Image Manifolds & Image Synthesis

(including GANs)

By Abe Davis Some slides from Jin Sun, Phillip Isola

Announcements

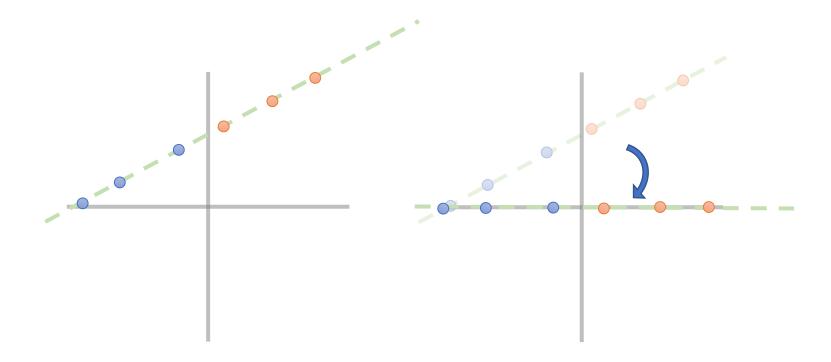
- Take home final May 11-14
- Sample final is online (check Piazza)
- Project 5 deadline extended to Friday May 1
- Course evaluations are open now through May 8
 - We encourage feedback
 - Small amount of extra credit for filling out
 - What you write is still anonymous, instructors only see whether students filled it out

Dimensionality Reduction

By Abe Davis

Linear Dimensionality Reduction: 2D->1D

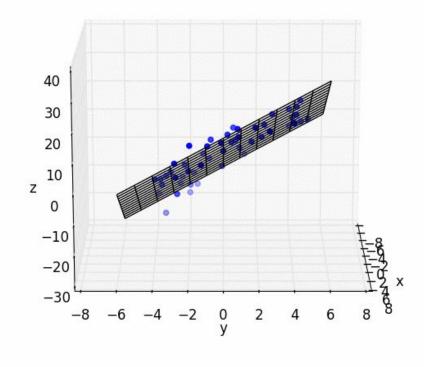
- Consider a bunch of data points in 2D
- Let's say these points only differ along one line
- If so, we can translate and rotate our data so that it is 1D



Linear Dimensionality Reduction: 3D->2D

• Similar to 1D case, we can fit a plane to the data, and transform our coordinate system so that plane becomes the x-y plane

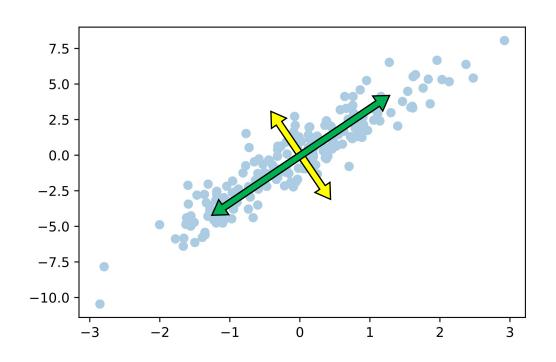
- "Plane fitting"
- More generally: look for the 2D subspace that best fits the data, and ignore the remaining dimensions



Think of this as data that sits on a flat sheet of paper, suspended in 3D space. We will come back to this analogy in a couple slides...

Generalizing Linear Dimensionality Reduction

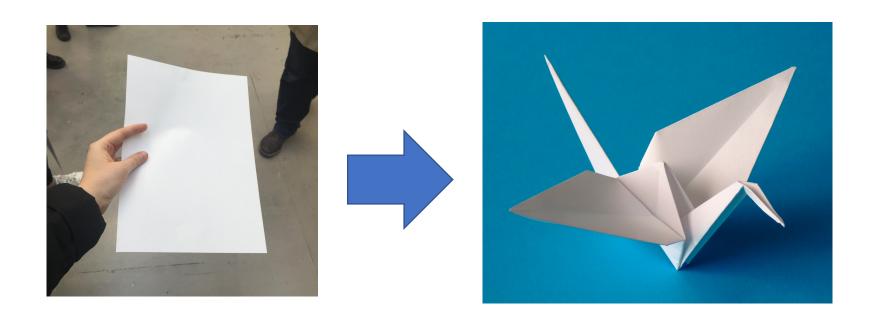
- Principle Component Analysis (PCA): find and order orthogonal axes by how much the data varies along each axis.
- The axes we find (ordered by variance of our data) are called **principle components**.
- Dimensionality reduction can be done by using only the first *k* principle components



Side Note: principle components are closely related to the eigenvectors of the covariance matrix for our data

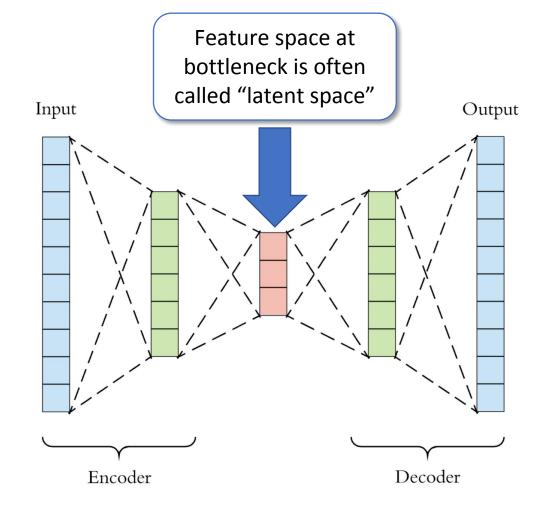
Manifolds

- Think of a piece of paper as a 2D subspace
- If we bend and fold that paper, it's still locally a 2D subspace...
- A "manifold" is the generalization of this concept to higher dimensions...



Autoencoders: Dimensionality Reduction for Manifolds

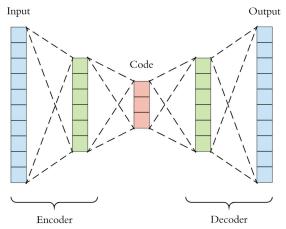
- Learn a non-linear transformation into some lower-dimensional space (encoder)
- Learn a transformation from lower-dimensional space back to original content (decoder)
- Loss function measures the difference between input and output



- Unsupervised
 - No labels required!

Autoencoders: Dimensionality Reduction for Manifolds

 Transformations that reduce dimensionality cannot be invertible in general



• An autoencoder tries to learn a transformation that is invertible for points on some manifold.

Image Manifolds

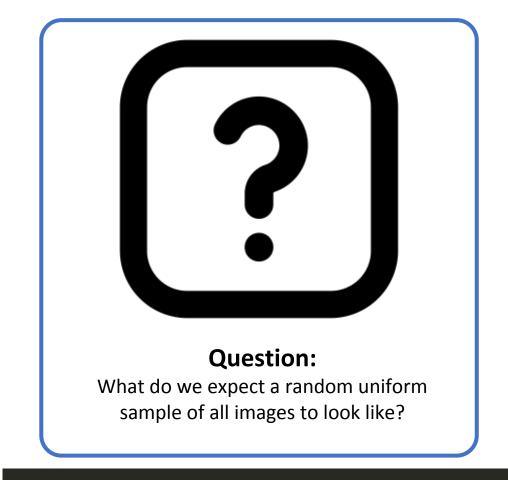
By Abe Davis

The Space of All Images

• Lets consider the space of all 100x100 images

• Now lets randomly sample that space...

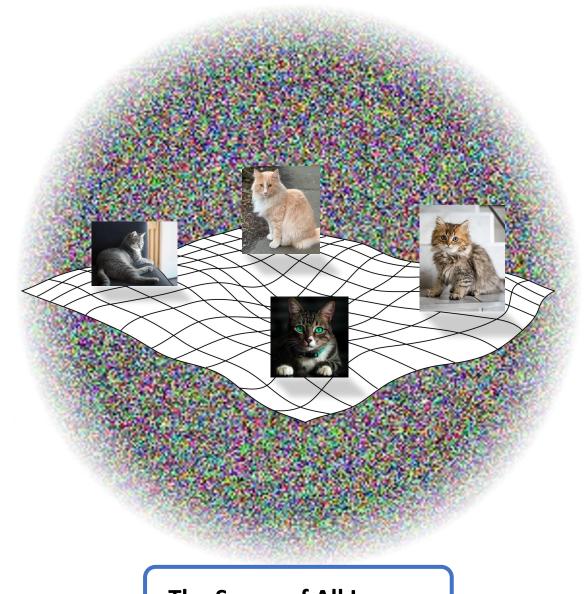
 Conclusion: Most images are noise



pixels = np.random.rand(100,100,3)

