Training, Transfer Learning,
& Generative Models

By Abe Davis
With some slides from
Jin Sun, Noah Snavely, Philipp Isola

Announcements

* Project 5 (Convolutional Neural Networks) released today
* Due Wednesday, April 29

» Take-home final exam planned May 11-14

This Lecture (and maybe part of the next one)

» Visualizing Deep Classification

» A Review of Overfitting

» Regularization in Deep Learning
« How to Train Deep Nets
 Transfer Learning

» Generative Models

 Transpose Convolution

Visualizing Linear Classification

1fq 1
0.5} \\ /, 0.5} \\ /,
\\ 1" \‘ ‘/
0 \\ // i 0 \\ //
N\)4 N\ /
0.5 \\ l/ 0.5 \\ l/
\. \.
\\ // \\ //
N / N /
1 ! - - - ' 1 —] . N . ,
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
Classification Problem: Linear Solution

Separate Red & Blue

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Visualizing Classification With a Neural Network

>

Hidden Layer o5k \ /

input Output

Example Network

%
\\
Output y of Neuron from Hidden Layer

Output x of Neuron from Hidden Layer

Classification Results for Every Classification Results for Every
Point in Original Space Point in Transformed Feature Space

Based on http://colah.github.i0o/posts/2014-03-NN-Manifolds-Topology/

Demo

https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

What Makes Training Deep Nets Hard?

* It’s easy to get high training
accuracy:

 Use a huge, fully connected
network with tons of layers

* Let it memorize your training data

» Its hard to get high test accuracy

QOO
QOO0
QOO0 OO

— QOO0

This would be an example
of overfitting

— OCOOCO00

Related Question: Why Convolutional Layers?

» A fully connected layer can
generally represent the same
functions as a convolutional one

 Think of the convolutional layer
as a version of the FC layer with
constraints on parameters

« What is the advantage of CNNs?

Convolutional Layer

QOO
OOO0O000

Fully Connected Layer

Review of Overfitting

e e e e e e e e e e W e s e e e e e e

%: FutureWarning: You are using librosa with Python 2. Please note that librosa 0.7 will

be the last version to support Fython 2, after which it will require Python 3 or later.
FutureWarning)

TEST_DIR=/Users/abedavis/Code/MyRepos/python/abepy/notebooks/Scratch/TEMP_MEDIAGRAPH_TES
T DIR

start t = -10;

end_t = 10;

samnples = 500;

data_points = 15;

trange=3.0;

jitter = np.random.rand(n_data_points)*2-1;
Jitter_amp = 0;

noise_amp = 25.0;

ﬂ_
ﬂ_

sample times = ng.linlpace(:tart~—1.0, stop = 1.0, num = n_samples, endpoint=True)*trang
data_times = np.linspace(start=-n_data_points, stop = n_data points, num = n_data_points
data_times = data_times'(np.ttuc_aividcgtrangc, n_data_goints)):

tsig_gt = UnstructuredTimeSignal{data times, np.square(data_times)+data_times);

tsig _noise = UnstructuredTimeSignal({data_times, tsig_gt.sample_values+({np.random.rand(n_¢

executed in 10ms, finished 17:43:20 2020-04-21

: v # tsig gt.plotLine(color='green’)
tsig noise.plotPoints()

executed in 4ms, finished 17:43:21 2020-04-21

Ground Truth

fits = [];

ylim = [-10, np.power(trange+3, 2.0)]
xlim = [-15, 15);

polfunc = tsig_qt.3¥tFolyFitPunc(dcq-2);

pfit = UnstructuredTimeSignal(sample_times, polfunc(sample_times));

Fd Pfj:.plouinc(color- ‘green');

tszq_noxse.glo:?oints();

plt.ylim(*ylim);

plt.xlim(*xlim);

plt.title('Noisy Samples’);
plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/sa:
plt.show()

polfunc = tsig_gt.getPolyFitFunc(deg=2);

pfit = UnstructuredTimeSignal(sample_times, polfunc(sample_times));
pfic.flotLinc[color-'grccn):

plt.ylim(*ylim);

plt.xlim(*xlim);

plt.title('Ground Truth');
plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/gre
plt.show()

polfunc = tsig_qt.ggt?olyrit?unc(dcg-z);

pfit = UnstructuredTimeSignal(sample_times, polfunc(sample_times));
pfit.plotLine(color='green’);

tsig_noisc.glot?oints():

