CS5670: Computer Vision

Guest Lecture - Jin Sun

Synthesizing images with generative adversarial networks (GANs)

Announcements

- Project 5 due Friday, 5/10 at 11:59pm
- Course evals (you will receive a few bonus points!)
 - https://apps.engineering.cornell.edu/CourseEval

- Final exam in class next Monday, 5/6
 - Please arrange yourselves with at least one space between you and the closest person in the same row when you arrive

Motivation: Synthesizing images

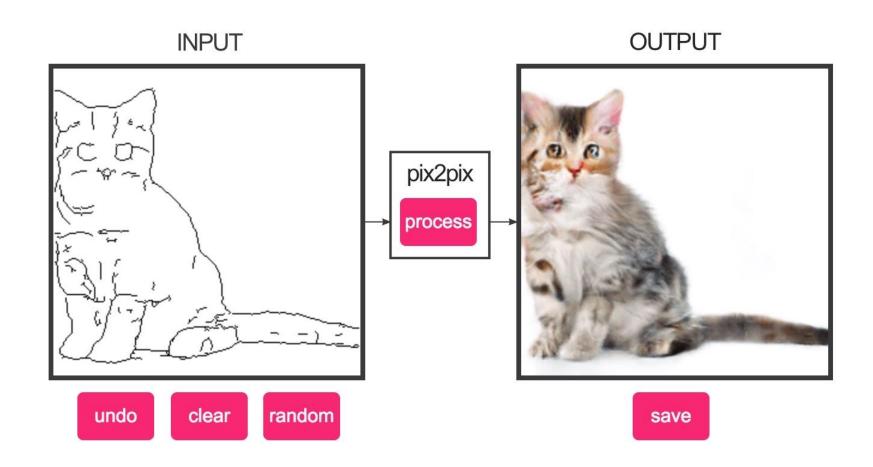
Single Image Super-Resolution

(Ledig et al 2016)

Motivation: Synthesizing images

Image to Image Translation

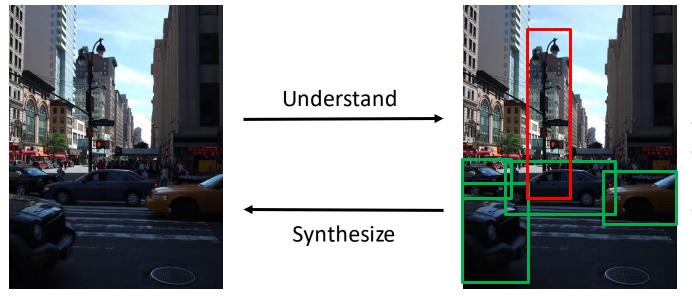
Demo



https://affinelayer.com/pixsrv/

Why Synthesizing Images

Computer vision is all about understanding the world from images

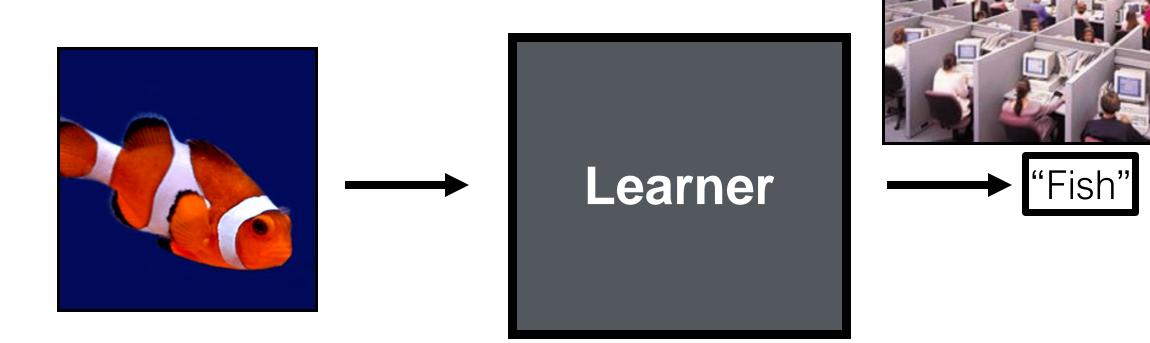


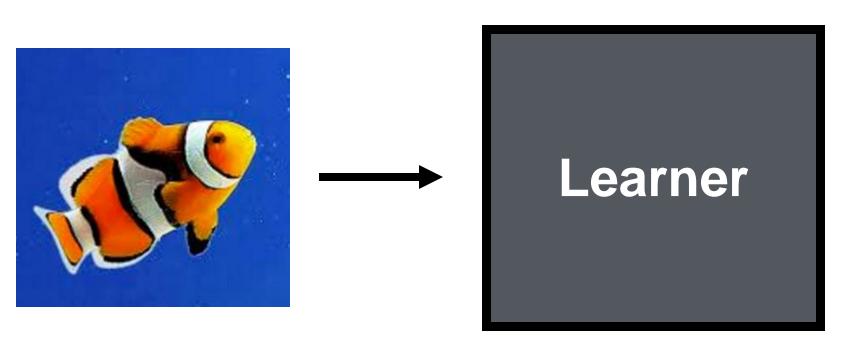
a busy downtown area with a lot of traffic and buildings. this is a picture of a busy downtown cross walk with several cars in the flow of traffic.

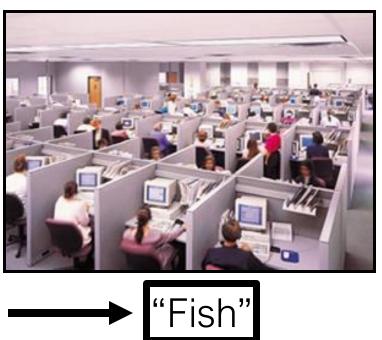
cars passing on a street in the city.

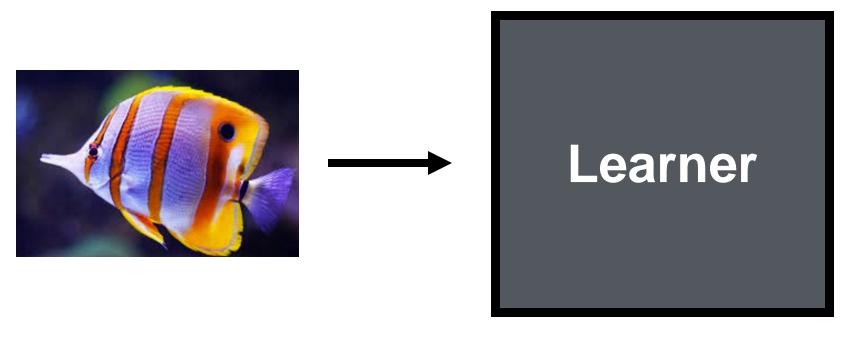
"What I cannot create, I do not understand."

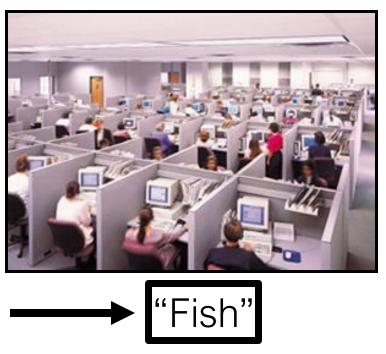
—Richard Feynman

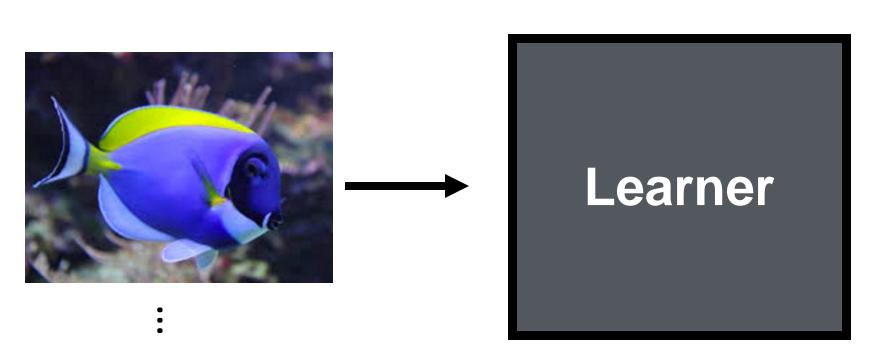












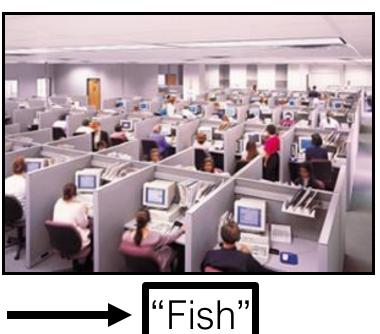
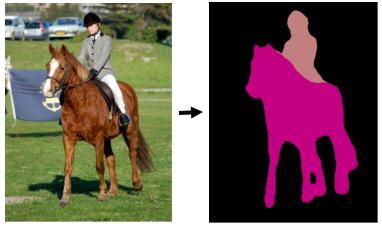


Image prediction ("structured prediction")

Object labeling



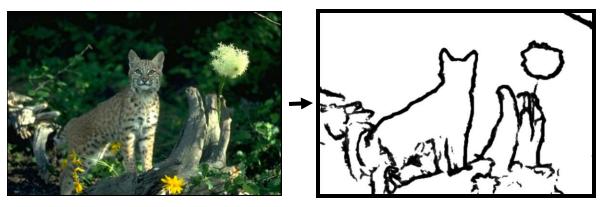
[Long et al. 2015, ...]