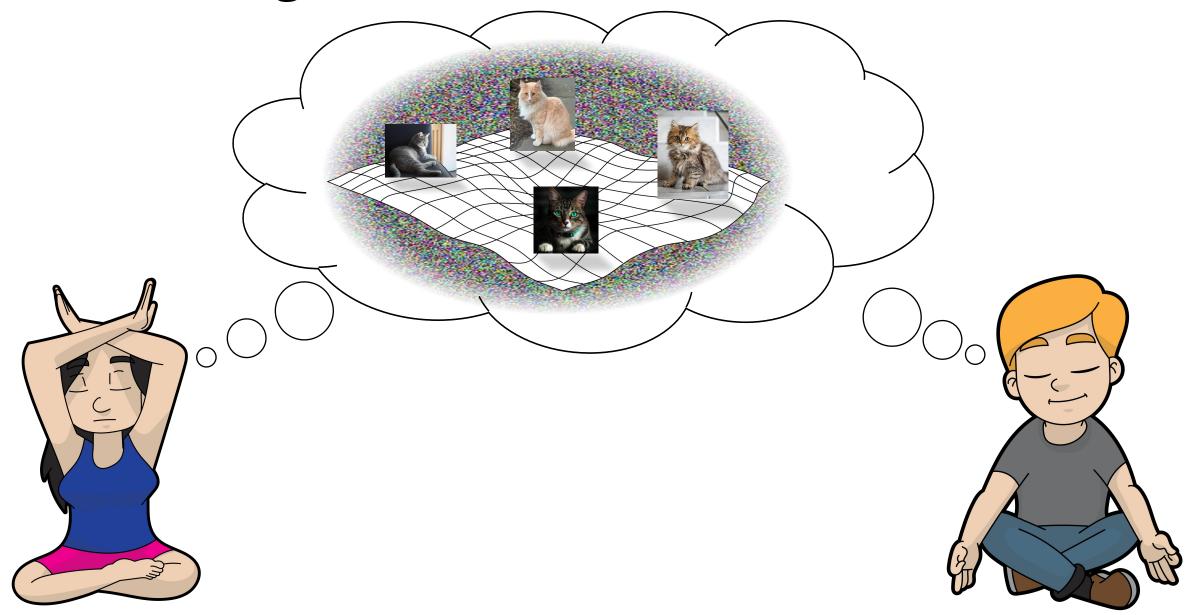
Natural Image Manifolds

- Most images are "noise"
- "Meaningful" images tend to form some manifold within the space of all images
- Images of a particular class fall on manifolds within that manifold...



The Space of All Images

Natural Image Manifolds

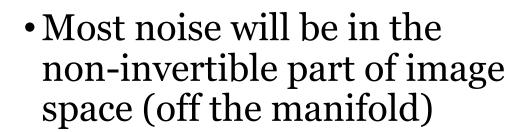


Denoising and the "Null Space" of Autoencoders

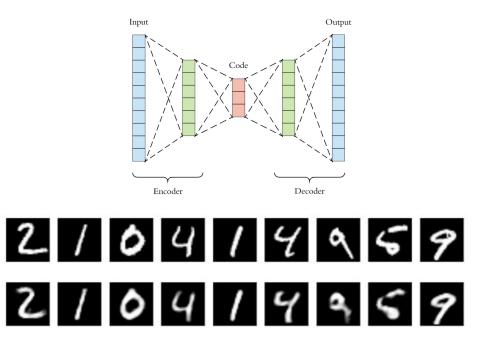
Input

Output

• The autoencoder tries to learn a dimensionality reduction that is invertible for our data (data on some manifold)



• If we feed noisy data in, we will often get denoised data out

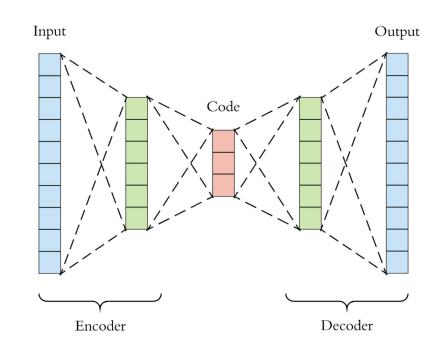


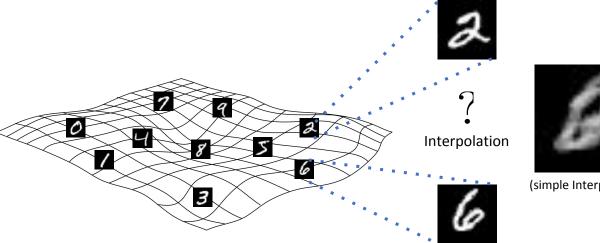
Question:

 Autoencoders are able to compress because data sits on a manifold

 This doesn't mean that every point in the latent space will be on the manifold...

• GANs (covered later in this lecture) will learn a loss function that helps with this...





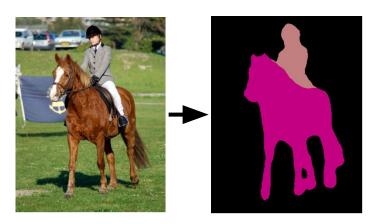
(simple Interpolation)

Image-to-Image Applications

Abe Davis, with slides from Jin Sun, Phillip Isola, and Richard Zhang

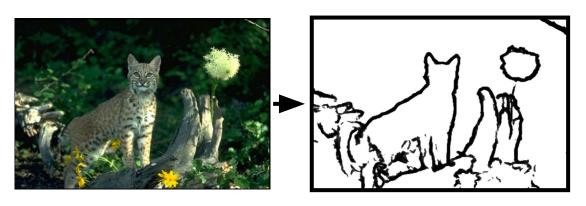
Image prediction ("structured prediction")

Object labeling:



[Long et al. 2015, ...]

Edge Detection:



[Xie et al. 2015, ...]

Text-to-photo:

"this small bird has a pink breast and crown..."

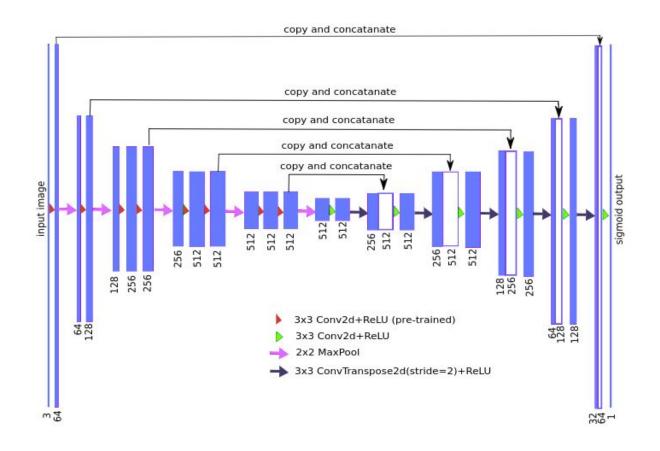
[Reed et al. 2016, ...]

Style transfer:

[Gatys et al. 2016, ...]

U-Net

- A popular network structure to generate same-sized output
- Similar to a convolutional autoencoder, but with "skip connections" that concatenate the output of earlier layers onto later layers
- Great for learning transformations from one image to another



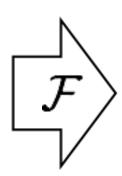
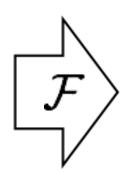
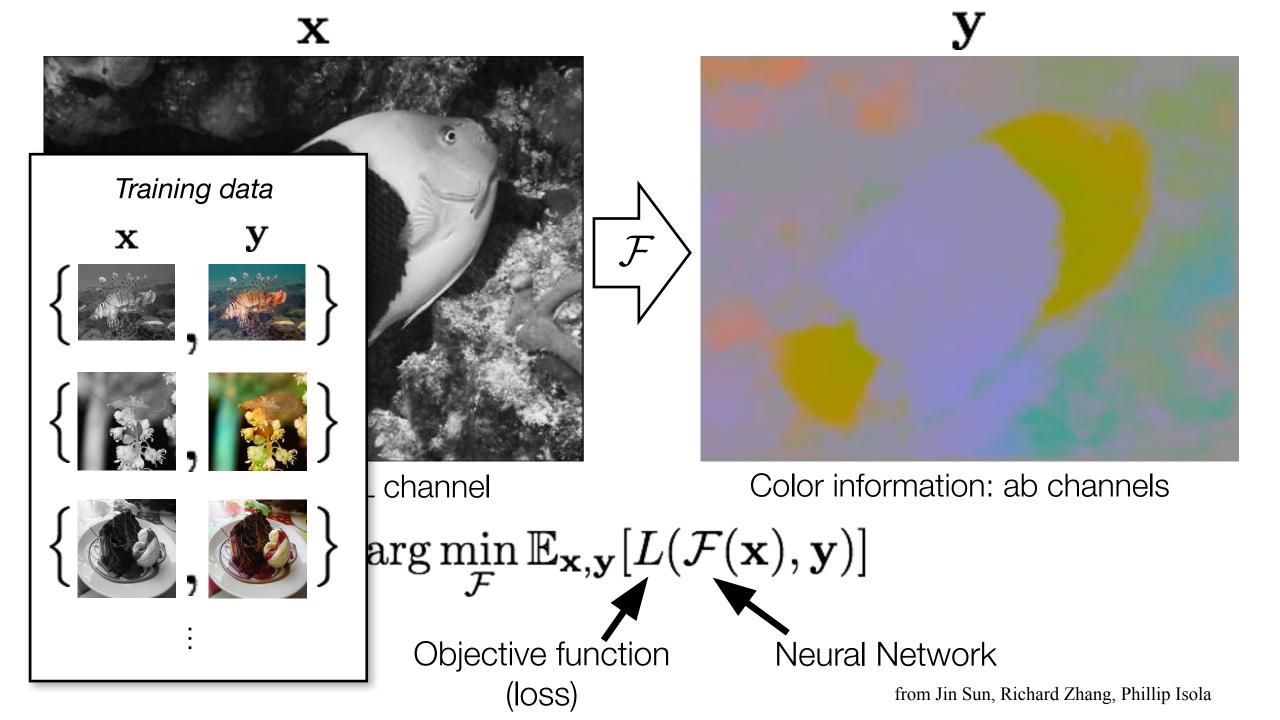
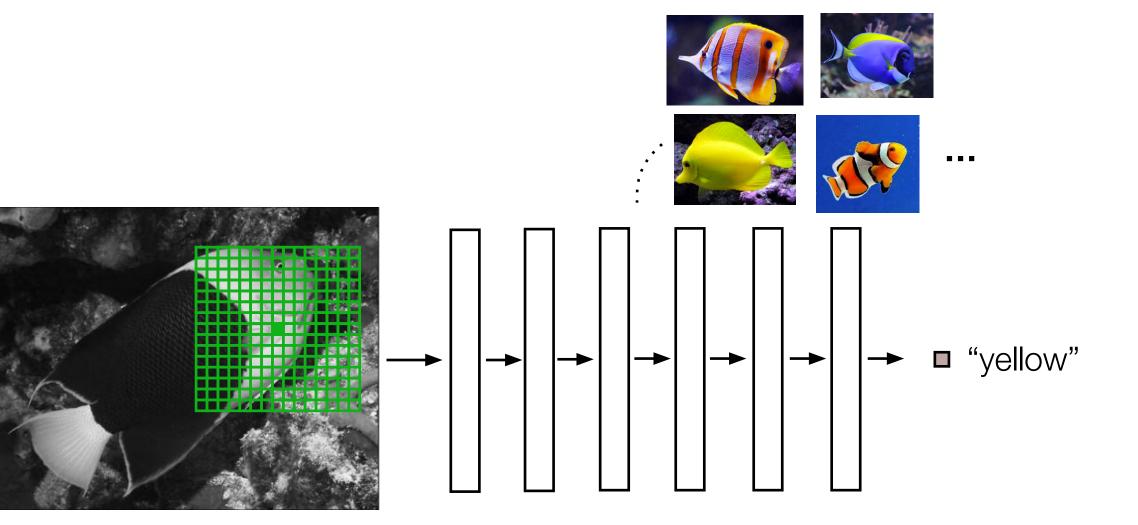


