: 0
Stride: 1

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic

• Stride: The step size used when
computing the convolution
• Padding: What is assumed about

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: “same” (1)
Stride: 0

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic

• Stride: The step size used when
computing the convolution
• Padding: What is assumed about

pixels “outside” of image bounds

• Stride is applied to the output and
padding is applied to the input

Regular Convolution

Kernel size: 3x3
Padding: 1
Stride: 1

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic

• Stride applied to input
• Padding applied to output (think of it as removing boundary pixels)

Transpose Convolution: Upscaling Our Data

Kernel size: 3x3
Padding: 0
Stride: 0

Animations from: https://github.com/vdumoulin/conv_arithmetic

Kernel size: 3x3
Padding: 0
Stride: 1

Kernel size: 3x3
Padding: 1
Stride: 1

Generative Models
Abe Davis
Some slides from Jin Sun, Phillip Isola

