CS5670: Computer Vision

Noah Snavely

Image Classification

Slides from Fei-Fei Li, Justin Johnson, Serena Yeung http://vision.stanford.edu/teaching/cs231n/

Announcements

- Project 4 due today
- Project 5 to be released soon
- Quiz 4 this Wednesday (4/24) (1st 10 minutes)
 - Will cover material since last quiz (photometric stereo, multi-view stereo, structure from motion, image classification (today's lecture))
- Guest lecture next Monday, 4/29, Jin Sun
 - Generative Adversarial Networks (GANs)
- Wednesday's lecture: Convolutional Neural Networks

Today

- Image classification pipeline
- Training, validation, testing
- Nearest neighbor classification
- Linear classification

- Building up to CNNs for learning
 - Next four lectures on deep learning

References

- Stanford CS231N
 - http://cs231n.stanford.edu/

What matters in recognition?

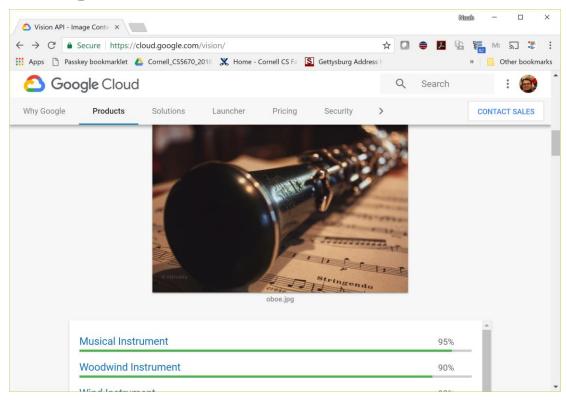
- Machine learning methods (e.g., linear classification, deep learning)
- Representation (e.g., SIFT, HoG, deep learned features)
- Data (e.g., PASCAL, ImageNet, COCO)

Image Classification: A core task in Computer Vision

 Assume given set of discrete labels, e.g. {cat, dog, cow, apple, tomato, truck, ... }

Dataset: ETH-80, by B. Leibe Slide credit: L. Lazebnik

Image classification demo



https://cloud.google.com/vision/

See also:

https://aws.amazon.com/rekognition/

https://www.clarifai.com/

https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision/

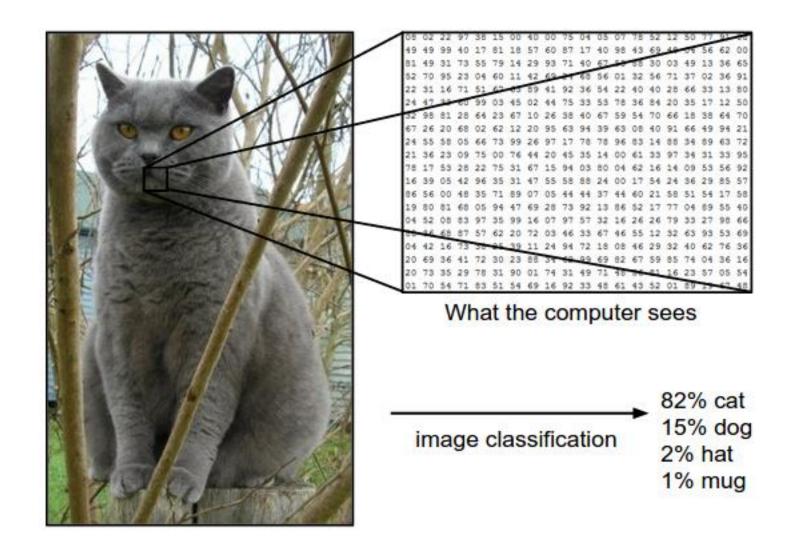
• • •

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

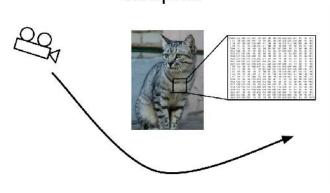
cat

Image Classification: Problem



Recall from last time: Challenges of recognition

Viewpoint



Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by ionsson is licensed under CC-BY 2.0

Clutter

This image is CC0 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

An image classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

Unlike e.g. sorting a list of numbers,

no obvious way to hard-code the algorithm for recognizing a cat, or other classes.

Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

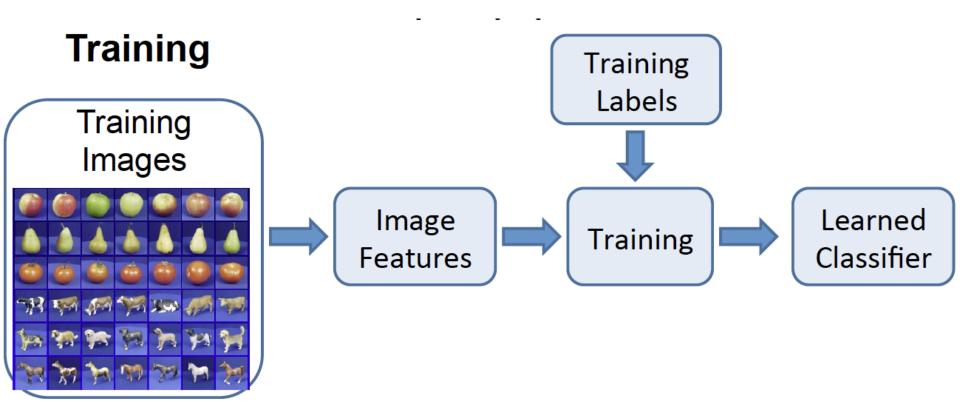
 Example training set

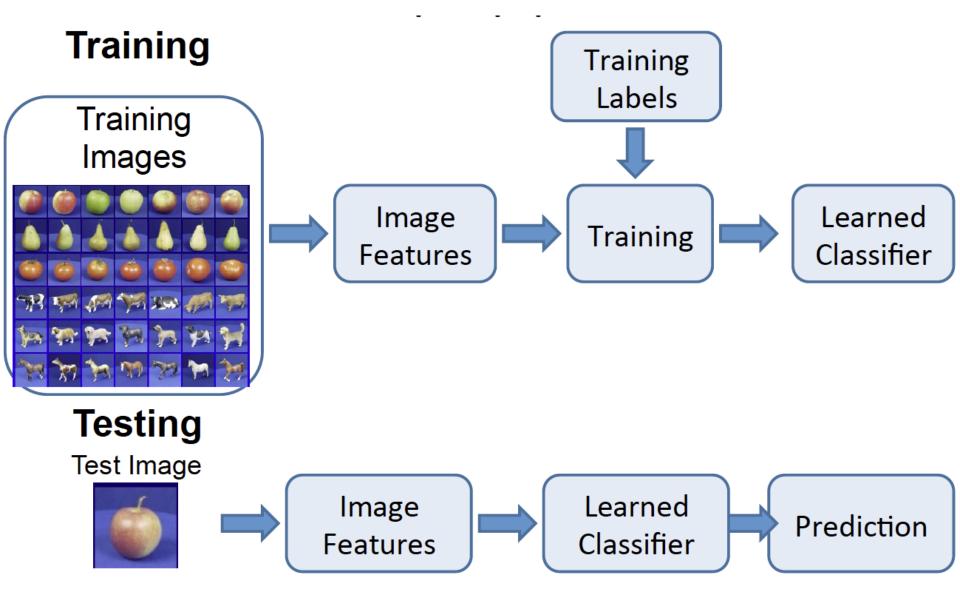
Data-driven approach

- Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

```
def train(train_images, train_labels):
    # build a model of images -> labels

def predict(image):
    # evaluate the model on the image
    return class_label
```





Dataset: ETH-80, by B. Leibe Slide credit: D. Hoiem, L. Lazebnik

Classifiers

- Nearest Neighbor
- kNN ("k-Nearest Neighbors")
- Linear Classifier
- Neural Network
- Deep Neural Network
- ...

First: Nearest Neighbor (NN) Classifier

Train

Remember all training images and their labels

Predict

- Find the closest (most similar) training image
- Predict its label as the true label

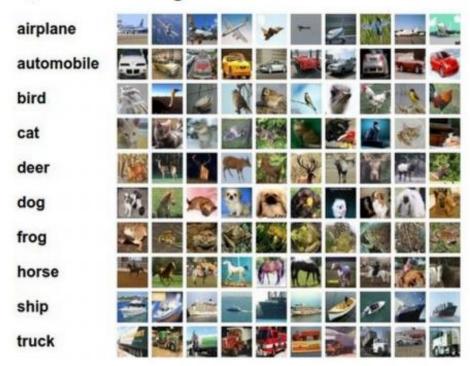
CIFAR-10 and NN results

Example dataset: CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32

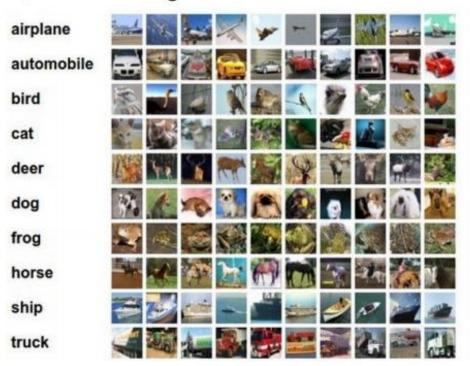
10,000 test images.