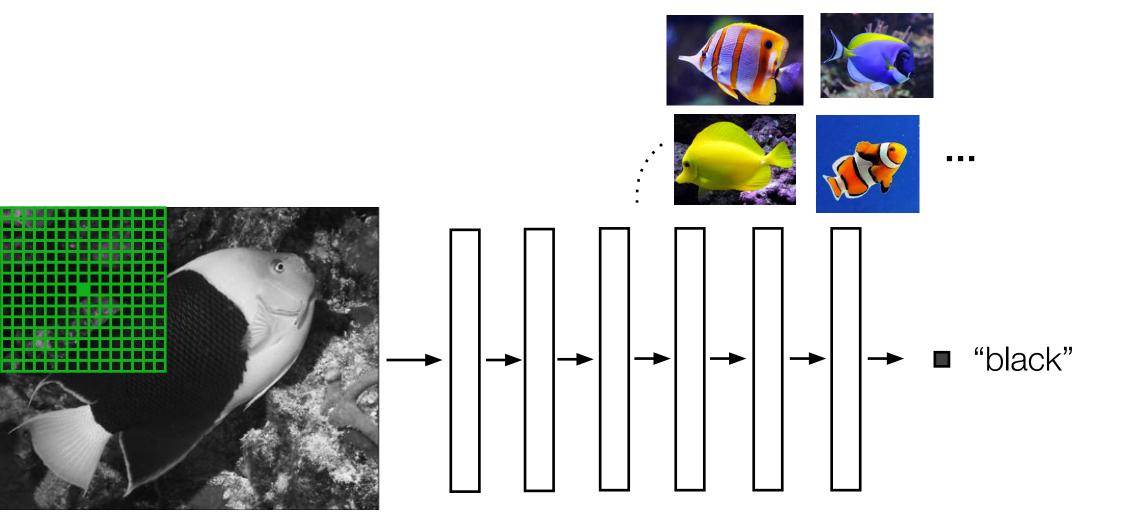
Image Colorization

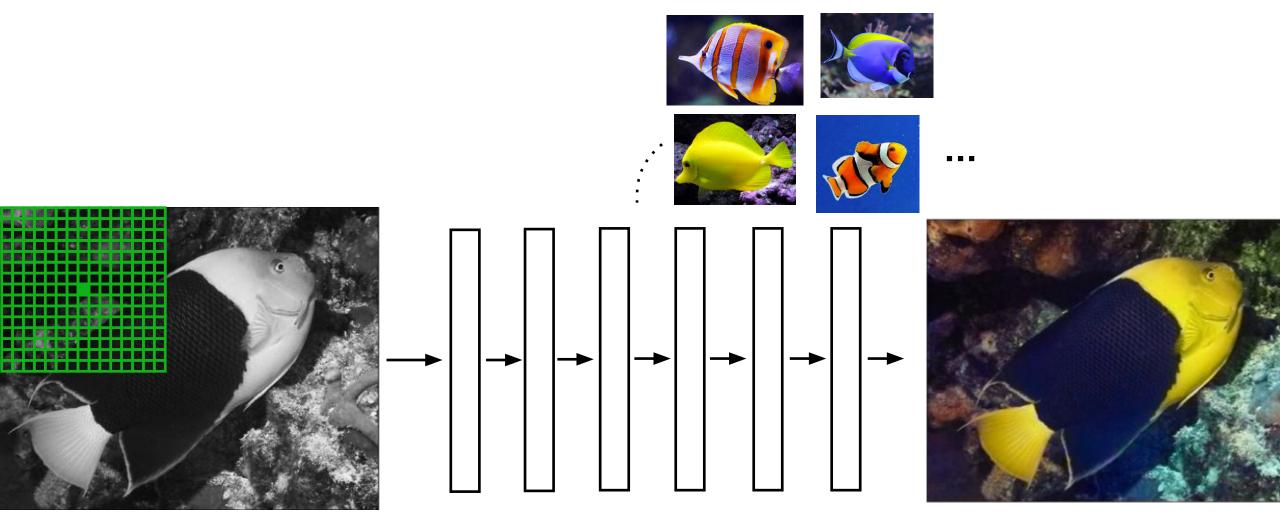


 $rg \min_{\mathcal{F}} \mathbb{E}_{\mathbf{x},\mathbf{y}}[L(\mathcal{F}(\mathbf{x}),\mathbf{y})]$ "How should I do it?"









Basic loss functions

Prediction:
$$\hat{\mathbf{y}} = \mathcal{F}(\mathbf{x})$$
 Truth: \mathbf{y}

Classification (cross-entropy):

$$L(\hat{\mathbf{y}}, \mathbf{y}) = -\sum_{i} \hat{\mathbf{y}}_{i} \log \mathbf{y}_{i}$$

How many extra bits it takes to correct the predictions

Least-squares regression:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2$$

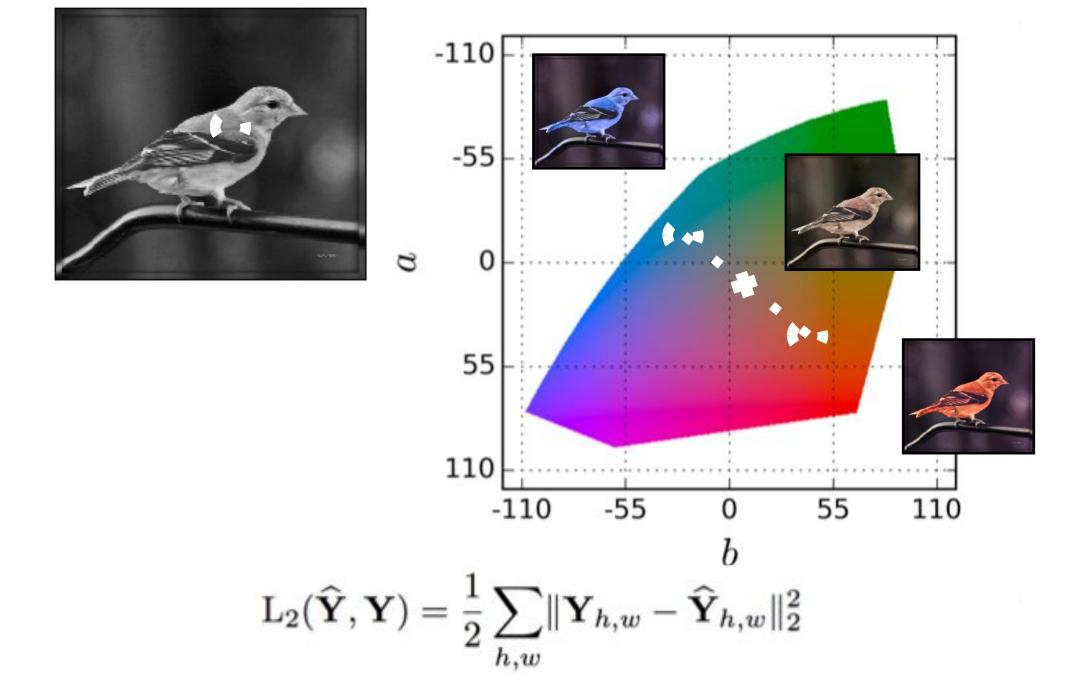
How far off we are in Euclidean distance