Text-to-photo

"this small bird has a pink breast and crown..."

[Reed et al. 2014, ...]

Edge Detection



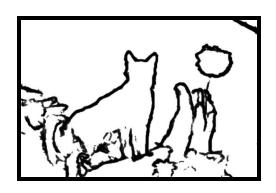
[Xie et al. 2015, ...]

Style transfer

[Gatys et al. 2016, ...]

Challenges

1. Output is high-dimensional and structured

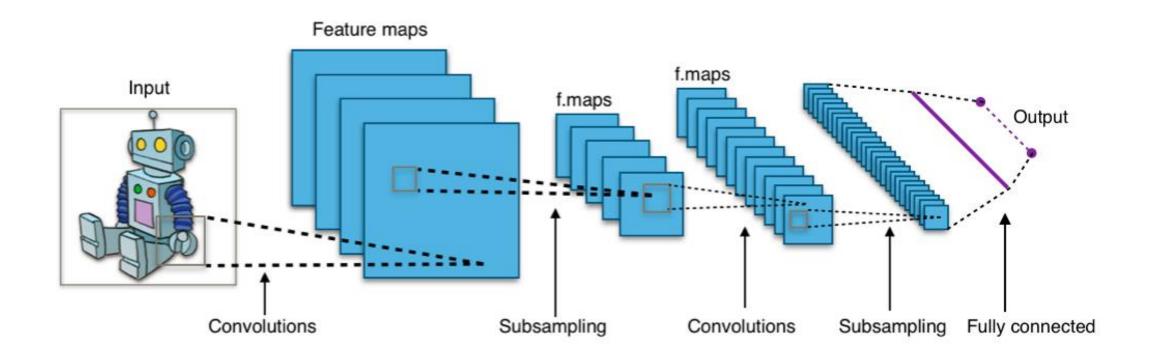


2. Uncertainty in mapping; many plausible outputs

"this small bird has a pink breast and crown..."

3. Lack of supervised training data

A standard CNN for classification



Need new network modules to generate same-sized output!

Deconvolution

Compare to convolution with different params



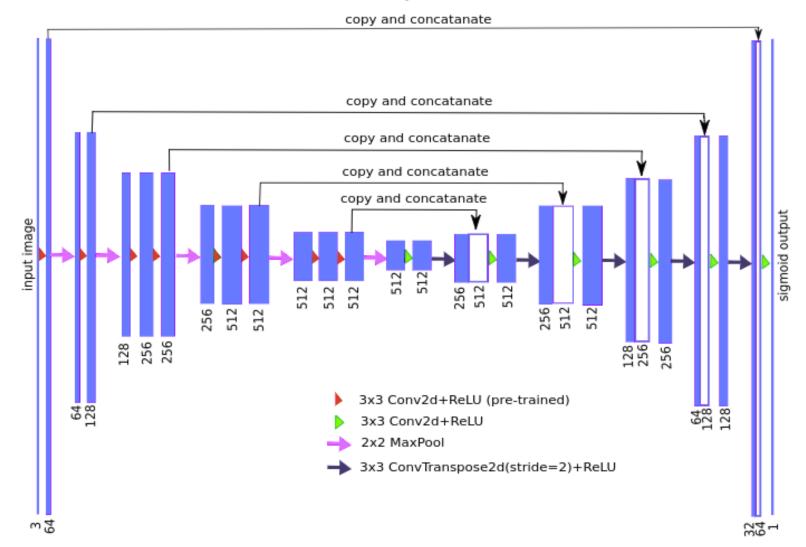
Deconvolution

Also known as: transpose conv, upconv, ...

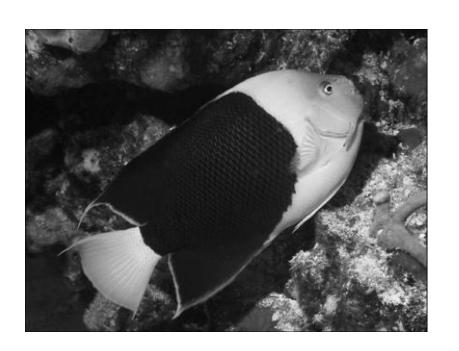
<u>Input</u>							<u>Kernel</u>				<u>Output</u>					
0	0	0	0	0	0	0										
0		0	0	0	0	0						3	6	12	6	9
0		3	0	3	0	0	1	2	3			0	3	0	3	0
0	0	0	0	0	0	0	0	1	0			7	5	16	5	9
0	0	1	0	1	0	0	2	1	2			0	1	0	1	0
0	0	0	0	0	0	0						2	1	4	1	2
0	0	0	0	0	0	0										

Unet

A popular network structure to generate same-sized output



 \mathbf{x}



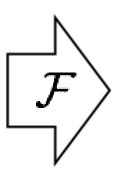
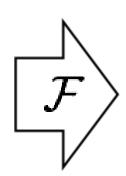
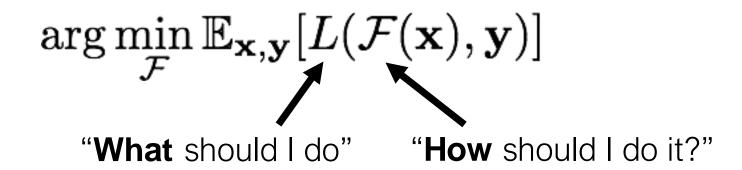
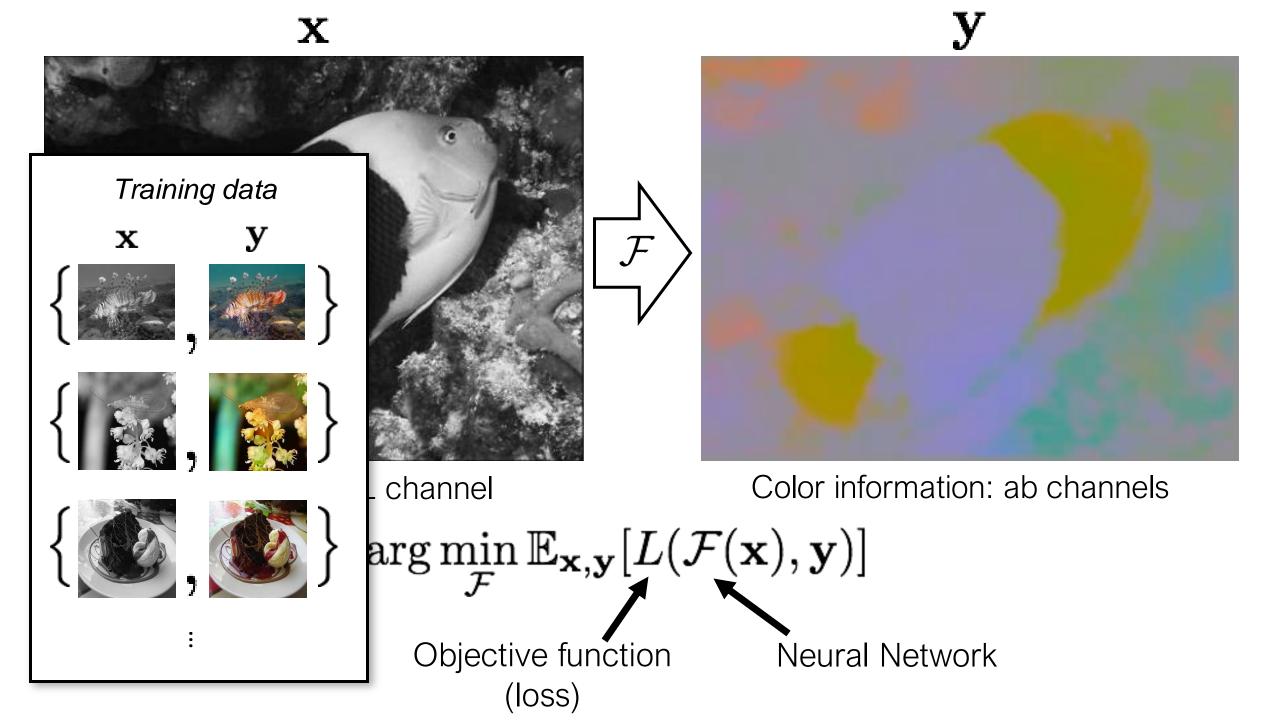