plt.ylim(*ylim);

plt.xlim(*xlim);

plt.title('Ideal Fit');
plt.savefig('/Users/abedavis/Documents/Abe/Teaching/CS5670/2020/gans/overfitting/figs/id«
plt.show()

v for a in range(n_data points+l):
polfunc = tsig_noise.getPolyFitFunc(deg=a);
g!it = UnstructuredTimeSignal(sample_times, polfunc(sample_times));
its.append{pfit);
pfit.plotLine(color='red');
t:ig_noiac.{lot?oint:();
ple.ylim(*ylim);
plt.xlim({*xlim);
plt.title(Poly Fit Degree ()'.format(a))

plt.savefig('/Users/abedavis/Documents/Abe/Teaching/C55670/2020/gans/overfitting/£fig:
plt.show();

executed in 2.79s, finished 18:13:00 2020-04-21

Nowsy Sampies

Overtfitting: More Parameters, More Problems

* Non-Deep Example: consider the function T2 + X

* Let’s take some noisy samples of the function...

Ground Truth

120 A

100 A

80 A

60

40 -

20 A

-15 -10 =5

120 A

100 A

80 -

60 A

40 -

20 A

Noisy Samples

15

Poly Fit Degree 1

120 A

100 A

80 A

60 -

Poly Fit Degree 7

15

120 A

100 A

80 A

60 -

40 A

-10

15

Poly Fit Degree 2

60

40

20 1

-15

-10 -5 0 5 10

Poly Fit Degree 9

15

120 A

100

80 A

60

40

20 A

-15

-10

15

Poly Fit Degree 3

100 A

80 -

60

40

20 1

-10

Poly Fit Degree 11

10

15

-10

10

15

Overtfitting: More Parameters, More Problems

N

» Now lets fit a polynomial to our samples of the form Py(z) =) a*p;
0

k=

Poly Fit Degree 5

120 A

100 A

80 A

60 -

40

20 1

=15

-10

-5 0 5 10 15

Poly Fit Degree 13

120 A

100 A

80 A

60 -

40

20 A

-15

-10

-5 0 5 10 15

Overtfitting: More Parameters, More Problems

120 A

* A Model with more parameters can
represent more functions
N Zﬁ

* E.g.,: if Py(x)= Zfﬁkpk then P € Pis .
k=0 N

Degree 2 Fit

-15

e More parameters will often reduce

traimn%lerror but increase testing
1s 1s overfitting.

80 A

error. T

60 -

» When overfitting happens, models do not
generalize well.

40 A

20 A

15

Degree 15 Fit

-15

15

Deep Learning: More Parameters, More Problems?

» More parameters let us represent a
larger space of functions

 The larger that space is, the harder
our optimization becomes

* This means we need:
 More data
« More compute resources
* Etc.

QOO
OOO0O000

Convolutional Layer Fully Connected Layer

Deep Learning: More Parameters, More Problems?

A convolutional layer
looks for components of

a function that are \

S patia l Iy_l nva ri ant Convolutional Layer Fully Connected Layer

QOO
OOO0O000

How to Avoid Overtfitting: Regularization

* In general:
« More parameters means higher risk of overfitting
* More constraints/conditions on parameters can help

 If a model is overfitting, we can
e Collect more data to train on

* Regularize: add some additional information or assumptions to better
constrain learning

» Regularization can be done through:
* the design of architecture
* the choice of loss function
* the preparation of data

Regularization: Architecture Choice

« “Bigger” architectures (typically,
those with more parameters) tend
to be more at risk of overfitting.

Convolutional Layer

Q
Q
Q
QO
O
O

OOO0O000

Fully Connected Layer

Regularization: Dropout

* At training time, randomly “drop”
(zero out) some fraction of the
connections in your network

{)
»

/,..

{)
2\
7
\

)

e

0>
[/

4

<
4)}
X
X%
<9
S

\

» This will prevent your network
from relying too heavily on any
specific connections

»

/)
N
£\

<

(L]
e
)
K
X
N
QA

s
XX
2
()

(/)

{)

{ 1N
: «.)\‘3:‘
,.,'v}
W
v
N
@

\)
g

.

(a) Standard Neural Net (b) After applying dropout.