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h, w} ||\mathbf{Y}_{h, w} - \widehat{\mathbf{Y}}_{h, w}||_2^2$$



Input

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

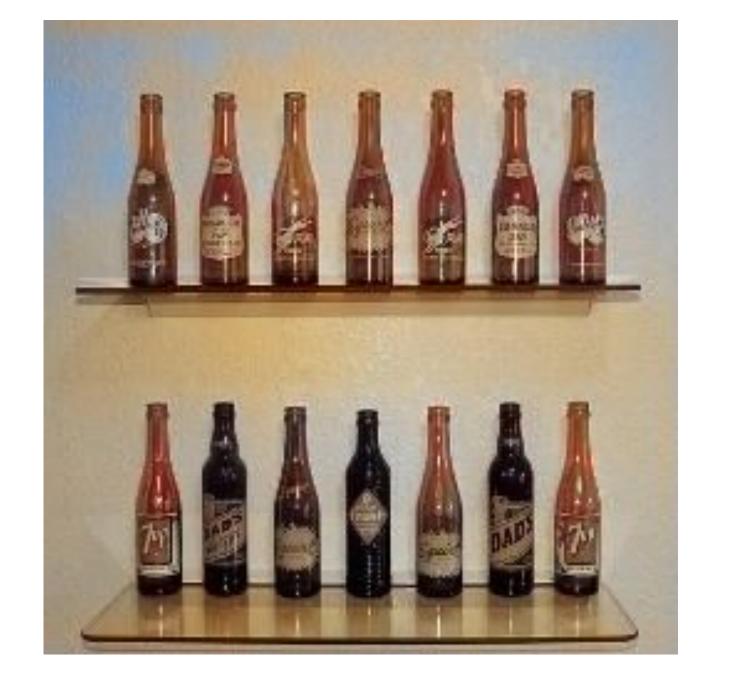
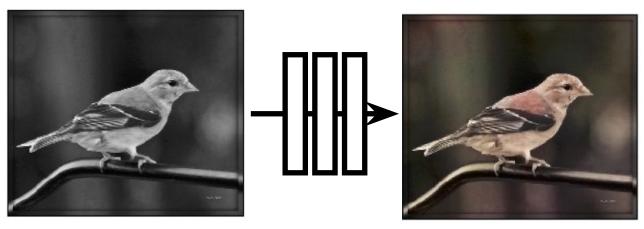
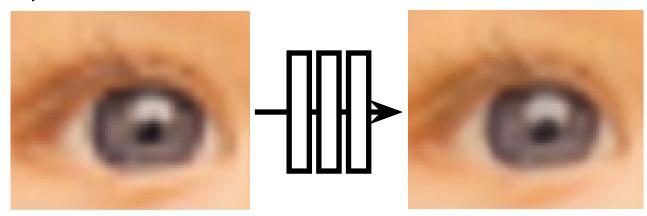


Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

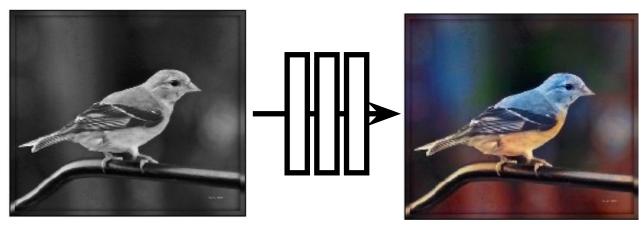


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

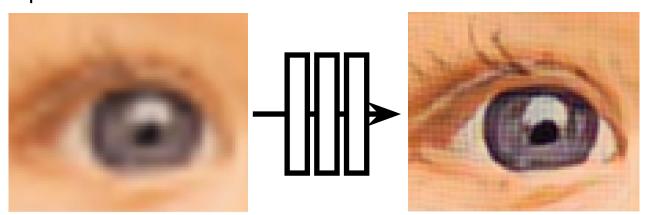
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution



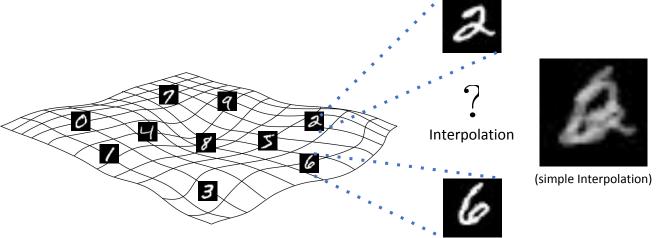
[Johnson, Alahi, Li, ECCV 2016]

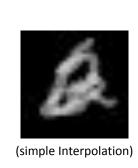
Cross entropy objective, with colorfulness term

Deep feature covariance matching objective

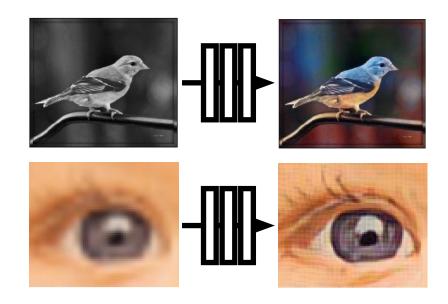
A Better Loss Function: Sticking to the Manifold

 How do we design a loss function that penalizes images that aren't on the image manifold?





• Key insight: we will *learn* our loss function by training a network to discriminate between images that are on the manifold and images that aren't

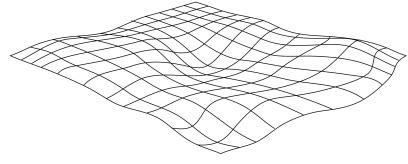


Part 3: Generative Adversarial Networks (GANs)

Abe Davis, with slides from Jin Sun and Phillip Isola

Generative Adversarial Networks (GANs)

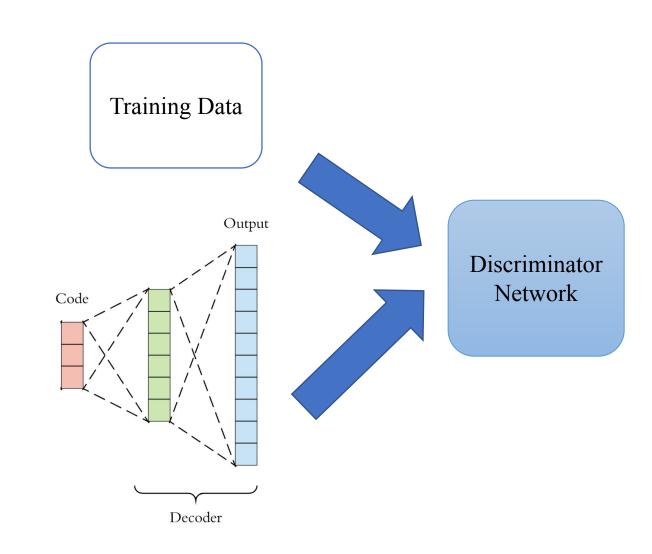
• Basic idea: Learn a mapping from some latent space to images on a particular manifold



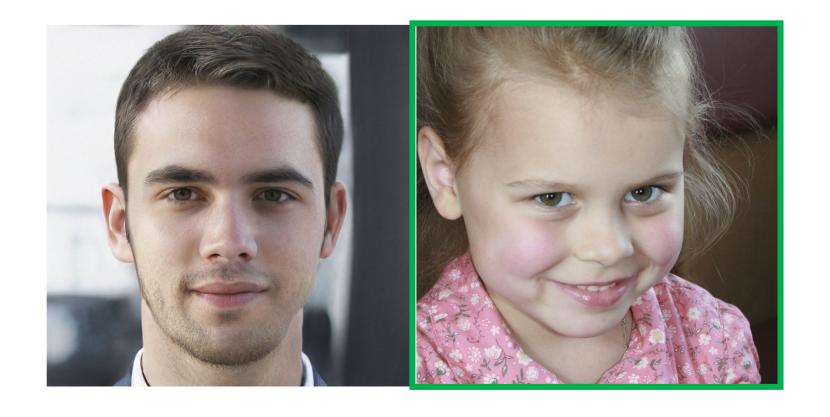
- Example of a *Generative Model:*
 - We can think of classification as a way to compute some P(x) that tells us the probability that image x is a member of a class.
 - Rather than simply evaluating this distribution, a generative model tries to learn a way to sample from it

Generative Adversarial Networks (GANs)

- Generator network has similar structure to the decoder of our autoencoder
 - Maps from some latent space to images
- We train it in an adversarial manner against a discriminator network
 - Generator tries to create output that is indistinguishable from training data
 - Discriminator tries to distinguish between generator output and training data



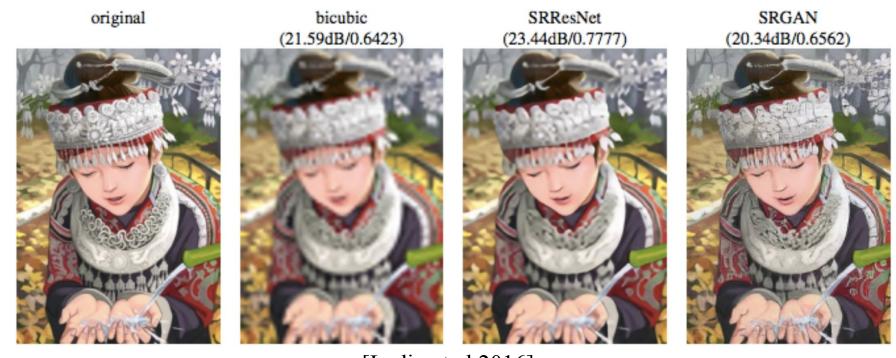
Example: Randomly Sampling the Space of Face Images (Using Gerative Adversarial Networks (GANs)



Which face is real?