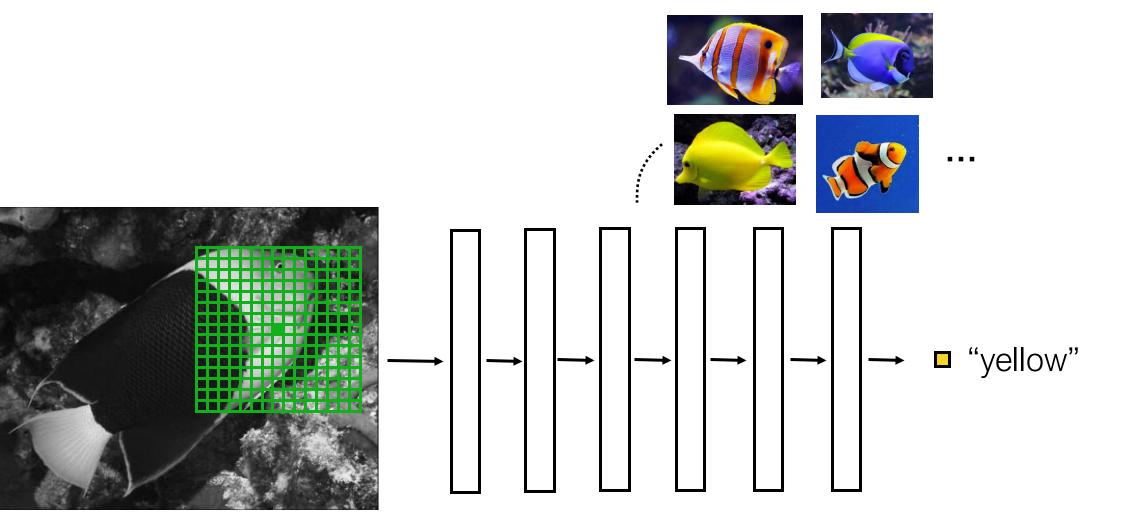
Image Colorization

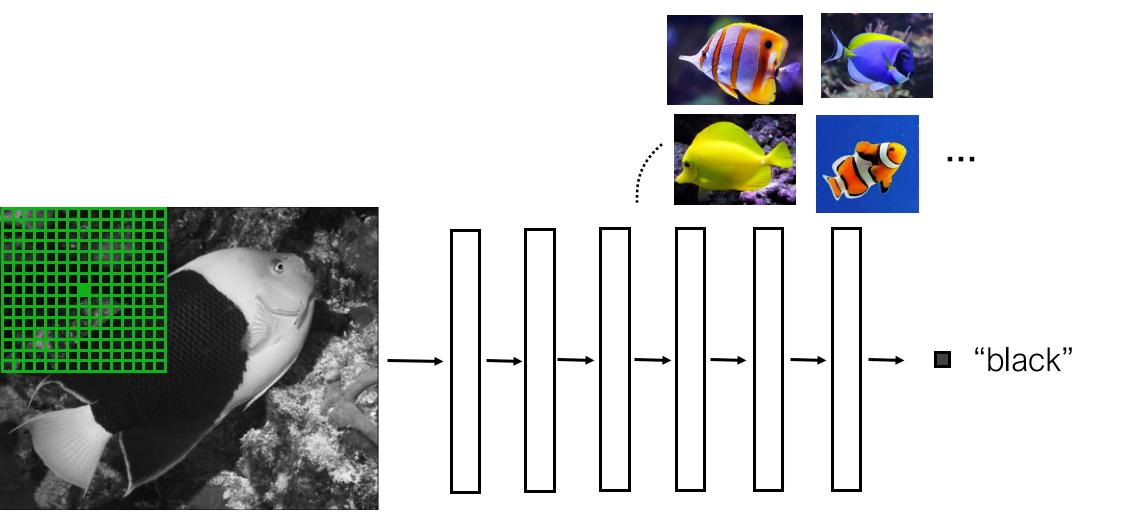
 \mathbf{x}

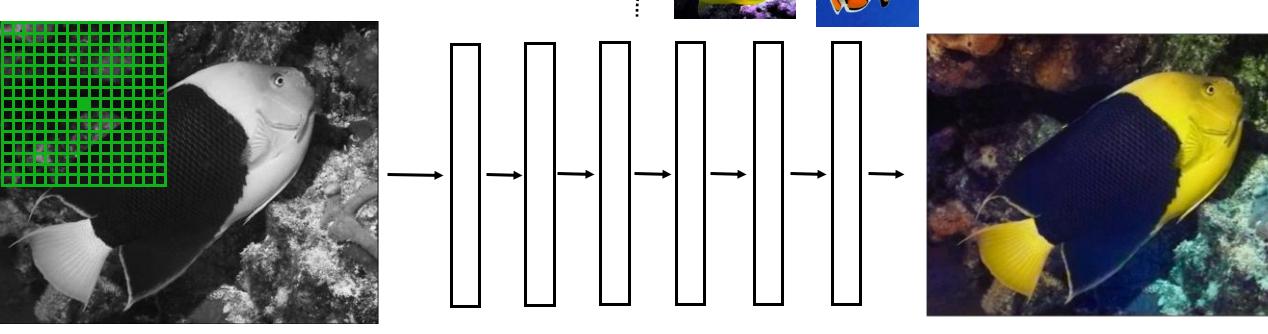












Basic loss functions

Prediction:
$$\hat{\mathbf{y}} = \mathcal{F}(\mathbf{x})$$
 Truth: \mathbf{y}

Classification (cross-entropy):

$$L(\mathbf{\hat{y}}, \mathbf{y}) = -\sum_{i} \mathbf{\hat{y}}_{i} \log \mathbf{y}_{i} \longleftarrow$$

How many extra bits it takes to correct the predictions

Least-squares regression:

$$L(\hat{\mathbf{y}}, \mathbf{y}) = \|\hat{\mathbf{y}} - \mathbf{y}\|_2$$

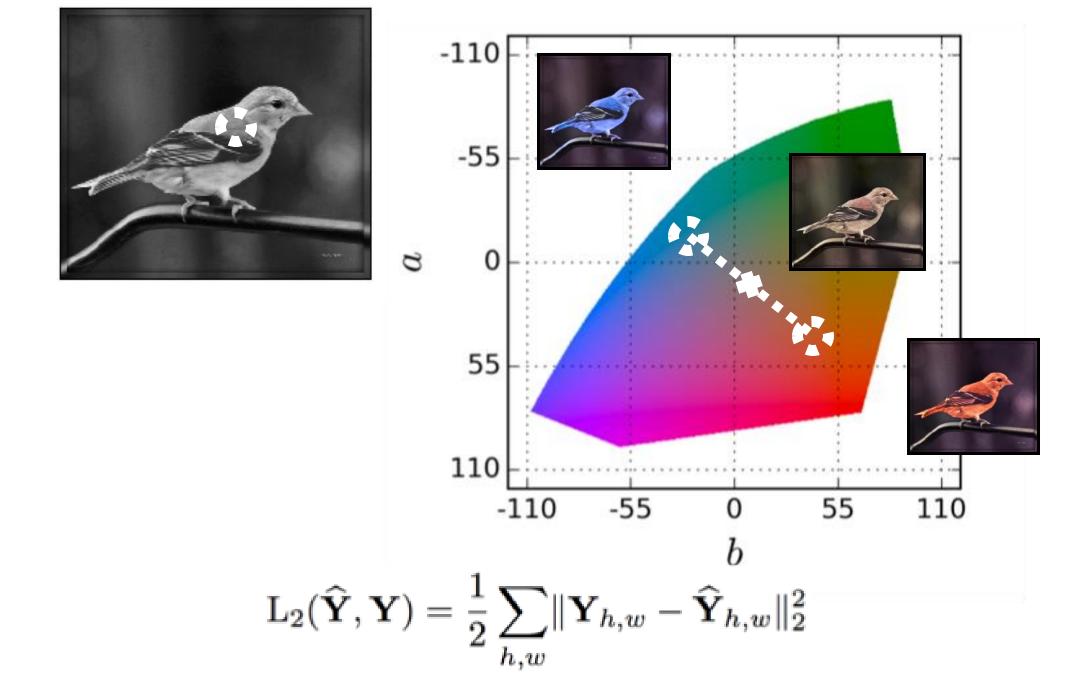
How far off we are in Euclidean distance