» Encourages redundancy/consensus
across various paths through the
network

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JIMLR 2014

Regularization: In the Loss Function
_ Loe
L= Ldata T Lreg Lreg — AEHWHZ

A =0.001 A =0.01

[Andre| Karpathy http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html]

Regularization: In Data Preparation

Preprocess the data so that learning is better conditioned:

original data zero-centered data normalized data
- |
0 — 0 - 0
\J
p4T) 3 19 105 =S 0 5 19 15 -5 0 5 10
X -= np.mean(axis=0, keepdims=True)

X /= np.std(axis=0, keepdims=True)

Figure: Andrej Karpathy

Regularization: In Data Preparation

For ConvNets, typically only the mean is subtracted.

An input image (256x256) Minus sign The mean input image

A per-channel mean also works (one value per R,G,B).

Figure: Alex Krizhevsky

Regularization: In Data Preparation

Augment the data — extract random crops from the
input, with slightly jittered offsets. Without this, typical
ConvNets (e.g. [Krizhevsky 2012]) overfit the data.

E.g. 224x224 patches
extracted from 256x256 images

Randomly retlect horizontally

Perform the augmentation live
during training

Figure: Alex Krizhevsky

Putting It All Together: How To Train Deep Nets

Roughly speaking:

Gather Find a ConvNet Minimize
labeled data architecture the loss
AR L L e TIPS T E B Eiﬁ
JaaE e o FLE e ==
EENNErTDe . gl |y a4 =
=mjTamEcil Pt o T
DV SR o S3m=
e 0~ Kn [i [004 5- mZZT _
Bl AEEEs s = ot
m e A] T e ﬁgzgé
B0 e Y Y : ~ Bl -
s 2 o e R =
A RS R S peT
[aEraE « B ¥ m W v e a1+

Training a Convolutional Neural Network

 Split and preprocess your data

* Choose your network architecture

» Initialize the weights

 Find a learning rate and regularization strength/strategy
» Minimize the loss and monitor the progress

» Fiddle with things until they work

(1) Data Pre-Processing

Examples:

* Normalizing and centering Data

« Data Augmentation
« Random Cropping
 Mirror Flips

zero-centered data normalized data

(2) Choose your architecture

[@] A Neural Network Playgr x Noaly -
& C' @ Secure https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0... ¥ [@ 1 ri’g N
O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
OO0,000 0.03 v Tanh v None v 0 v Classification v
DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.507
you want to use? do you want to + + Training loss 0.504
feed in?
4 neurons 2 neurons
%
X4
X5
Ratio of training to
test data: 50% i
—e X The outputs are
mixed with varying
. weights, shown
Noise: 0 .2 by the thickness of
[] 2 the lines.
(
Batch size: 10 XX, \ This is the output
—o from one neuron.
Hover to see it 0
larger.
REGENERATE)
Colors shows
) data, neuron and ! !
sin(X,) . - 0 1
2 weight values.

https://playground.tensorflow.org/
(we will come back to this later)

i

Very common

(2) Choose your architecture modern choice

/

“AlexNet” “GoogLeNet” “VGG Net”

= image
e
- conv-64
i conv-64
EEHBE maxpool
SER e conv-128
e conv-128
ﬁ maxpool
:g g =] conv-256
sszm conv-256
f = “‘-“‘g = maxpool
8 EEEE
ST conv-512
Eiﬁ conv-512
= ‘i:" = maxpool
e
=i=l=l=1=] conv-512
-] -]
B =5 conv-512
- maspool
]
= e FC-4096
g FC-4096
f FC-1000
- softmax
[Krizhevsky et al. NIPS 2012] [Szegedy et al. CVPR 2015] [Simonyan & Zisserman, Ie et al. CVPR 201§

ICLR 2015]

(3) Initialize Your Weights

Set the weights to small random numbers:

W = np.random.randn(D, H) * 0.001

(matrix of small random numbers drawn from a Gaussian distribution)

Set the bias to zero (or small nonzero):

b = np.zeros(H)

(if you use ReLU activations, folks tend to initialize bias to small positive number)

Slide: Andrej Karpathy

(3) Start with a Small Portion of the Data

model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number
trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples 4—
y tiny = y train[:20]
best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd’', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

The above code:
- take the first 20 examples from
CIFAR-10
- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

(3) Start with a Small Portion of the Data

model = init two layer model(32%32%*3, 50, 10) # input size, hidden size,
trainer = ClassifierTrainer()
X_tiny = X_train[:20] # take 20 examples <«u—

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,
num epochs=200, reg=0.0,
update='sgd', learning rate decay=1,
sample batches = False,
learning rate=le-3, verbose=True)

