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• Project 5 (Convolutional Neural Networks) released today 
• Due Wednesday, April 29

• Take-home final exam planned May 11-14

Announcements



• Visualizing Deep Classification
• A Review of Overfitting
• Regularization in Deep Learning
• How to Train Deep Nets
• Transfer Learning
• Generative Models
• Transpose Convolution

This Lecture (and maybe part of the next one)



Visualizing Linear Classification

Classification	Problem:
Separate	Red	&	Blue

Linear	Solution

Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/



Visualizing Classification With a Neural Network

Classification	Results	for	Every	
Point	in	Original	Space

Classification	Results	for	Every	
Point	in	Transformed	Feature	Space

Example	Network
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Based on http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Demo
https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



• It’s easy to get high training 
accuracy:
• Use a huge, fully connected 

network with tons of layers
• Let it memorize your training data

• Its hard to get high test accuracy

What Makes Training Deep Nets Hard?

… …

This	would	be	an	example	
of	overfitting



• A fully connected layer can 
generally represent the same 
functions as a convolutional one
• Think of the convolutional layer 

as a version of the FC layer with 
constraints on parameters

• What is the advantage of CNNs?

Related Question: Why Convolutional Layers?

Convolutional	Layer Fully	Connected	Layer



A Review of Overfitting



Overfitting: More Parameters, More Problems

• Non-Deep Example: consider the function 
• Let’s take some noisy samples of the function…



Overfitting: More Parameters, More Problems

• Now lets fit a polynomial to our samples of the form  



• A Model with more parameters can 
represent more functions

• E.g.,: if                                  then

• More parameters will often reduce 
training error but increase testing 
error. This is overfitting.

• When overfitting happens, models do not 
generalize well.

Overfitting: More Parameters, More Problems

P2 2 P15
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Degree 2 Fit

Degree 15 Fit



• More parameters let us represent a 
larger space of functions

• The larger that space is, the harder 
our optimization becomes

• This means we need:
• More data
• More compute resources
• Etc.

Deep Learning: More Parameters, More Problems?

Convolutional	Layer Fully	Connected	Layer



Deep Learning: More Parameters, More Problems?

Convolutional	Layer Fully	Connected	Layer

A	convolutional	layer	
looks	for	components	of	

a	function	that	are	
spatially-invariant



• In general:
• More parameters means higher risk of overfitting
• More constraints/conditions on parameters can help

• If a model is overfitting, we can
• Collect more data to train on
• Regularize: add some additional information or assumptions to better 

constrain learning

• Regularization can be done through:
• the design of architecture
• the choice of loss function
• the preparation of data
• … 

How to Avoid Overfitting: Regularization



• “Bigger” architectures (typically, 
those with more parameters) tend 
to be more at risk of overfitting.

Regularization: Architecture Choice

Convolutional	Layer Fully	Connected	Layer



• At training time, randomly “drop” 
(zero out) some fraction of the 
connections in your network

• This will prevent your network 
from relying too heavily on any 
specific connections

• Encourages redundancy/consensus 
across various paths through the 
network

Regularization: Dropout

Srivastava, Nitish, et al. ”Dropout: a simple way to prevent neural networks from overfitting”, JMLR 2014



Regularization: In the Loss Function



Regularization: In Data Preparation



Regularization: In Data Preparation



Regularization: In Data Preparation



Putting It All Together: How To Train Deep Nets



Training a Convolutional Neural Network

• Split and preprocess your data
• Choose your network architecture
• Initialize the weights
• Find a learning rate and regularization strength/strategy
• Minimize the loss and monitor the progress
• Fiddle with things until they work



Examples:
• Normalizing and centering Data
• Data Augmentation
• Random Cropping
• Mirror Flips

(1) Data Pre-Processing



(2) Choose your architecture

https://playground.tensorflow.org/
(we will come back to this later)



(2) Choose your architecture
Very common 
modern choice



(3) Initialize Your Weights

(if you use ReLU activations, folks tend to initialize bias to small positive number)



(3) Start with a Small Portion of the Data



(3) Start with a Small Portion of the Data



(3) Start with a Small Portion of the Data



(4) Find a learning rate

• Too high won’t converge
• Too low will converge slowly



Aside: Some Training Vocabulary

• An Epoch is one complete pass through your training data

• An iteration of SGD happens on a batch of examples. 

• The Batch Size is the number of examples in a single training batch. 

• The number of iterations per epoch depends on the total number of 
examples divided by the batch size.



(4b) Choosing a Learning Rate Schedule





(+batch size)



Questions?



Demo

https://playground.tensorflow.org/
(we will come back to this later)

























Common modern approach:  
start with a ResNet
architecture pre-trained on 
ImageNet, and fine-tune on 
your (smaller) dataset

Some Takeaways



Questions?



• Learn a transformation into 
some compressed space 
(encoder)
• Learn a transformation from 

compressed space back to 
original content (decoder)
• Loss function can be difference 

between input and decoded 
output

• Does not require labels!

Autoencoders: Unsupervised Dimensionality Reduction



• Good way to learn useful 
features from large amounts of 
unlabeled data
• E.g., for transfer learning

• We can do this with CNNs, but 
we need some way to expand 
feature dimensionality…
• For this we will use Transpose 

Convolution

Autoencoders: Unsupervised Dimensionality Reduction





• Stride: The step size used when 
computing the convolution
• Padding: What is assumed about 

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: 0
Stride: 0

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic



• Stride: The step size used when 
computing the convolution
• Padding: What is assumed about 

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: 0
Stride: 1

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic



• Stride: The step size used when 
computing the convolution
• Padding: What is assumed about 

pixels “outside” of image bounds

Regular Convolution

Kernel size: 3x3
Padding: “same” (1)
Stride: 0

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic



• Stride: The step size used when 
computing the convolution
• Padding: What is assumed about 

pixels “outside” of image bounds

• Stride is applied to the output and 
padding is applied to the input

Regular Convolution

Kernel size: 3x3
Padding: 1
Stride: 1

Output
(Green)

Input
(Blue)

Animations from: https://github.com/vdumoulin/conv_arithmetic



• Stride applied to input
• Padding applied to output (think of it as removing boundary pixels)

Transpose Convolution: Upscaling Our Data

Kernel size: 3x3
Padding: 0
Stride: 0

Animations from: https://github.com/vdumoulin/conv_arithmetic

Kernel size: 3x3
Padding: 0
Stride: 1

Kernel size: 3x3
Padding: 1
Stride: 1



Generative Models
Abe Davis
Some slides from Jin Sun, Phillip Isola