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$



Input

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

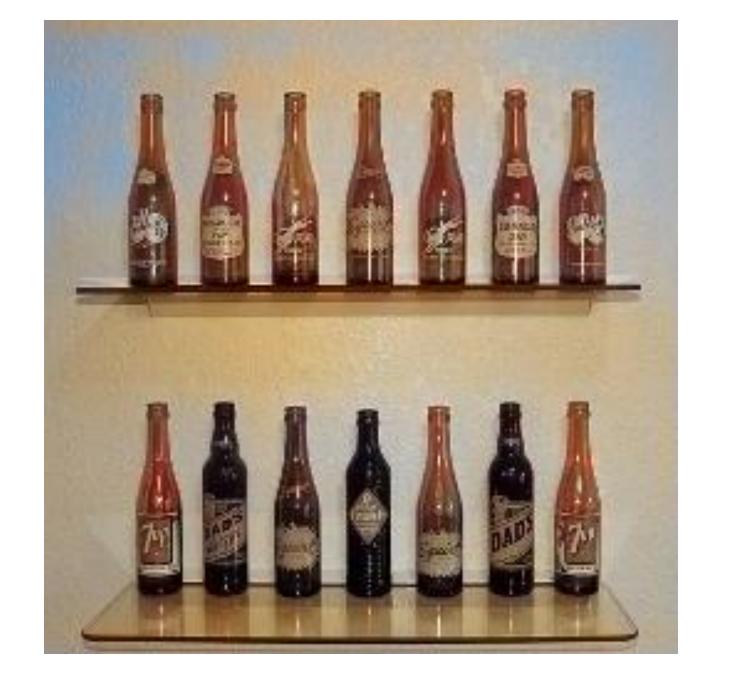
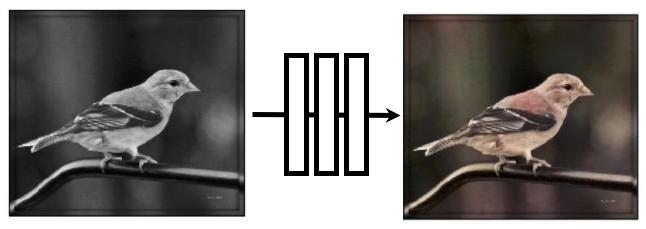
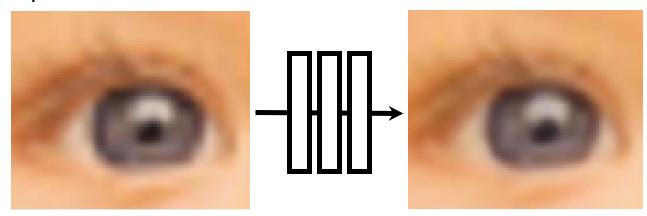


Image colorization



[Zhang, Isola, Efros, ECCV 2016]

Super-resolution

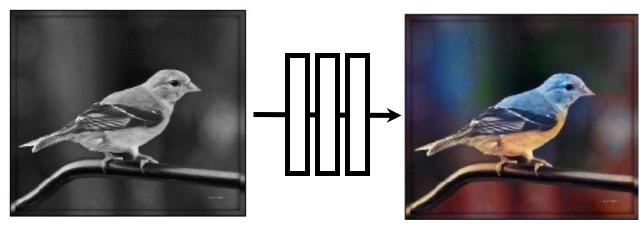


[Johnson, Alahi, Li, ECCV 2016]

L2 regression

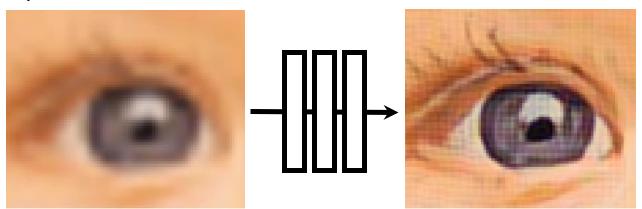
L2 regression

Image colorization



[Zhang, Isola, Efros, ECCV 2016]

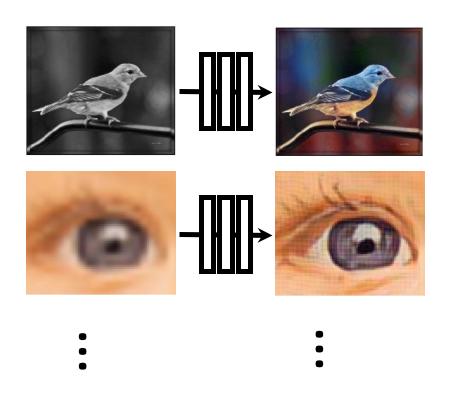
Super-resolution



[Johnson, Alahi, Li, ECCV 2016]

Cross entropy objective, with colorfulness term

Deep feature covariance matching objective

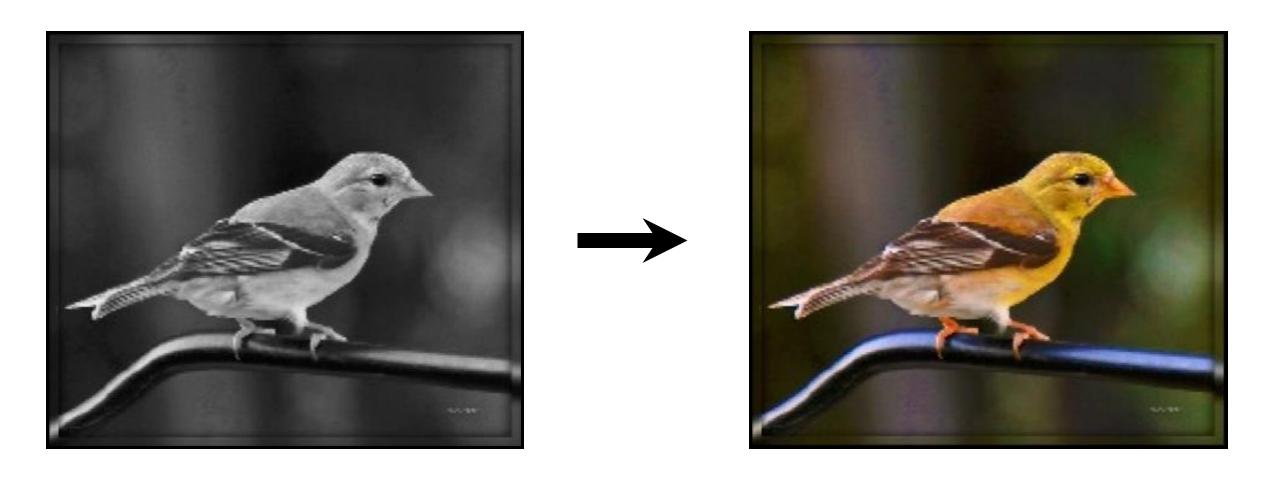


Universal loss?

