Image Manifolds &
Image Synthesis

(including GANSs)

By Abe Davis
Some slides from Jin Sun, Phillip Isola



Announcements

* Take home final May 11-14
« Sample final is online (check Piazza)
* Project 5 deadline extended to Friday May 1

* Course evaluations are open now through May 8
* We encourage feedback

« Small amount of extra credit for filling out
« What you write is still anonymous, instructors only see whether students filled it out



Dimensionality Reduction



Linear Dimensionality Reduction: 2D->1D

» Consider a bunch of data points in 2D
* Let’s say these points only differ along one line
* If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D->2D

e Similar to 1D case, we can fit

a plane to the data, and 0
transform our coordinate 30
system so that plane 20
becomes the x-y plane : ¥
« “Plane fitting” -

* More generally: look for the
2D subspace that best fits
the data, and ignore the
remaining dimensions

Think of this as data that sits on a
flat sheet of paper, suspended in
3D space. We will come back to
this analogy in a couple slides...




Generalizing Linear Dimensionality Reduction

e Principle Component Analysis

(PCA): find and order orthogonal "

axes by how much the data varies >0

along each axis. zz X
* The axes we find (ordered b -5

variance of our data) are called -75-

principle components. 100

* Dimensionality reduction can be
d()ne by using Only the first k Side Note: principle components are closely
principle Components related to the eigenvectors of the covariance

matrix for our data



Manifolds

 Think of a piece of paper as a 2D subspace
- If we bend and fold that paper, it’s still locally a 2D subspace...

* A “manifold” is the generalization of this concept to higher
dimensions...




Autoencoders: Dimensionality Reduction for

Manifolds

* Learn a non-linear
transformation into some
lower-dimensional space
(encoder)

e Learn a transformation from
lower-dimensional space back to
original content (decoder)

* Loss function measures the
difference between input and
output

 Unsupervised
 No labels required!

Input

Feature space at
bottleneck is often

called “latent space”
P Output

Encoder

Decoder



Autoencoders: Dimensionality Reduction for
Manifolds

 Transformations that reduce
dimensionality cannot be
invertible in general
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* An autoencoder tries to learn a
transformation that is
invertible for points on
some manifold.




Image Manifolds



The Space of All Images

* Lets consider the space of
all 100x100 images

* Now lets randomly sample ®
that space...
. . Question:
i COI]C]USIOH: MOSt lmages What do we expect a random uniform

sample of all images to look like?

are noise

pixels = np.random.rand(100,100,3)




Natural Image Manifolds

* Most images are “noise”

« “Meaningful” images tend to
form some manifold within the
space of all images

* Images of a particular class fall
on manifolds within that
manifold...

[ The Space of All Images ]
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Natural Image Manifolds




Denoising and the “Null Space” of Autoencoders

|

* The autoencoder tries to learn a
dimensionality reduction that is
invertible for our data (data on
some manifold)
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* Most noise will be in the vt WA EIA R MEE

non-invertible part of image
space (off the manifold)

Noisy Input

o If we feed noisy data in, we will Output . . E . - .

often get denoised data out

Examples from: https://blog.keras.io/building-autoencoders-in-keras.html



https://blog.keras.io/building-autoencoders-in-keras.html

Question:
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point in the latent space will be
on the manifold...

* GANSs (covered later in this
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Image-to-Image
Applications



Image prediction (“structured prediction”)

4 Object labeling: )
K [Long et al. 2015, .. ] )
4 Text-to-photo: A
“this small bird
has a pink breast
and crown...”
\ [Reed et al. 20186, ...] j

Edge Detection:

[Xie et al. 2015, ...]

N\

Stvle transfer:

[Gatys et al. 2016, ...]