Details:

'sgd’: vanilla gradient descent (no momentum etc)
learning_rate_decay = 1: constant learning rate
sample_batches = False (full gradient descent, no batches)

epochs = 200: number of passes through the data
Slide: Andrej Karpathy

(3) Start with a Small Portion of the Data

100% accuracy on the training set (good)

Finished epoch 1 / 200: cost 2.302603, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 2 / 200: cost 2.302258, train: 0.450000, val 0.450000, lr 1.000000e-03]

Finished epoch 3 / 200: cost 2.301849, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 4 / 200: cost 2.301196, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 5 / 200: cost 2.300044, train: 0.650000, val 0.650000, lr 1.000000e-03

Finished epoch 6 / 200: cost 2.297864, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 7 / 200: cost 2.293595, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 8 / 200: cost 2.285096, train: 0.550000, val 0.550000, lr 1.000000e-03

Finished epoch 9 / 200: cost 2.268094, train: 0.550000, val 0.550000, 1lr 1.000000e-03

Finished epoch 10 / 200: cost 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 11 / 200: cost 2.173187, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 12 / 200: cost 2.076862, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 13 / 200: cost 1.974090, train: 0.400000, val ©0.400000, lr 1.000000e-03

Finished epoch 14 / 200: cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03

Finished epoch 15 / 200: cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 16 / 200: cost 1.737430, train: 0.450000, val 0.450000, lr 1.000000e-03

Finished epoch 17 / 200: cost 1.642356, train: 0.500000, val 0.500000, lr 1.000000e-03

Finished epoch 18 / 200: cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e-03

Finished epoch 19 / 200: cost 1.421527, train: 0.600000, val ©.600000, lr 1.000000e-03 .
Finished epoch 195 / 200: cost 0.002694, train:|1.000000 .000000, lr 1.000000e-03
Finished epoch 196 / 200: cost 0.002674, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 197 / 200: cost 0.002655, train:j1.000000 .000000, 1r 1.000000e-03
Finished epoch 198 / 200: cost 0.002635, train:j1.000000 .000000, 1r 1.000000e-03
Finished epoch 199 / 200: cost 0.002617, train:j1.000000 .000000, lr 1.000000e-03
Finished epoch 200 / 200: cost 0.002597, train:j1.000000 .000000, lr 1.000000e-03
finished optimization. best validation accuracyt 1.00000C

Slide: Andrej Karpathy

(4) Find a learning rate

* Too high won’t converge
* Too low will converge slowly

loss

low learning rate

high learning rate

good learning rate

epoch

Aside: Some Training Vocabulary

« An Epoch is one complete pass through your training data
* An iteration of SGD happens on a batch of examples.
* The Batch Size is the number of examples in a single training batch.

* The number of iterations per epoch depends on the total number of
examples divided by the batch size.

(4b) Choosing a Learning Rate Schedule

How do we change the learning rate over time?
Various choices:

e Step down by a factor of 0.1 every 50,000
mini-batches (used by SuperVision [Krizhevsky 2012])

* Decrease by a factor of 0.97 every epoch
(used by GooglLeNet [Szegedy 2014])

e Scale by sgrt(1-t/max_t)
(used by BVLC to re-implement GooglLeNet)

 Scale by 1/
e Scale by exp(-t)

Summary of things to fiddle

* Network architecture
* Learning rate, decay schedule, update type

« Regularization (L2, L1, maxnorm, dropouit, ...)

e Loss function (softmax, SVM, ...)

* Weight initialization

Neural network
parameters

Summary of things to fiddle

* Network architecture
e Learning rate, decay schedule, update type (+batch size)

« Regularization (L2, L1, maxnorm, dropouit, ...)

e Loss function (softmax, SVM, ...)

* Weight initialization

Neural network
parameters

Questions?

Demo

A Neural Network Playgr %

< C' @& Secure

N

DATA

Which dataset do
you want to use?