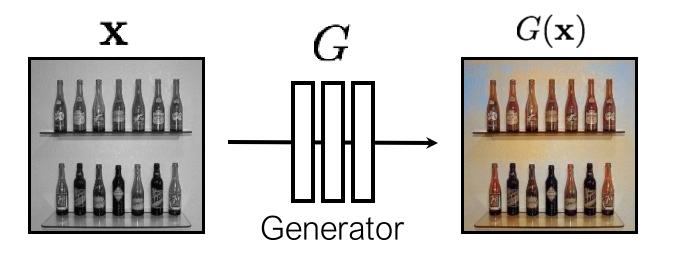
Generated images "Generative Adversarial Network" (GANs) Generated vs Real (classifier) Real photos

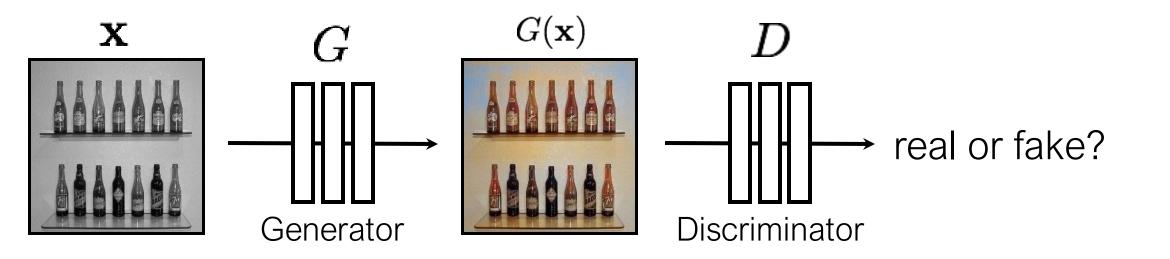
[Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio 2014]

Conditional GANs



[Goodfellow et al., 2014] [Isola et al., 2017]



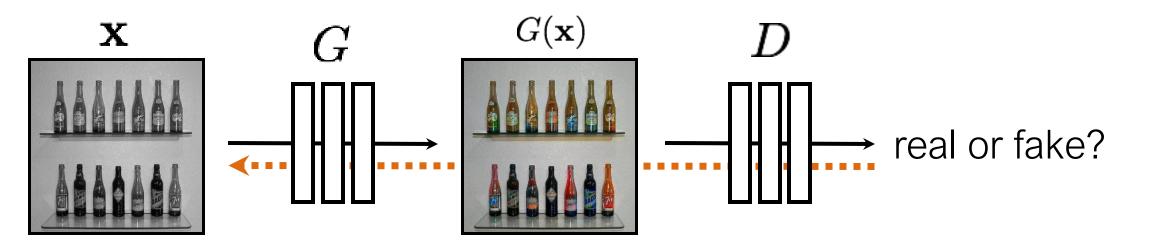


G tries to synthesize fake images that fool D

D tries to identify the fakes

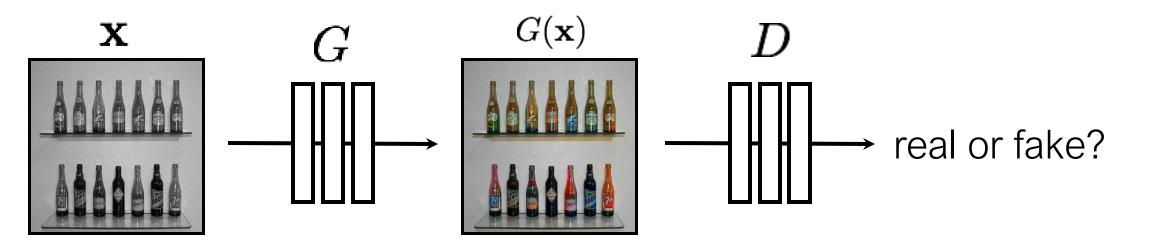


$$\underset{D}{\operatorname{arg\,max}} \; \mathbb{E}_{\mathbf{x},\mathbf{y}}[\; \log D(G(\mathbf{x})) \; + \; \log(1 - D(\mathbf{y})) \;]$$



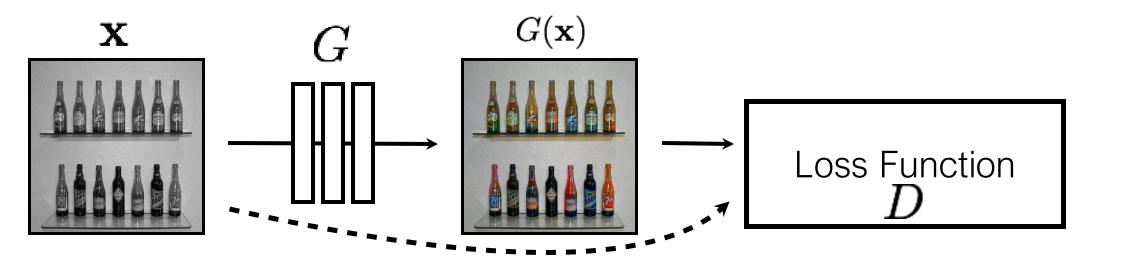
G tries to synthesize fake images that **fool D**:

$$\underset{G}{\operatorname{arg}} \min_{G} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



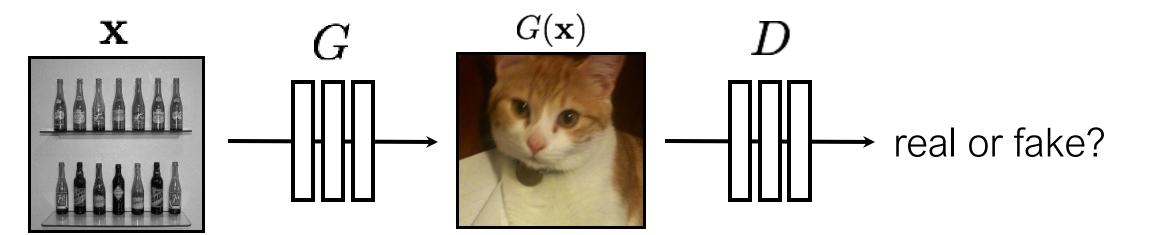
G tries to synthesize fake images that **fool** the **best D**:

$$\arg\min_{G} \max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}} [\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

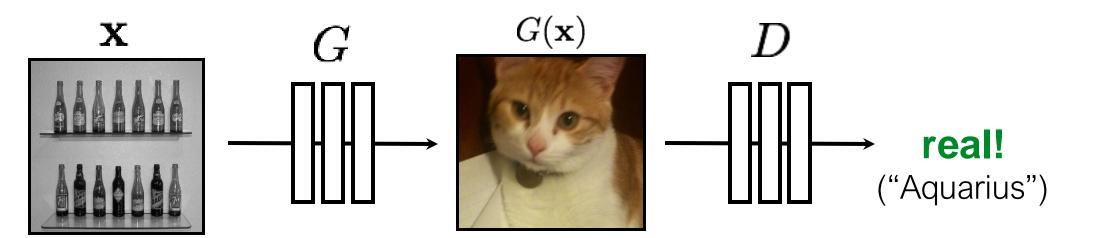


G's perspective: **D** is a loss function.

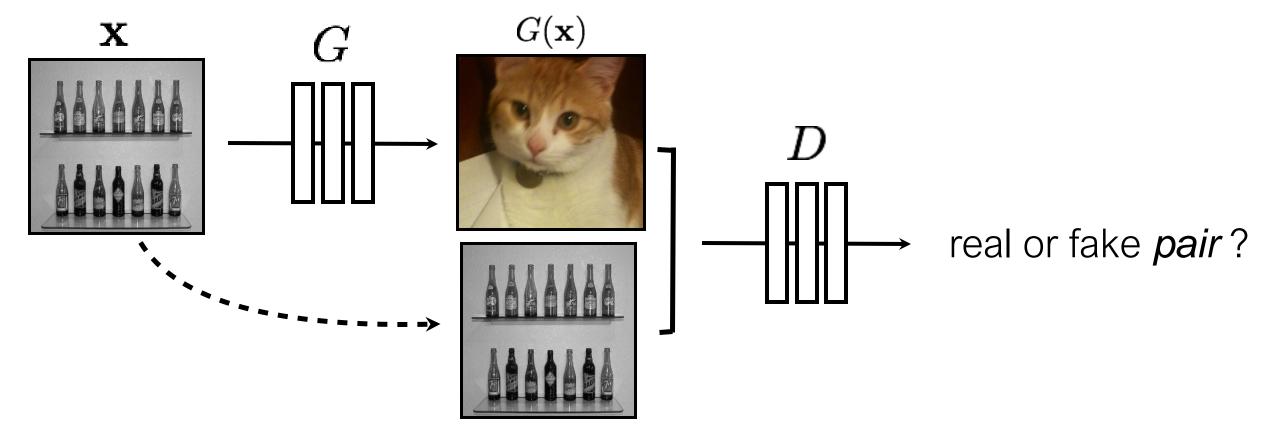
Rather than being hand-designed, it is *learned*.



