Training, Transfer Learning, & Generative Models

By Abe Davis With some slides from Jin Sun, Noah Snavely, Philipp Isola

Announcements

- Project 5 (Convolutional Neural Networks) released today
 - Due Wednesday, April 29
- Take-home final exam planned May 11-14

This Lecture (and maybe part of the next one)

- Visualizing Deep Classification
- A Review of Overfitting
- Regularization in Deep Learning
- How to Train Deep Nets
- Transfer Learning
- Generative Models
- Transpose Convolution

Visualizing Linear Classification

Visualizing Classification With a Neural Network

Classification Results for Every Point in Original Space

Classification Results for Every Point in Transformed Feature Space

Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

What Makes Training Deep Nets Hard?

- It's easy to get high training accuracy:
 - Use a huge, fully connected network with tons of layers
 - Let it memorize your training data
- Its hard to get high *test* accuracy

This would be an example of overfitting

Related Question: Why Convolutional Layers?

- A fully connected layer can generally represent the same functions as a convolutional one
 - Think of the convolutional layer as a version of the FC layer with constraints on parameters
- What is the advantage of CNNs?

Convolutional Layer

Fully Connected Layer

A Review of Overfitting

5: FutureWarning: You are using librosa with Python 2. Please note that librosa 0.7 will be the last version to support Python 2, after which it will require Python 3 or later. FutureWarning) TEST DIR=/Users/abedavis/Code/MyRepos/python/abepy/notebooks/Scratch/TEMP_MEDIAGRAPH_TES T DIR In [24]: start_t = -10; end t = 10; n samples = 500; n data points = 15; trange=8.0; jitter = np.random.rand(n data points)*2-1; jitter_amp = 0; noise amp = 25.0; tsig_gt = UnstructuredTimeSignal(data_times, np.square(data_times)+data_times); tsig_noise = UnstructuredTimeSignal(data_times, tsig_gt.sample_values+(np.random.rand(n_d executed in 10ms, finished 17:43:20 2020-04-21 In [25]: * # tsig_gt.plotLine(color='green') # tsig noise.plotPoints() executed in 4ms, finished 17:43:21 2020-04-21 In [50]: fits = []; ylim = [-10, np.power(trange+3, 2.0)]
xlim = [-15, 15]; polfunc = tsig_gt.getPolyFitFunc(deg=2); pfit = UnstructuredTimeSignal(sample_times, polfunc(sample_times)); # pfit.plotLine(color='green'); tsig_noise.plotPoints(); plt.ylim(*ylim); plt.xlim(*xlim); plt.title('Noisy Samples'); plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/sar plt.show() polfunc = tsig_gt.getPolyFitFunc(deg=2); pfit = UnstructuredTimeSignal(sample times, polfunc(sample times)); pfit.plotLine(color='green'); plt.ylim(*ylim); plt.xlim(*xlim); plt.title('Ground Truth'); plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/gre plt.show() polfunc = tsig_gt.getPolyFitFunc(deg=2); pfit = UnstructuredTimeSignal(sample_times, polfunc(sample_times)); pfit.plotLine(color='green'); tsig_noise.plotPoints();
plt.ylim(*ylim); plt.xlim('yim); plt.title('Ideal Fit'); plt.title('Ideal Fit'); plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/ideal); plt.show() for a in range(n data points+1): polfunc = tsIg_noise.getPolyFitFunc(deg=a); pfit = UnstructuredTimeSignal(sample times, polfunc(sample times)); fits.append(pfit); pfit.plotLine(color='red'); tsig_noise.plotPoints(); plt.ylim(*ylim); plt.xlim(*xlim); plt.title('Poly Fit Degree ()'.format(a)) plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/fig plt.show(); executed in 2.79s, finished 18:13:00 2020-04-21 Noisy Samples 120 100 ٠

60

.

Overfitting: More Parameters, More Problems

- Non-Deep Example: consider the function $x^2 + x$
- Let's take some noisy samples of the function...

Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form $P_N(x) = \sum x^k p_k$

k=0

Overfitting: More Parameters, More Problems

• A Model with more parameters can represent more functions

• E.g.,: if
$$P_N(x) = \sum_{k=0}^N x^k p_k$$
 then $P_2 \in P_{15}$

- More parameters will often **reduce training error** but **increase testing error**. This is *overfitting*.
- When overfitting happens, models do not generalize well.

Deep Learning: More Parameters, More Problems?

- More parameters let us represent a larger space of functions
- The larger that space is, the harder our optimization becomes
- This means we need:
 - More data
 - More compute resources
 - Etc.

Convolutional Layer

Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer looks for components of a function that are spatially-invariant

Convolutional Layer

Fully Connected Layer

How to Avoid Overfitting: Regularization

- In general:
 - More parameters means higher risk of overfitting
 - More constraints/conditions on parameters can help
- If a model is overfitting, we can
 - Collect more data to train on
 - *Regularize*: add some additional information or assumptions to better constrain learning
- Regularization can be done through:
 - the design of architecture
 - the choice of loss function
 - the preparation of data

• ...

Regularization: Architecture Choice

• "Bigger" architectures (typically, those with more parameters) tend to be more at risk of overfitting.

Convolutional Layer

Fully Connected Layer

Regularization: Dropout

- At training time, randomly "drop" (zero out) some fraction of the connections in your network
- This will prevent your network from relying too heavily on any specific connections

(a) Standard Neural Net

(b) After applying dropout.

• Encourages redundancy/consensus across various paths through the network

Regularization: In the Loss Function

[Andrej Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Regularization: In Data Preparation

Preprocess the data so that learning is better conditioned:

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

Regularization: In Data Preparation

For ConvNets, typically only the mean is subtracted.

An input image (256x256)

Minus sign

The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

Regularization: In Data Preparation

Augment the data — extract random crops from the input, with slightly jittered offsets. Without this, typical ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches extracted from 256x256 images

Randomly reflect horizontally

Perform the augmentation live during training

Figure: Alex Krizhevsky

Putting It All Together: How To Train Deep Nets

Roughly speaking:

Gather labeled data

Find a ConvNet architecture

Minimize the loss

Training a Convolutional Neural Network

- Split and preprocess your data
- Choose your network architecture
- Initialize the weights
- Find a learning rate and regularization strength/strategy
- Minimize the loss and monitor the progress
- Fiddle with things until they work

(1) Data Pre-Processing

Examples:

- Normalizing and centering Data
- Data Augmentation
 - Random Cropping
 - Mirror Flips

(2) Choose your architecture

https://playground.tensorflow.org/

(we will come back to this later)

(2) Choose your architecture

Very common modern choice

(3) Initialize Your Weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(3) Start with a Small Portion of the Data

The above code:

- take the first 20 examples from CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla 'sgd'

(3) Start with a Small Portion of the Data

Details:

'sgd': vanilla gradient descent (no momentum etc)

learning_rate_decay = 1: constant learning rate

sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data

Slide: Andrej Karpathy

(3) Start with a Small Portion of the Data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03
Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, lr 1.000000e-03
Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03
Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03
Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 19 / 200: cost 1.42152/, train: 0.600000, val 0.600000, lr 1.000000e-03
Finished epoch 195 / 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train: 1.000000, val 1.000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train: 1.000000, val 1.000000, lr 1.000000e-03
finished optimization. best validation accuracy: 1.000000

Slide: Andrej Karpathy

(4) Find a learning rate

- Too high won't converge
- Too low will converge slowly

Aside: Some Training Vocabulary

- An *Epoch* is one complete pass through your training data
- An *iteration* of SGD happens on a batch of examples.
- The *Batch Size* is the number of examples in a single training batch.
- The number of iterations per epoch depends on the total number of examples divided by the batch size.