%)

Ratio of training to
test data: 50%
_‘

Noise: 0

Batch size: 10
—e

REGENERATE

4

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.... Yy [

Epoch Learning rate Activation Regularization
OO0,000 0.03 v Tanh v None
FEATURES + — 2 HIDDEN LAYERS
Which properties
do you want to
feed in? A A
4 neurons 2 neurons

OO

X.2
1 The outputs are
mixed with varying
weights, shown
X2 by the thickness of
2 the lines.
><‘)<, < This is the output
- from one neuron.
Hover to see it
larger.
sin(X;)
sin(X,)

Neelh —
e B LW

Regularization rate Problem type

0 v Classification v

OUTPUT

Test loss 0.507
Training loss 0.504

Colors shows
data, neuronand ! |
weight values. '

https://playground.tensorflow.org/

(we will come back to this later)

Transfer Learning

“You need a lot of a data if you want to
trainfuse CNNs”

Transfer Learning

“You need a lot of %If you want to
train E@ Ns”

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs g Ssesin o Besmon VAR Vrchops

2014
1. Train on Imagenet

| FC-4000 |

| FC-4096 |
I FC-4096 I

| MaxPool |
| Conv-512 |

| Conv812 |

| MaxPool |

| Conv-512 |
| Conv-512 |

| MaxPool |

| Conv-256 |
| Conv-256 |

| MaxPool |

| Conv-128 |
| Conv-128 |

| MaxPool |

| Conv-64 |
| Conv-64 |

|___Image |

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000

| FC-4096 |
I FC-4096 I

| MaxPool |
| Conv-512 |

Conv-512

MaxPool

| Conv-512 |
| Conv-512 |

MaxPool

| Conv-256 |
| Conv-256 |

MaxPool

| Conv-128 |
| Conv-128 |

MaxPool

| Conv-64 |
| Conv64 |

Imae

2. Small Dataset (C classes)

| FC-4096 I\

FCL

| MaxP ool |
I Conv-512 |

Conv-512

MaxP ool

Conv-512

Conv-512

MaxP ool

Conv-256

Conv-256

MaxP ool

Conv-128

Conv-128

MaxP ool

| Conv-64 |

| Conv-64 |J

Image

Reinitialize
this and train

Freeze these

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000

| FC-4096 |
I FC-4096 I

| MaxPool |
| Conv-512 |

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

| Conv-256 |
| Conv-256 |

MaxPool

| Conv-128 |
| Conv-128 |

MaxPool

| Conv64 |
| Conv-64 |

Imae

2. Small Dataset (C classes)

| FC-4096 I\

FCC

| MaxP ool |
| Conv-512 |

Conv-512

MaxP ool

| Conv-512 |
| Conv-512 |

MaxP ool

Conv-256

Conv-256

MaxP ool

Conv-128

Conv-128

MaxP ool

| Conv-64 |

| Conv-64 |J

Image

Reinitialize
this and train

> Freeze these

Donahue et al, "DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, "CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Warkshops
2014

3. Bigger dataset

|l _Fcc |
|__FC40%6 | Train these
| FC-4096 |

MaxP ool \
[Eanini? | With bigger

{4 512 .
[Conv512 | dataset, train
| el | more layers
| Conv512 |
| Conv&12 |
| MaxPool |
|_Conv-256 | Freeze these
| Conv-256 |
| MaxPool | _
" Conv-128 | Lower learning rate
__Conv-128 | when finetuning;
|__MaxPool | 1/10 of original LR
(BT | is good starting
| Conv64 | J point
____Image |

FC-1000

FC-4096

FC-4096

MaxPool
Conv-612
Conv-5612

MaxPool
Conv-612
Conv-612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | ? ?
? ?

quite a lot of
data

FC-1000

FC-4096

FC-4096

MaxPool
Conv-612
Conv-612

MaxPool
Conv-612
Conv-5612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear ?
Classifier on
top layer
quite a lot of Finetune a ?
data few layers

FC-1000

FC-4096

FC-4096

MaxPool
Conv-512
Conv-612

MaxPool
Conv-612
Conv-612

MaxPool
Conv-256
Conv-256

MaxPool
Conv-128
Conv-128

MaxPool
Conv-64
Conv-64

Image

More specific

More generic

/

very similar

very different

dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number

of layers

Transfer learning with CNNs is pervasive...
(It's the norm, not an exception)

Object Detection
(Fast R-CNN) [Tog o ot Lo Image Captioning: CNN + RNN

Prn.p..”mfl Linear + 1 Bounding box “ o "
classifiar | softmax —~ | regressors straw hat END
FCs yt
Lol T,

o o & Rol pooling

Exlernal proposal —»/37 i E :7/
algorithm g
/ ' !

Ve
'Y oh

e.g. selective search

/‘/
y

/

ConvNet i /h T
(applied to entira

image)

START “StraW" “hat"

Girshick, "Fast R-CNN", ICCV 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission.