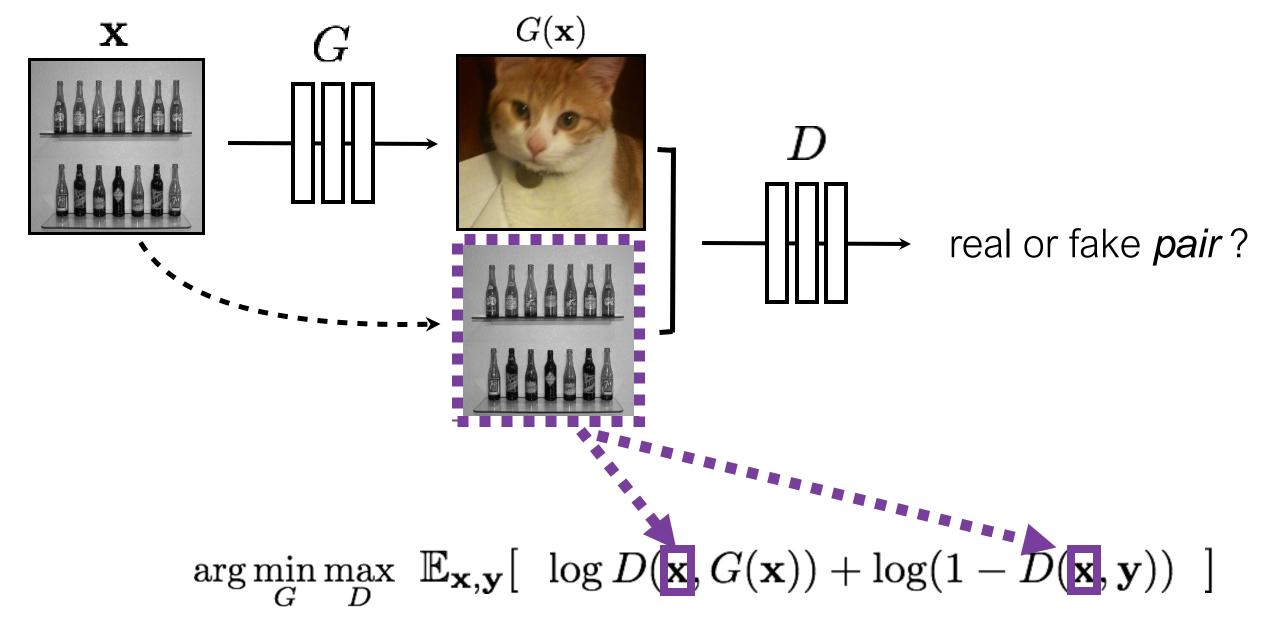
$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

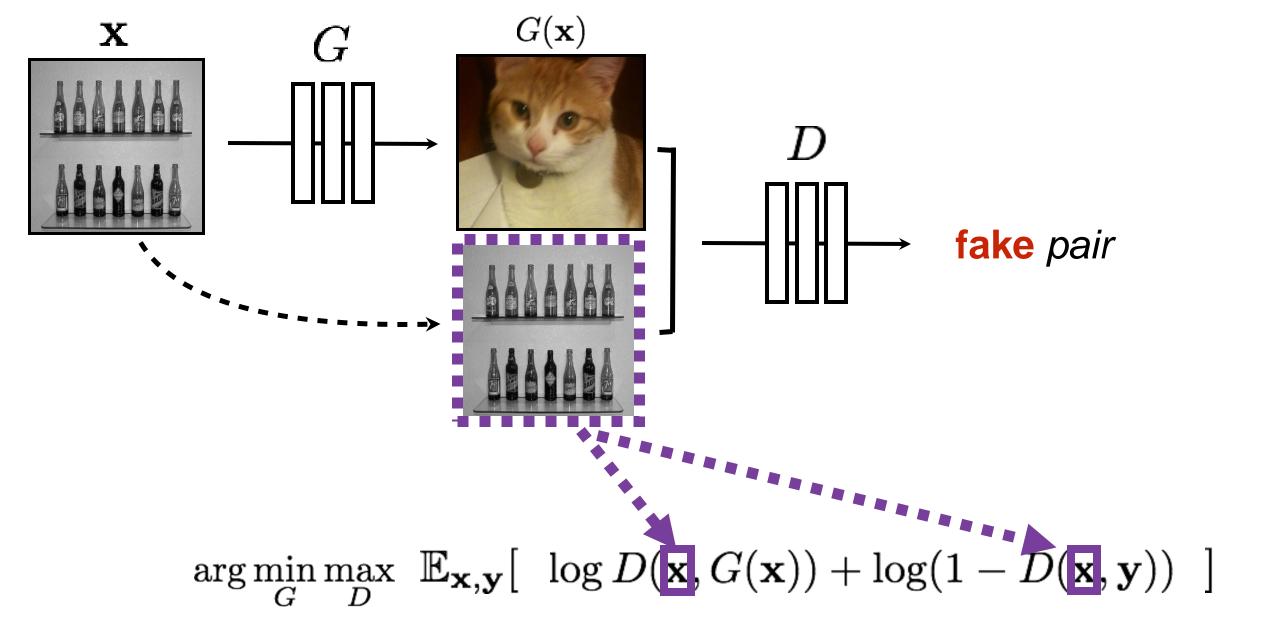


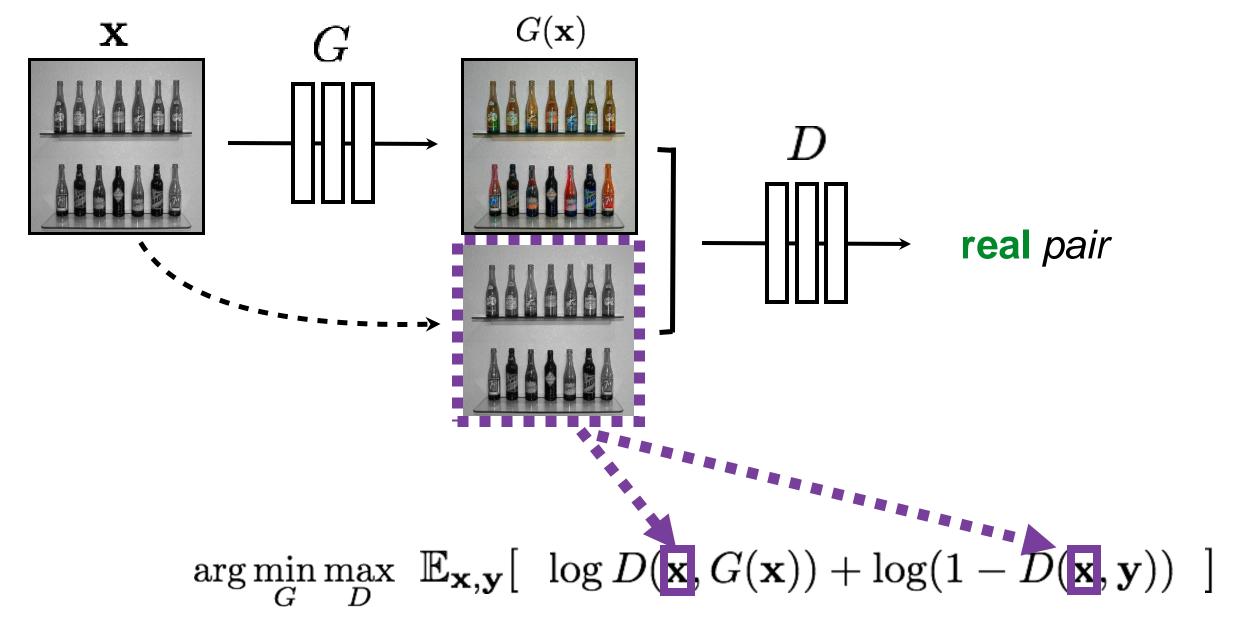
$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$