Conditional GANs

- Generate samples from a conditional distribution
- Example: generate high-resolution image conditioned on low resolution input



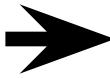
[Ledig et al 2016]

Example: Single Image Super-Resolution

• Generate natural image, conditioned on a lower–resolution version of the image

[Ledig et al 2016]

Conditional GANs

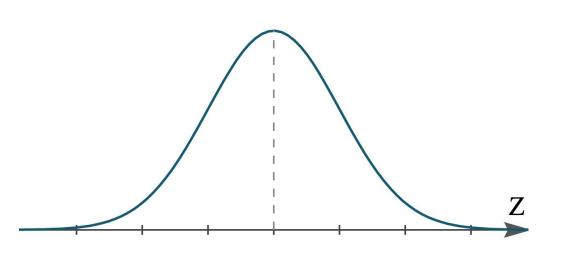


[Goodfellow et al., 2014] [Isola et al., 2017]

Generative Models: Generate Samples from a Distribution

• We can look at classification as a way to compute some P(x) that tells us the probability that image x is a member of a class.

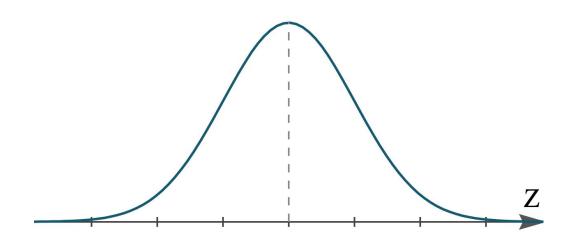
• Rather than simply evaluating this distribution, is there some way for us to generate samples from it?

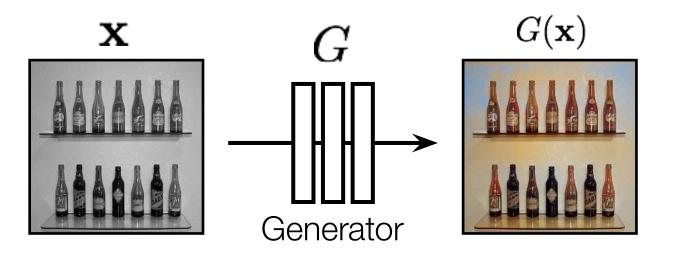


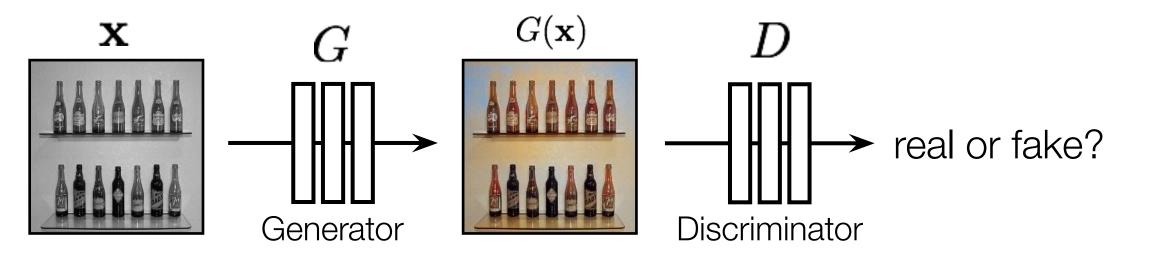
Basic Idea Part 2: Generate Samples from a *Conditional* **Distribution**

• Can we generate samples from our distribution *conditioned on some input*?

• In other words, can we generate samples from the conditional distribution P(x|c)?

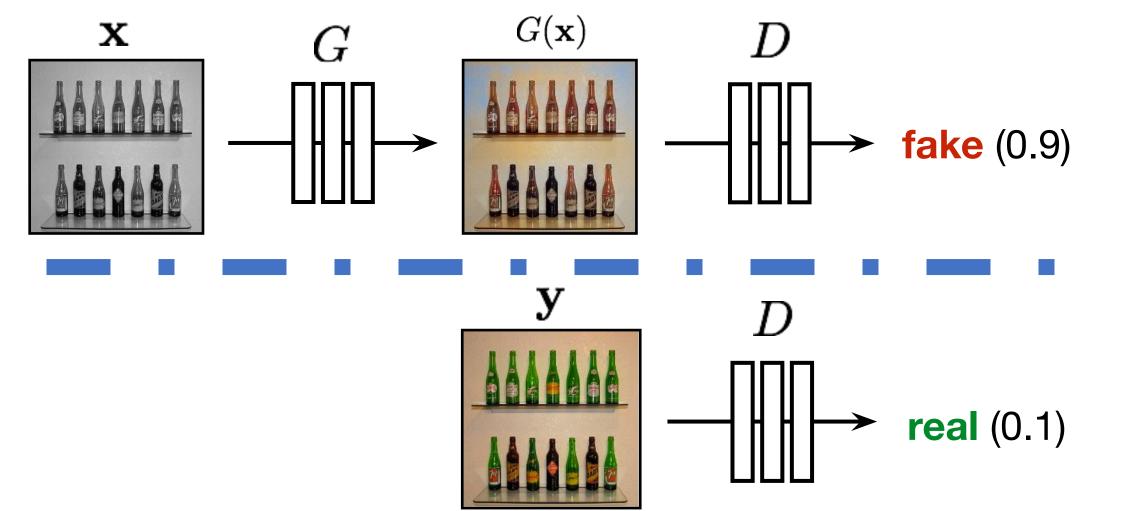






G tries to synthesize fake images that fool D

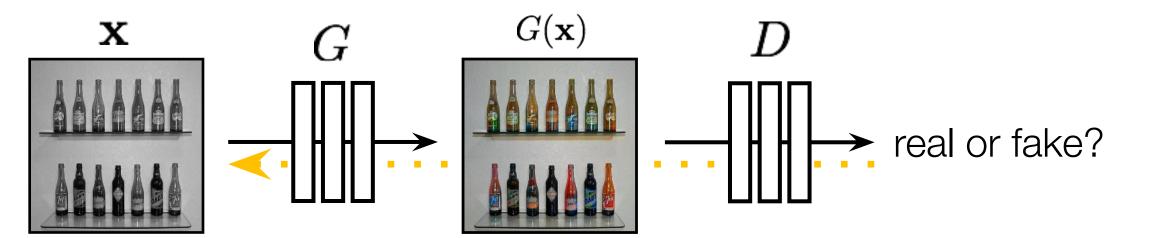
D tries to identify the fakes



(Identify generated images as fake)

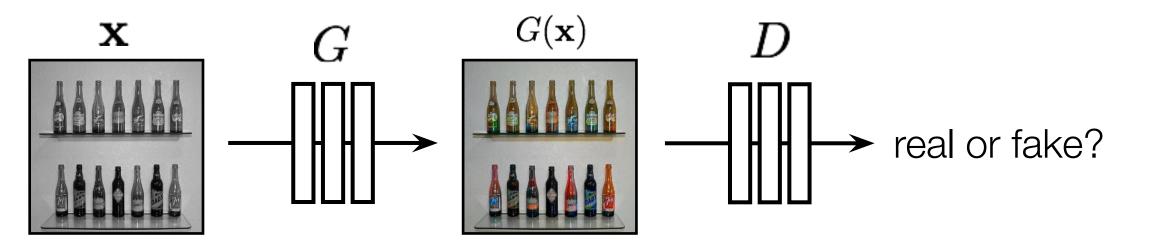
(Identify training images as real)

$$\underset{D}{\operatorname{arg\,max}} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1 - D(\mathbf{y}))$$



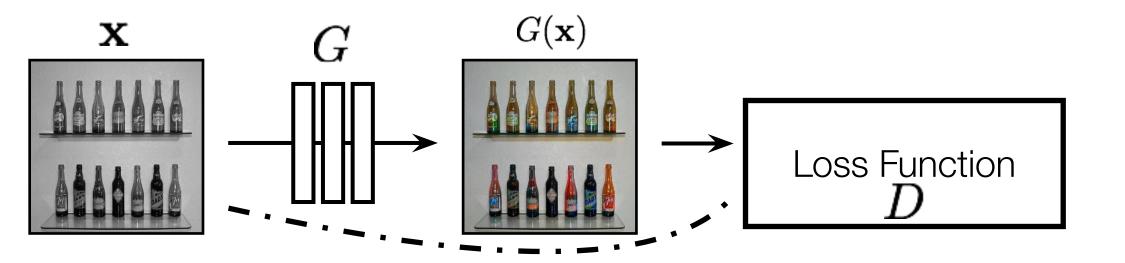
G tries to synthesize fake images that **fool D**:

$$\underset{G}{\operatorname{arg}} \min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