U-Net

A popular network structure
to generate same-sized output

e Similar to a convolutional
autoencoder, but with “skip
connections” that concatenate
the output of earlier layers
onto later layers

nput image
A

256

64
128

64
128
128

e Great for learnin%
transformations from one i
image to another

—) 3x3 ConvTranspose2d(stride=2)+RelU

N —
Mo

sigmoid output



Image Colorization

from Jin Sun, Richard Zhang, Phillip Isola



argmin Ey y [L(F(x),y)]

“Mow should | do
it?”

from Jin Sun, Richard Zhang, Phillip Isola

“What should | do”



Training data
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| channel Color information: ab channels

arg m}n Lo,y [ L(F (%), y)]

Objective function Neural Network
(lOSS) from Jin Sun, Richard Zhang, Phillip Isola




- = |—] || || | O “ye||o\/\/”

from Jin Sun, Richard Zhang, Phillip Isola



—| || [—] |— —> — B “Dlack”

from Jin Sun, Richard Zhang, Phillip Isola



from Jin Sun, Richard Zhang, Phillip Isola



Basic loss functions

Prediction: ¥ = JF(X) Truth: Y

Classitication (cross-entropy): How many extra
bits it takes to

L(S’, y) — Zz S’z 1Og Yi correct the

predictions

Least-squares regression:
How far off we are

L(S/‘,Y) — HS/‘ — YHQ +<— in Euclidean

distance

from Jin Sun, Richard Zhang, Phillip Isola



Designing loss functions

Input OQutput Ground truth







Designing loss functions

Input /hang et al. 2016 Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]






Designing loss functions

Image colorization

L2 regression

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

L2 regression

[Johnson, Alahi, Li, ECCV 2016]



Designing loss functions

Image colorization

Cross entropy objective,
with colorfulness term

[Zhang, Isola, Efros, ECCV 2016]
Super-resolution

Deep feature covariance
matching objective

[Johnson, Alahi, Li, ECCV 2016]



A Better Loss Function: Sticking to the Manifold

* How do we design a loss
function that penalizes images
that aren’t on the image
manifold?

* Key insight: we will learn our
loss function by training a
network to discriminate
between images that are on
the manifold and images that
aren’t




Part 3: Generative
Adversarial Networks
(GANS)



Generative Adversarial Networks (GANS)

 Basic idea: Learn a mapping from some latent space to images on a
particular manifold

- Example of a Generative Model:

» We can think of classification as a way to compute some P(x) that tells us the
probability that image x is a member of a class.

 Rather than simply evaluating this distribution, a generative model tries to
learn a way to sample from it



Generative Adversarial Networks (GANS)

e Generator network has similar
structure to the decoder of our
autoencoder

« Maps from some latent space to
images

e We train it in an adversarial
manner against a discriminator
network

* Generator tries to create outpqt that
ids indistinguishable from training
ata

 Discriminator tries to distinguish
betyvgen enerator output and
fraining data

Training Data

NS
VR

Output

LTIl

Discriminator
Network



Example: Randomly Sampling the Space of Face
!(};!r‘)ggg%§e Adversarial Networks (GANs)

Which face is real?



http://www.whichfaceisreal.com/index.php

Conditional GANs

 Generate samples from a conditional distribution

- Example: generate high-resolution image conditioned on low
resolution input

bicubic SRResNet SRGAN

(21.59dB/0.6423) (20.34dB/0.6562)

(23.44dB/0.7777)
Pl

'\ L
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Sy ld]
[Ledig et al 2016]



Example: Single Image Super-Resolution

 Generate natural image, conditioned on a lower—resolution version of
the image

bicubic SRResNet SRGAN
(20.34dB/0.6562)

(21.59dB/0.6423)

(23.44dB/0.7777)
& 2 '

T I

[Ledig et al 2016]



Conditional GANs

|[Goodfellow et al., 2014]
[Isola et al., 2017]



Generative Models: Generate Samples from a
Distribution

* We can look at classification as a
way to compute some P(x) that tells
us the probability that image x is a
member of a class.

* Rather than simply evaluating this
distribution, is there some way for
us to generate samples from it?




Basic Idea Part 2: Generate Samples from a Conditional
Distribution

» Can we generate samples from our
distribution conditioned on some
input?

* In other words, can we generate
samples from the conditional
distribution P(x|c)?




[Goodfellow et al., 2014]



—/ N —1 H A= real or fake?

Generator

Discriminator

G tries to synthesize fake images that fool D

D tries to identify the fakes

|[Goodfellow et al., 2014]



— = fake (0.9)

D

—nnr—= real(0.1)

(Identify generated images as fake)  (Identify training images as real)

arg max iyl |log D(G(x))| + [log(1l— D(y))| |

[Goodfellow et al., 2014]




— H H > real or fake”?