(4b) Choosing a Learning Rate Schedule

How do we change the learning rate over time? Various choices:

- Step down by a factor of 0.1 every 50,000 mini-batches (used by SuperVision [Krizhevsky 2012])
- Decrease by a factor of 0.97 every epoch (used by GoogLeNet [Szegedy 2014])
- Scale by sqrt(1-t/max_t) (used by BVLC to re-implement GoogLeNet)
- Scale by 1/t
- Scale by exp(-t)

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Summary of things to fiddle

- Network architecture
- Learning rate, decay schedule, update type (+batch size)
- Regularization (L2, L1, maxnorm, dropout, ...)
- Loss function (softmax, SVM, ...)
- Weight initialization

Neural network parameters

Questions?

Demo

https://playground.tensorflow.org/

(we will come back to this later)

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
Conv-128
Conv-128
MaxPool
Conv-64
Conv-64
Image

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000
FC-4096
FC-4096
MaxPool
Conv-512
Conv-512
MaxPool
Conv-512
Conv-512
MaxPool
Conv-256
Conv-256
MaxPool
0
Conv-128
Conv-128 Conv-128
Conv-128 Conv-128 MaxPool
Conv-128 Conv-128 MaxPool Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	FC-1000
FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	FC-4096
MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	FC-4096
Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	MaxPool
Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	Conv-512
MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	Conv-512
Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	MaxPool
Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	Conv-512
MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128	Conv-512
Conv-256 Conv-256 MaxPool Conv-128 Conv-128	MaxPool
Conv-256 MaxPool Conv-128 Conv-128	Conv-256
MaxPool Conv-128 Conv-128	Conv-256
Conv-128 Conv-128	MaxPool
Conv-128	Conv-128
	Conv-128
MaxPool	MaxPool
Conv-64	Conv-64
Conv-64	Conv-64

Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	?	?
Conv-128 Conv-128 MaxPool Conv-64 Image	quite a lot of data	?	?

FC-1000 FC-4096 FC-4096 MaxPool		very similar dataset	very different dataset
Conv-512 MaxPool More specific Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool MaxPool	very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
Conv-128 MaxPool Conv-64 Conv-64 Image	quite a lot of data	Finetune a few layers	Finetune a larger number of layers

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015 Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Some Takeaways

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

TensorFlow: <u>https://github.com/tensorflow/models</u> PyTorch: <u>https://github.com/pytorch/vision</u> Common modern approach: start with a ResNet architecture pre-trained on ImageNet, and fine-tune on your (smaller) dataset

Questions?

Autoencoders: Unsupervised Dimensionality Reduction

- Learn a transformation into some compressed space (encoder)
- Learn a transformation from compressed space back to original content (decoder)
- Loss function can be difference between input and decoded output
- Does not require labels!

Autoencoders: Unsupervised Dimensionality Reduction

- Good way to learn useful features from large amounts of unlabeled data
 - E.g., for transfer learning

- We can do this with CNNs, but we need some way to expand feature dimensionality...
- For this we will use *Transpose Convolution*

IMAGE COLORING

Before

After

IMAGE NOISE REDUCTION

Before

After

- *Stride*: The step size used when computing the convolution
- *Padding*: What is assumed about pixels "outside" of image bounds

Kernel size: 3x3 Padding: 0 Stride: 0

- *Stride*: The step size used when computing the convolution
- *Padding*: What is assumed about pixels "outside" of image bounds

Kernel size: 3x3 Padding: 0 Stride: 1

- *Stride*: The step size used when computing the convolution
- *Padding*: What is assumed about pixels "outside" of image bounds

Kernel size: 3x3 Padding: "same" (1) Stride: 0

- *Stride*: The step size used when computing the convolution
- *Padding*: What is assumed about pixels "outside" of image bounds
- Stride is applied to the output and padding is applied to the input

Transpose Convolution: Upscaling Our Data

- Stride applied to input
- Padding applied to output (think of it as removing boundary pixels)

Kernel size: 3x3 Padding: 0 Stride: 0

Kernel size: 3x3 Padding: 0 Stride: 1

Kernel size: 3x3 Padding: 1 Stride: 1

Generative Models

Abe Davis

Some slides from Jin Sun, Phillip Isola