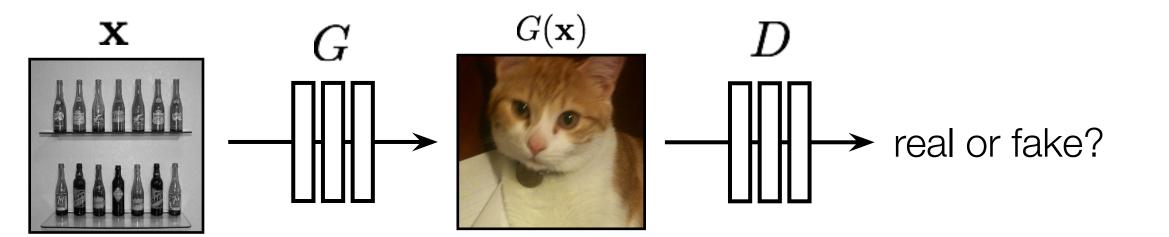
G tries to synthesize fake images that **fool** the **best D**:

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

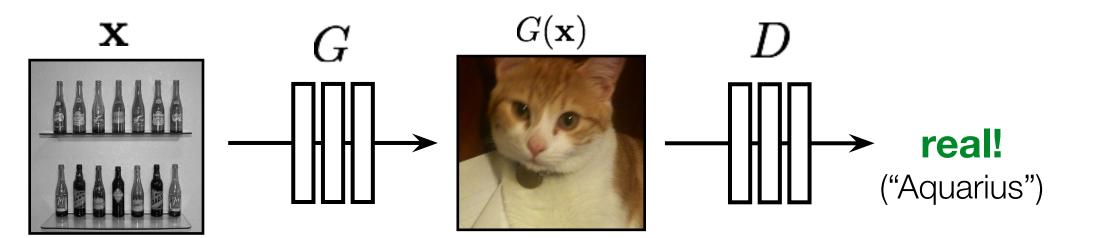


G's perspective: **D** is a loss function.

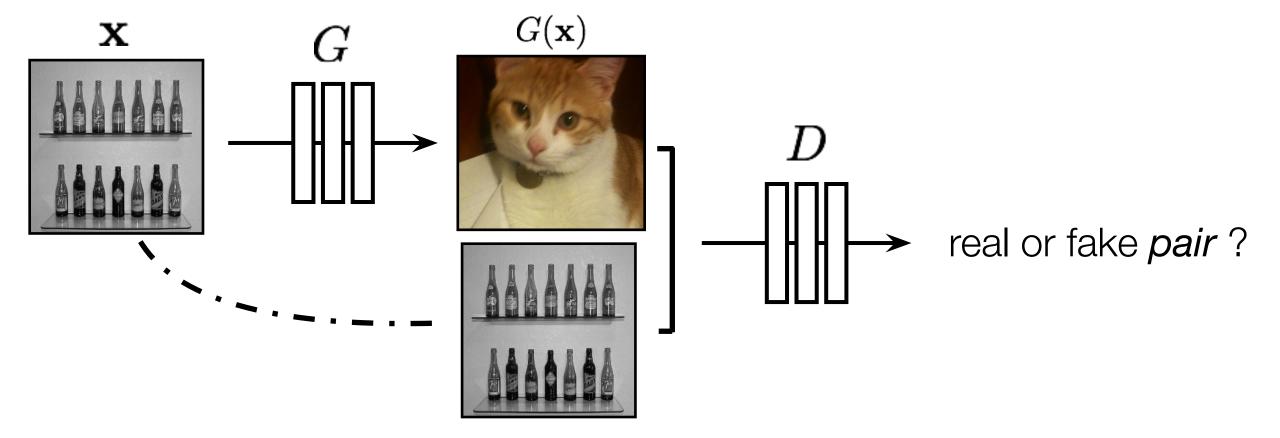
Rather than being hand-designed, it is *learned*.



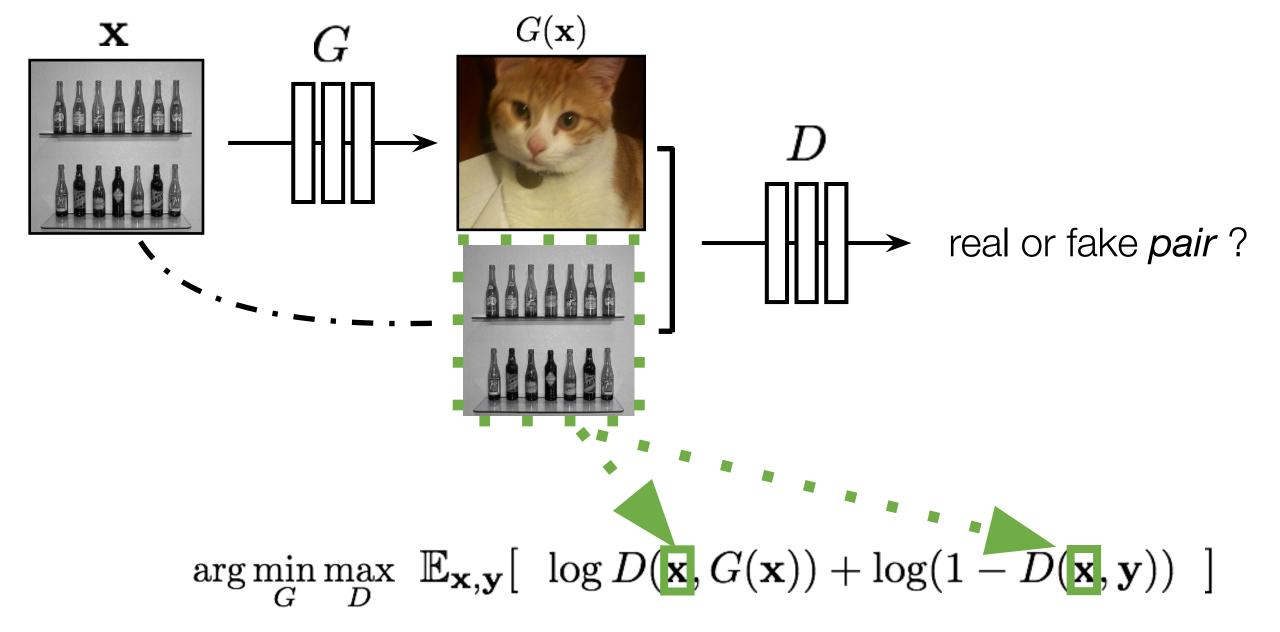
$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