G tries to synthesize fake images that fool/ D:

argm(i;n xy| log D(G(x)) + log(l1— D(y)) |

|[Goodfellow et al., 2014]



— H H > real or fake”?

G tries to synthesize fake images that fool the best D:

argmin iy[ log D(G(x)) + log(1— D(y)) |

G

|[Goodfellow et al., 2014]



: D

G’s perspective: D is a loss function.

Rather than being hand-designed, it is learned.

|Goodfellow et al., 2014]
[Isola et al., 2017]



— H H > real or fake”?

argménmgx ixy| log D(G(x)) + log(l—D(y)) |

|[Goodfellow et al., 2014]



—IHHF— reall
(“Aquarius”)

argmg'nmgx ixy| log D(G(x)) + log(l—D(y)) |

|[Goodfellow et al., 2014]



—{HH = realorfake pair ?

arg min max *Jx,y[ logD(G(x)) + 108(1_D(Y)) ]

G D

|Goodfellow et al., 2014]
[Isola et al., 2017]



1 —=> real or fake pair ?

arg min max | G(x)) + log(1 — D@a y)) ]

G D

[Goodfellow et al., 2014]
[Isola et al., 2017]



—iI Ml = fake pair

G(x)) +10g(1.5@ y) |

[Goodfellow et al., 2014]
[Isola et al., 2017]

arg min max
G D




—1 0> realpair

arg min max ﬂx,y[ loglﬁG(X))-l-lOg(l.—‘D@}’)) ]

G D

[Goodfellow et al., 2014]
[Isola et al., 2017]



—{HH = realorfake pair ?

argminmax Ex | log D(x,G(x)) +log(1 — D(x,y)) |

G D

[Goodfellow et al., 2014]
[Isola et al., 2017]



More Examples of Image-to-Image Translation with
GANS

* We have pairs of corresponding training images

 Conditioned on one of the images, sample from the distribution of
likely corresponding images
Edges to Image

Segmentation to Street Image Input Ground truth Output

inout AL N 2 Vi output

Aerlal Photo To Map

output



Data from [Russakovsky et al. 2015]



Input Output Groundtruth

Data from

[maps.goodle.com] ‘



http://maps.google.com/

Labels — Street Views

Input labels

Data from [Wang et al, 2018]



Day — Night

Data from [Laffont et al., 2014]



—dges — Images

Input

Edges from [Xie & Tu, 2015]



Demo

INPUT OUTPUT

pIX2pix

process

m clear random

https://affinelayer.com/pixsrv/



https://affinelayer.com/pixsrv/
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Data from [Pathak et al., 2016]



Pose-guided Generation

Condition Target Target Coarse Refined Condition Target Target Coarse Refined
image pose image (GT) result result 7imageﬁ pose image (GT) result result

i g
N
'

‘

L

(a) DeepFashion (b) Market-1501

Refined results

iy

o & 'l

Condition image Target pose sequence

(c) Generating from a sequence of poses

Data from [Ma et al., 2018]



Challenges —> Solutions

* Output is high-dimensional, structured
object
« Approach: Use a deep net, D, to analyze output!

* Uncertainty in mapping; many plausible

outputs “this small bird has a pink
» Approach: D only cares about “plausibility”, breast and crown.
doesn’t hedge

» Lack of supervised training data
« Approach: ?




Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros
UC Berkeley
In ICCV 2017

[Paper] [Code (Torch)] [Code (PyTorch)]
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https://junyanz.github.io/CycleGAN/


https://junyanz.github.io/CycleGAN/

Start

Input_A

Discriminator A

Decision [0,1]

Cyclic A

Generator
A2B

Generator
B2A

Decision [0,1]

Discriminator B

Discriminator A

Decision [0,1]

https://hardikbansal.github.io/CycleGANBIlog/

Generator
A2B

™ Generator
B2A

Cyclic_ B

Start

Decision [0,1]

Discriminator B



https://hardikbansal.github.io/CycleGANBlog/




StyleGAN

‘ 3wy

https://github.com/NVlabs/stylegan



https://github.com/NVlabs/stylegan

Questions?