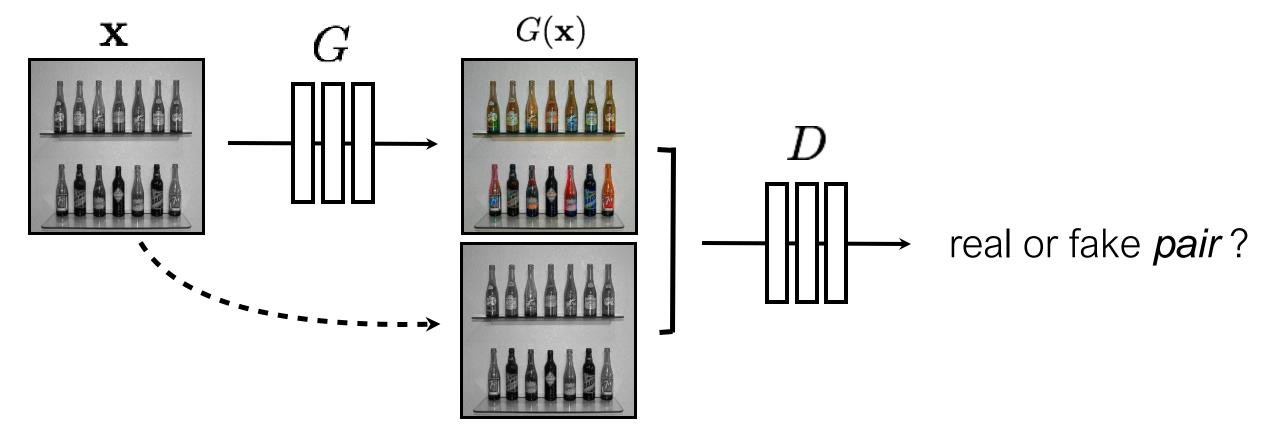


$$\arg\min_{G}\max_{D} \mathbb{E}_{\mathbf{x},\mathbf{y}}[\log D(G(\mathbf{x})) + \log(1 - D(\mathbf{y}))]$$



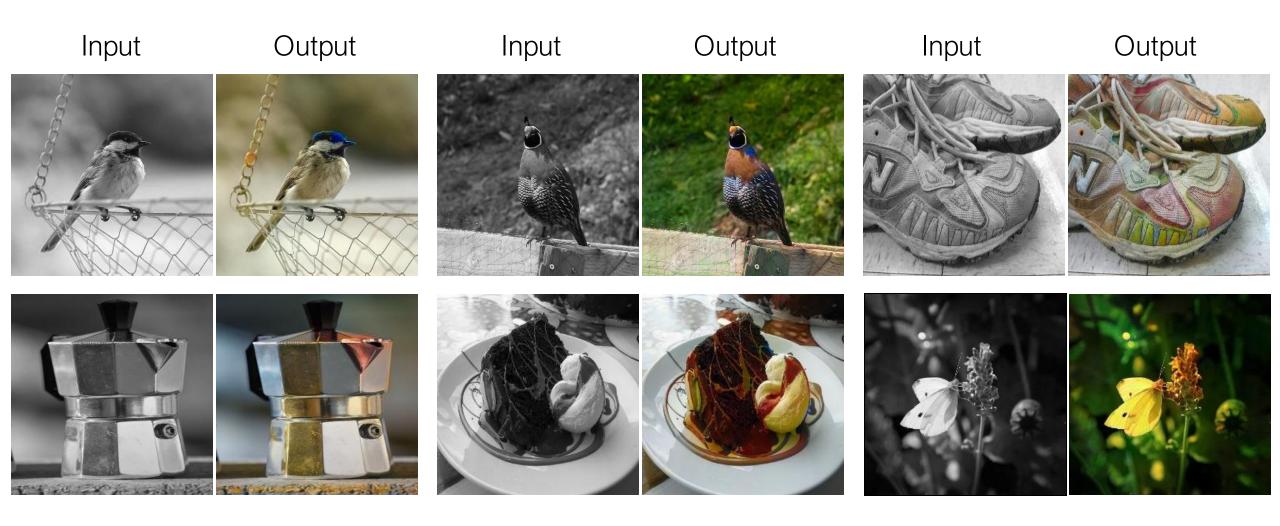






$$\arg\min_{G}\max_{D} \ \mathbb{E}_{\mathbf{x},\mathbf{y}}[\ \log D(\mathbf{x},G(\mathbf{x})) + \log(1-D(\mathbf{x},\mathbf{y}))\]$$

BW → Color

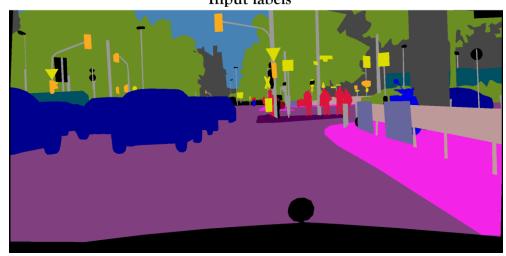


Data from [Russakovsky et al. 2015]

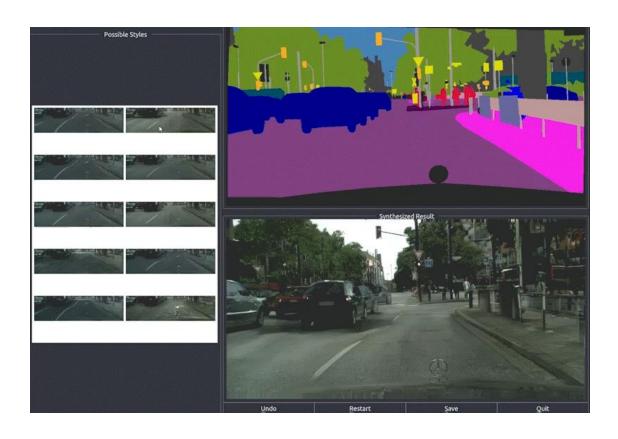
Data from [maps.google.com]

Labels → Street Views

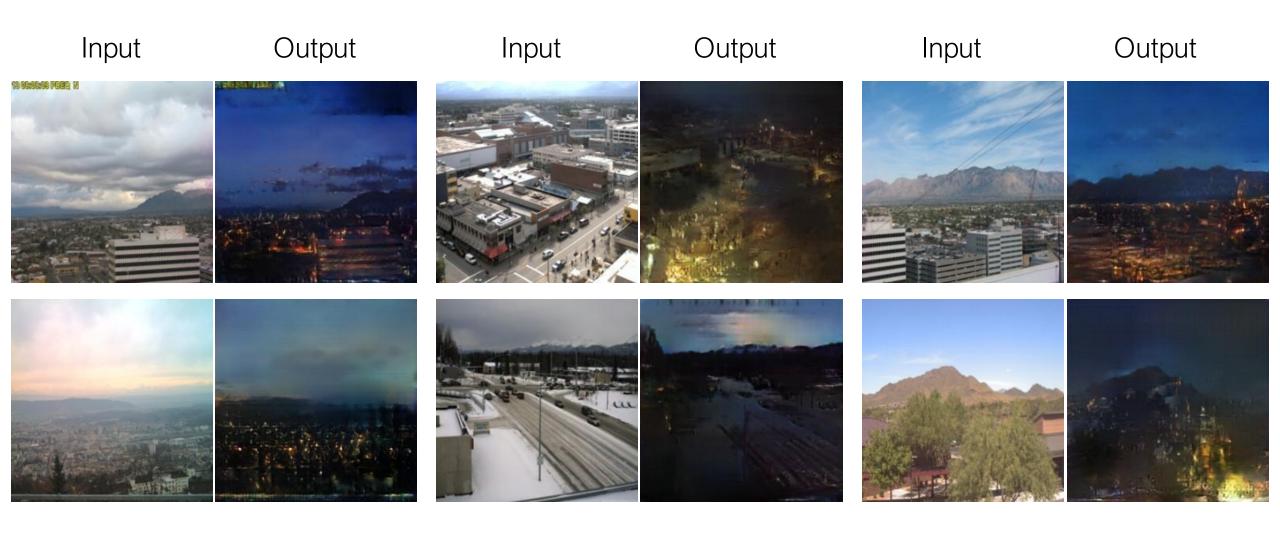
Input labels



Synthesized image

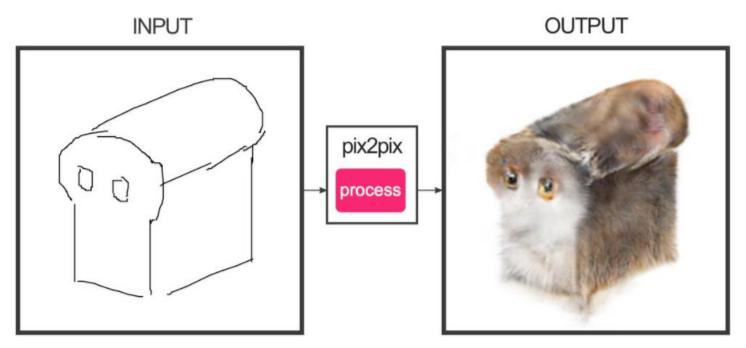


Day → Night



Data from [Laffont et al., 2014]