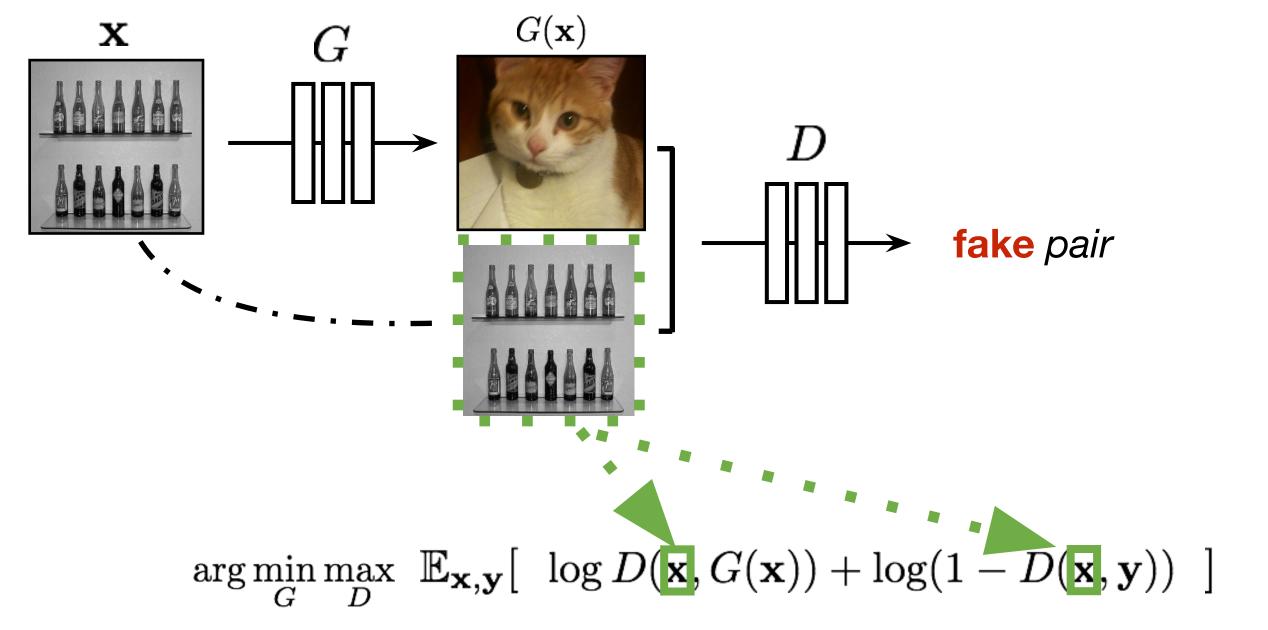


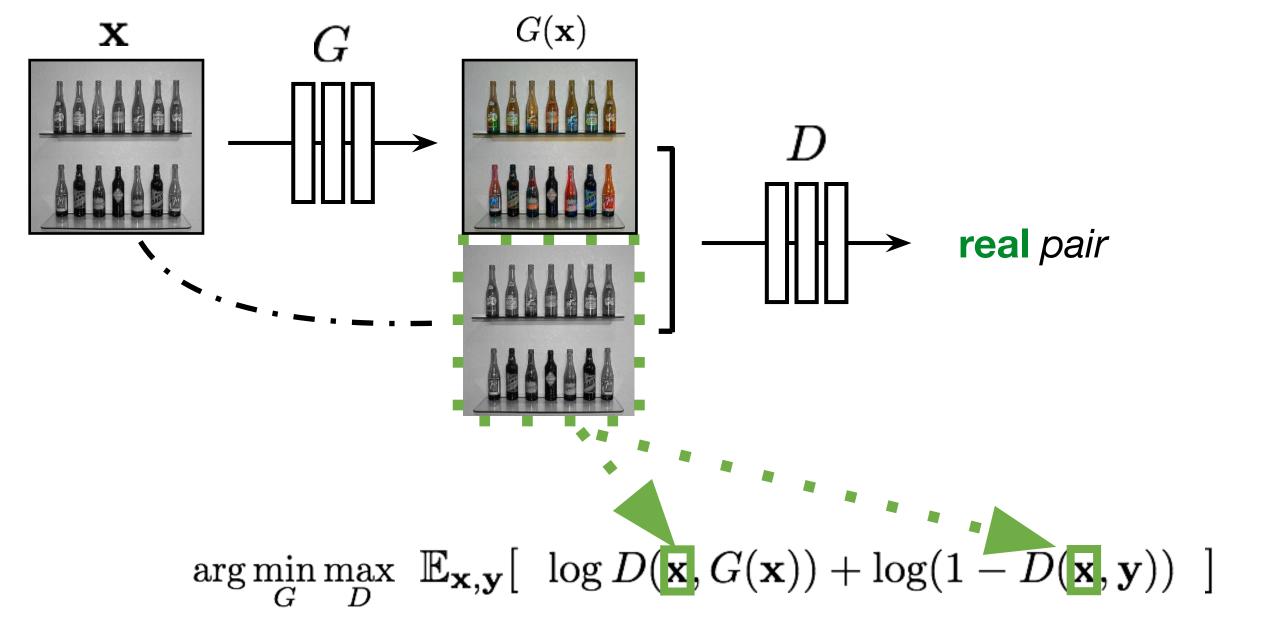
$$\operatorname{arg\,min}_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} \left[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y})) \right]$$

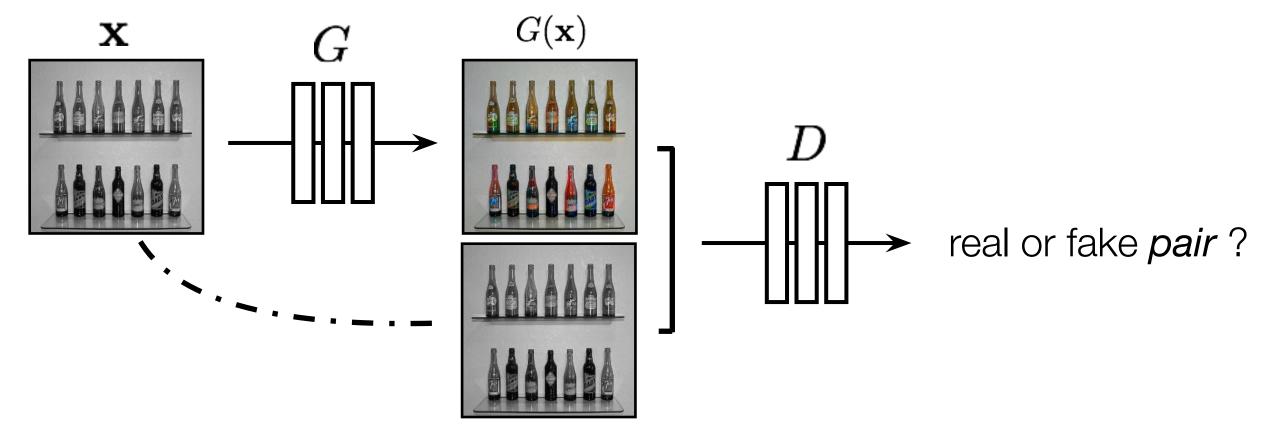


$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$







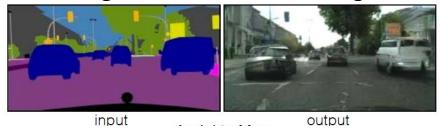


$$\arg\min_{G}\max_{D} \ \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ \log D(\mathbf{x},G(\mathbf{x})) + \log(1-D(\mathbf{x},\mathbf{y}))\]$$

More Examples of Image-to-Image Translation with GANs

- We have pairs of corresponding training images
- Conditioned on one of the images, sample from the distribution of likely corresponding images

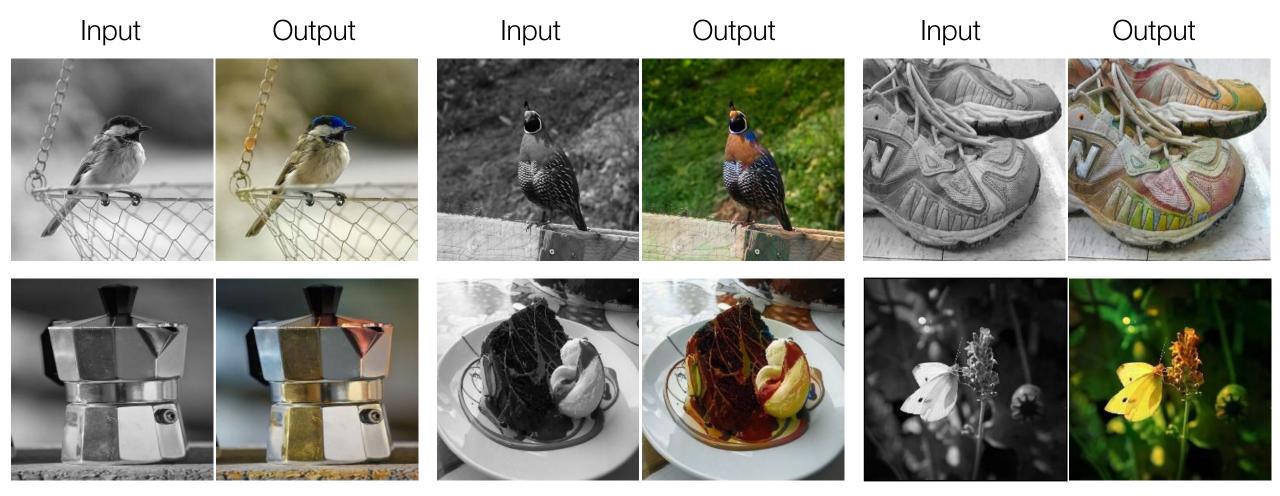
Segmentation to Street Image



Aerial Photo To Map

Edges to Image

BW → Color



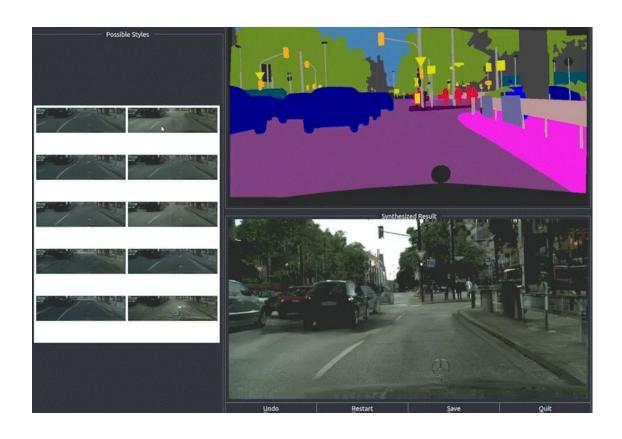
Data from [Russakovsky et al. 2015]

Data from [maps.google.com]