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Generating Image Descriptions”, CYPR 2015
Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...
(It's the norm, not an exception)

Object Detection _
(Fast R-CNN) e CNN pretrained

x 2 on ImageNet
Propnsal Linea)
cassfer | ofmos inid

V &Y 4
External propusal ————7 alls

algorithm .
e.g. selective search

Image Captioning: CNN + RNN

“straw” “hat” END

ConvNet
(applied to entirs
image)

START “Straw" “hat"

Karpathy and Fei-Fei, "Deep Yisual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Generating Image Descriptions”, CYPR 2015
Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Transfer learning with CNNs is pervasive...
(It's the norm, not an exception)

Object Detection _
(Fast R-CNN) et CNN pretrained
on ImageNet

—| Bounding box
—| regrassors

Image Captioning: CNN + RNN

Propnsal Linea
classifisr | softmax

x +
i
(@]

S

) &y
‘ __..;l'\‘\-, .
y 4 Rol pocling v o
External propusal ———— allsy A/
algorithm ' —

e.g. selective search

ConvNet
(applied to entirs
image}

START “straw” “hat”

Word vectors pretrained
. Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for
Girshick, "Fast R-CNN", ICCY 2015 Wlt h Wo rd 2V e C Generating Image Descriptions”, CYPR 2015

Figure copyright Ross Girshick, 2015. Reproduced with permission. Figure copyright IEEE, 2015. Reproduced for educational purposes.

Some Takeaways

Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has
similar data, train a big ConvNet there
2. Transfer learn to your dataset

Common modern approach:

Deep learning frameworks provide a “Model Zoo” of start with a ResNet

pretrained models so you don’t need to train your own | architecture pre-trained on
ImageNet, and fine-tune on

your (smaller) dataset

TensorFlow: hitps://aithub.com/tensorflow/models

Py Torch: hitps://github.com/pytorch/vision

Questions?

Autoencoders: Unsupervised Dimensionality Reduction

e Learn a transform
some compressed
(encoder)

ation 1into
space

e Learn a transformation from

compressed space
original content (c

 Loss function can
between input and
output

* Does not requir

back to
ecoder)

be difference

| decoded

e labels!

Input

Encoder

Output

Decoder

Autoencoders: Unsupervised Dimensionality Reduction

* Good way to learn useful
features from large amounts of

Input Output

unlabeled data 8 .
o \ '~ /
 E.g., for transfer learning RN ey
\\ / WV~ Code 7/ \ /
. / N -y \/
\// N/ N // \//
//\\ //<\ / >\\ //\\

» We can do this with CNNs, but SN TS O
we need some way to expand) - ~ A\
feature dimensionality... ol N

» For this we will use Transpose — —

Encoder Decoder

Convolution

IMAGE NOISE REDUCTION

Before After

Before After

Regular Convolution

» Stride: The step size used when
computing the convolution

* Padding: What is assumed about
pixels “outside” of image bounds

Input
(Blue)

Kernel size: 3x3
Padding: 0
Stride: 0

Animations from: https://github.com/vdumoulin/conv arithmetic

Regular Convolution

. . Output
» Stride: The step size used when (Green)

computing the convolution

* Padding: What is assumed about
pixels “outside” of image bounds

Input
(Blue)

Kernel size: 3x3
Padding: 0
Stride: 1

Animations from: https://github.com/vdumoulin/conv arithmetic

Regular Convolution

» Stride: The step size used when
computing the convolution

* Padding: What is assumed about
pixels “outside” of image bounds

Input
(Blue)

Kernel size: 3x3
Padding: “same” (1)
Stride: 0

Animations from: https://github.com/vdumoulin/conv arithmetic

Regular Convolution

» Stride: The step size used when
computing the convolution

* Padding: What is assumed about
pixels “outside” of image bounds

» Stride is applied to the output and
padding is applied to the input

Kernel size: 3x3
Padding: 1
Stride: 1

Animations from: https://github.com/vdumoulin/conv arithmetic

Transpose Convolution: Upscaling Our Data

» Stride applied to input
« Padding applied to output (think of it as removing boundary pixels)

Kernel size: 3x3 Kernel size: 3x3 Kernel size: 3x3
Padding: 0 Padding: 0 Padding: 1
Stride: 0 Stride: 1 Stride: 1

Animations from: https://github.com/vdumoulin/conv arithmetic

Generative Models

Abe Davis
Some slides from Jin Sun, Phillip Isola