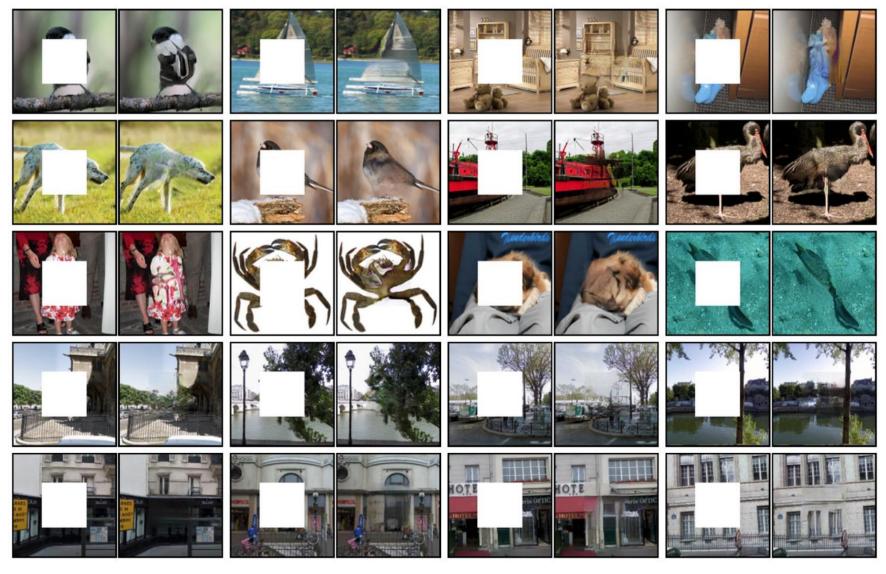
Edges → Images



Ivy Tasi @ivymyt

Vitaly Vidmirov @vvid

Image Inpainting



Pose-guided Generation

(c) Generating from a sequence of poses

Challenges —> Solutions

- 1. Output is high-dimensional, structured object
 - -> Use a deep net, D, to analyze output!

2. Uncertainty in mapping; many plausible outputs

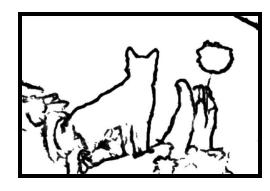
"this small bird has a pink breast and crown..."

—> D only cares about "plausibility", doesn't hedge

3. Lack of supervised training data

Challenges —> Solutions

- 1. Output is high-dimensional, structured object
 - -> Use a deep net, D, to analyze output!



"this small bird has a pink breast and crown..."

- 2. Uncertainty in mapping; many plausible outputs
 - —> D only cares about "plausibility", doesn't hedge

3. Lack of supervised training data

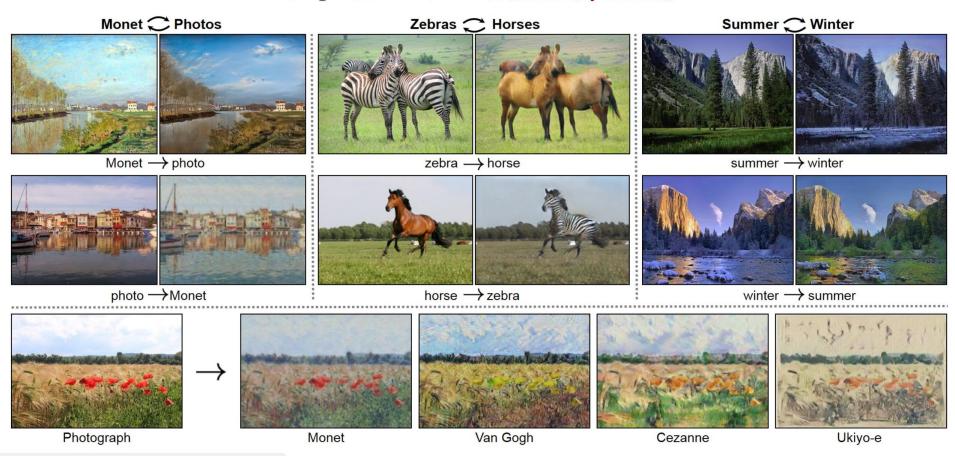
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

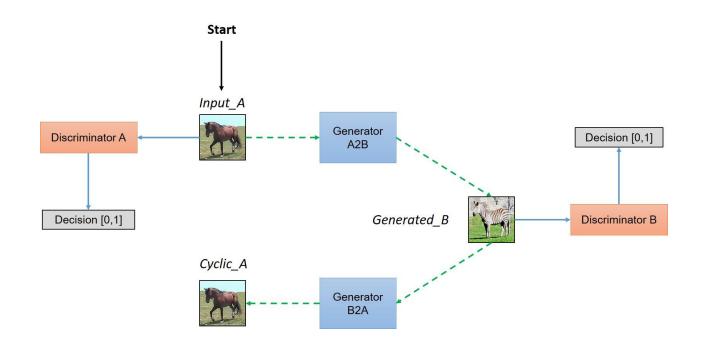
Jun-Yan Zhu* Taesung Park* Phillip Isola Alexei A. Efros

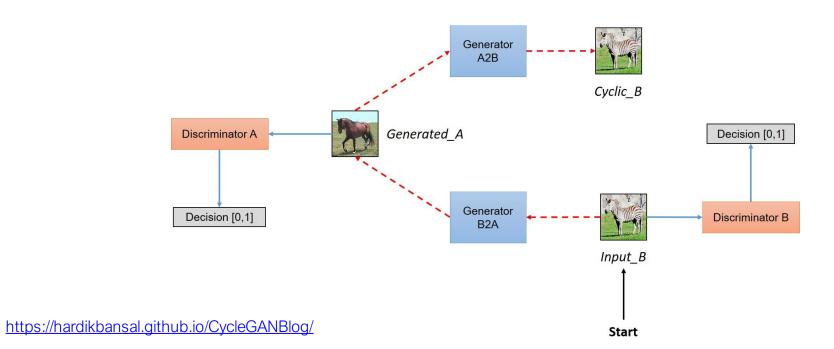
UC Berkeley

In ICCV 2017

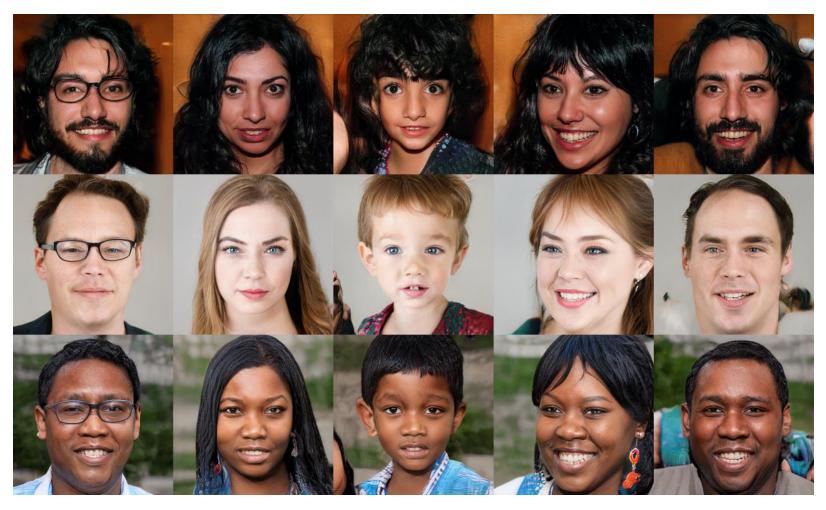
[Paper] [Code (Torch)] [Code (PyTorch)]







StyleGAN



https://github.com/NVlabs/stylegan

Questions?