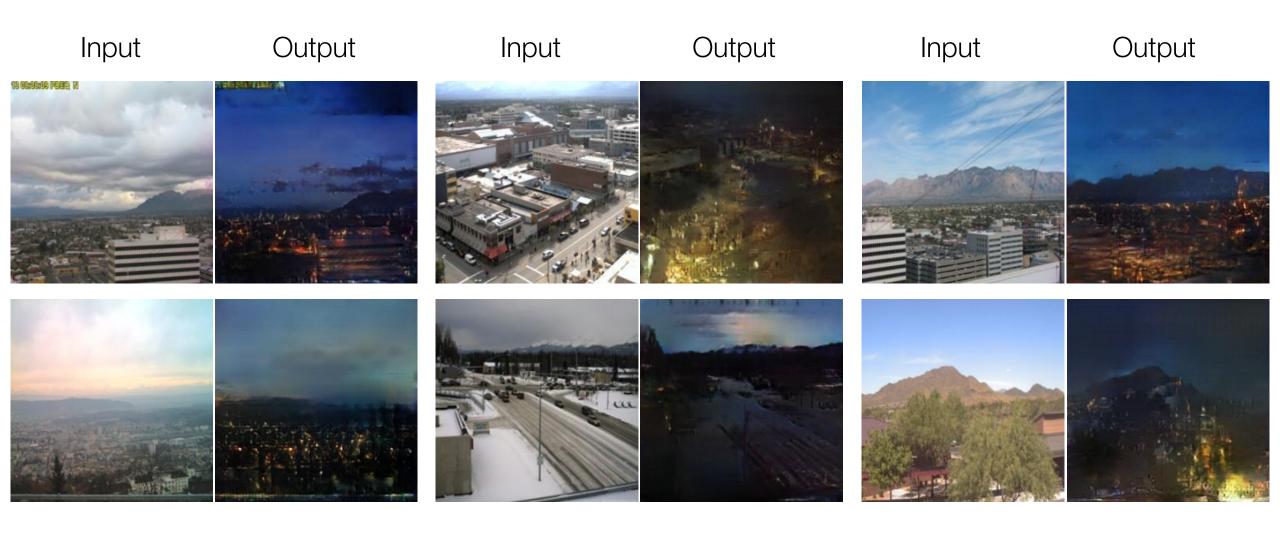
Labels → Street Views

Input labels

Synthesized image



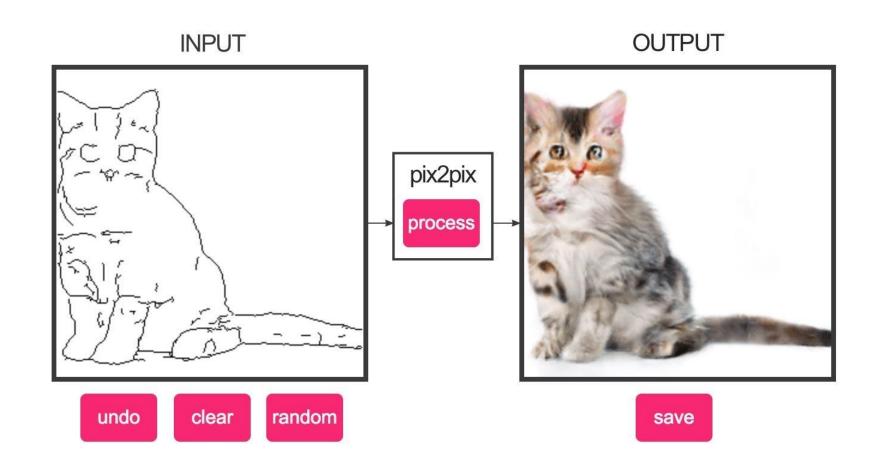
Day → Night



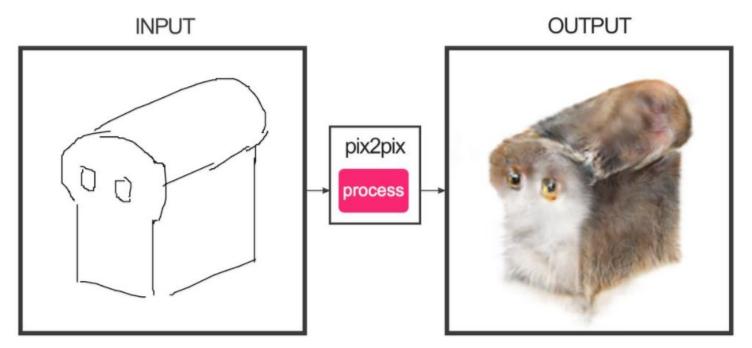
Data from [Laffont et al., 2014]

Edges → Images

Demo



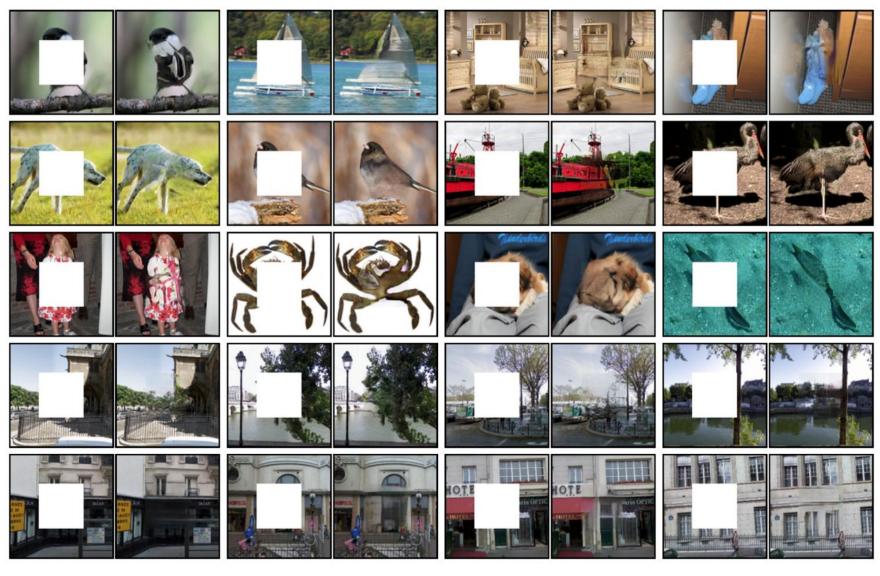
https://affinelayer.com/pixsrv/



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

Image Inpainting



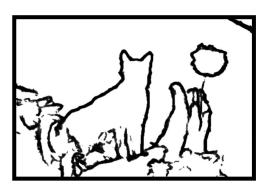
Pose-guided Generation

(c) Generating from a sequence of poses

Challenges —> Solutions

- Output is high-dimensional, structured object
 - Approach: Use a deep net, D, to analyze output!
- Uncertainty in mapping; many plausible outputs
 - Approach: D only cares about "plausibility", doesn't hedge

- Lack of supervised training data
 - Approach: ?



"this small bird has a pink breast and crown..."



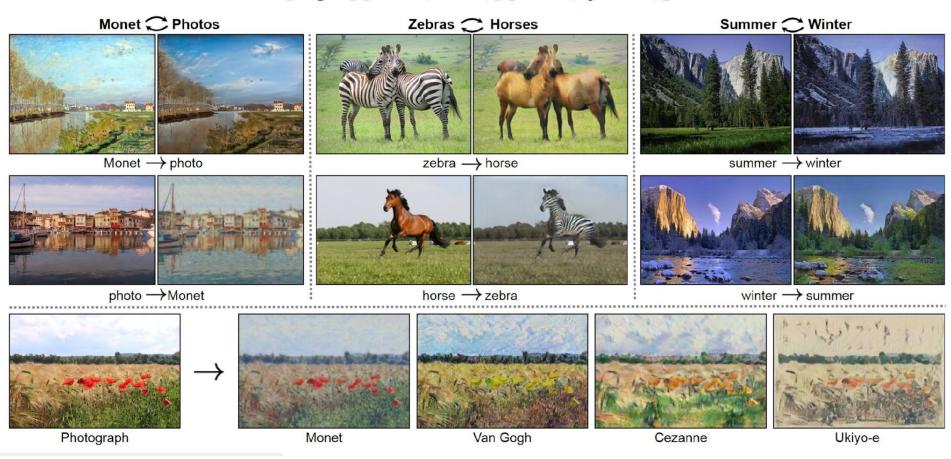
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

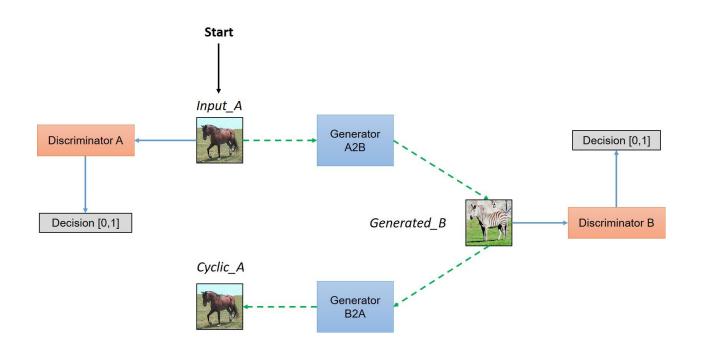
Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

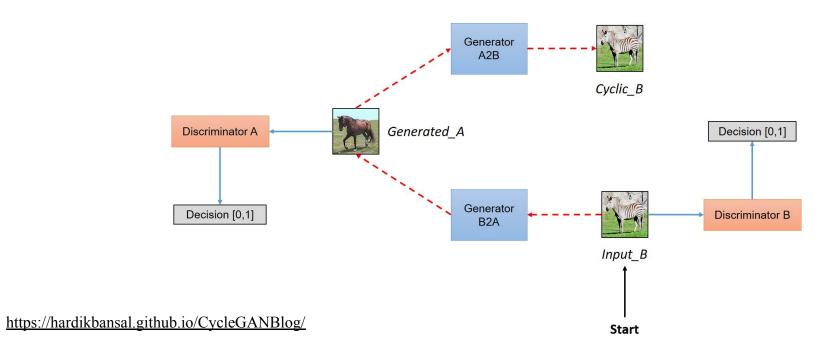
UC Berkeley

In ICCV 2017

[Paper] [Code (Torch)] [Code (PyTorch)]







StyleGAN

https://github.com/NVlabs/stylegan

Questions?