CIFAR-10 and NN results

Example dataset: CIFAR-10

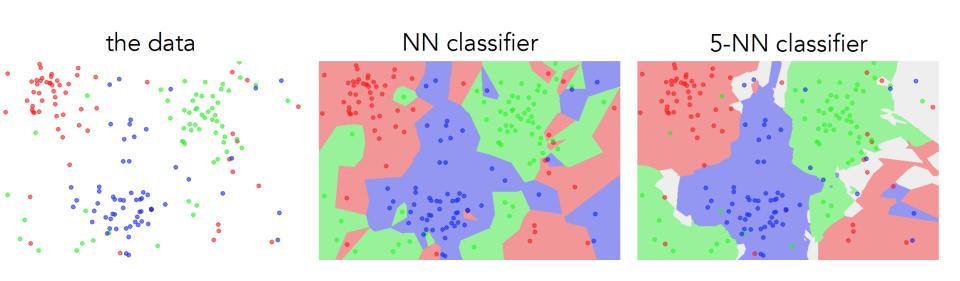
10 labels 50,000 training images 10,000 test images.



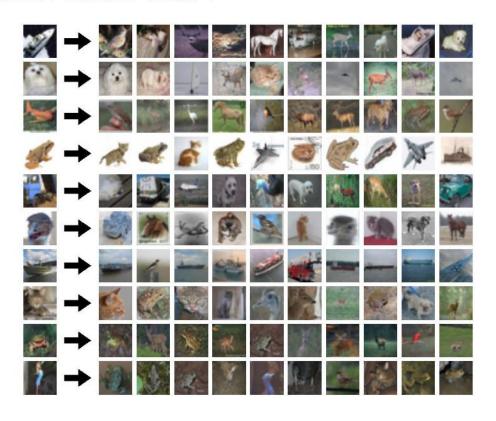
For every test image (first column), examples of nearest neighbors in rows

k-nearest neighbor

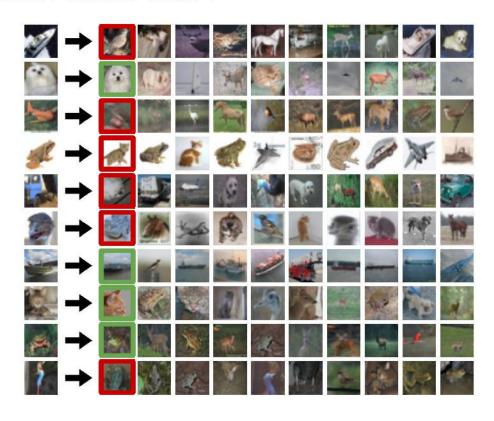
- Find the k closest points from training data
- Take majority vote from K closest points



What does this look like?



What does this look like?



How to find the most similar training image? What is the distance metric?

L1 distance:

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

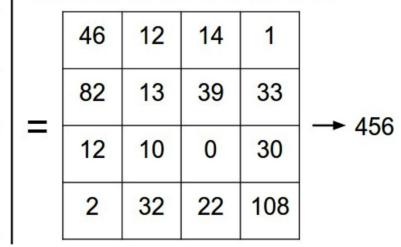
Where I_1 denotes image 1, and p denotes each pixel

56	32	10	18
90	23	128	133
24	26	178	200
2	0	255	220

training image

10	20	24	17
8	10	89	100
12	16	178	170
4	32	233	112

pixel-wise absolute value differences



Choice of distance metric

Hyperparameter

L1 (Manhattan) distance

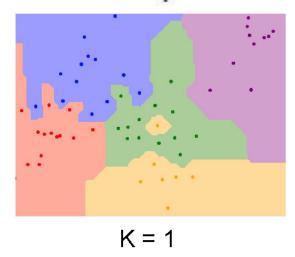
$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2)=\sqrt{\sum_pig(I_1^p-I_2^pig)^2}$$

K-Nearest Neighbors: Distance Metric

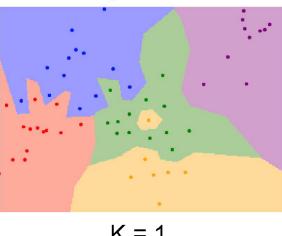
L1 (Manhattan) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$



L2 (Euclidean) distance

$$d_2(I_1,I_2)=\sqrt{\sum_p\left(I_1^p-I_2^p
ight)^2}$$



K = 1

Demo: http://vision.stanford.edu/teaching/cs231n-demos/knn/

Hyperparameters

- What is the **best distance** to use?
- What is the best value of k to use?

 These are hyperparameters: choices about the algorithm that we set rather than learn

- How do we set them?
 - One option: try them all and see what works best

Idea #1: Choose hyperparameters that work best on the data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

train test

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

that work best on the data	perfectly	on training dat	la
Your Dataset			
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		idea how algo m on new dat	
train		test	

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset Idea #2: Split data into train and test, choose hyperparameters that work best on test data train Idea #3: Split data into train, val. and test: choose

Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test

Better!

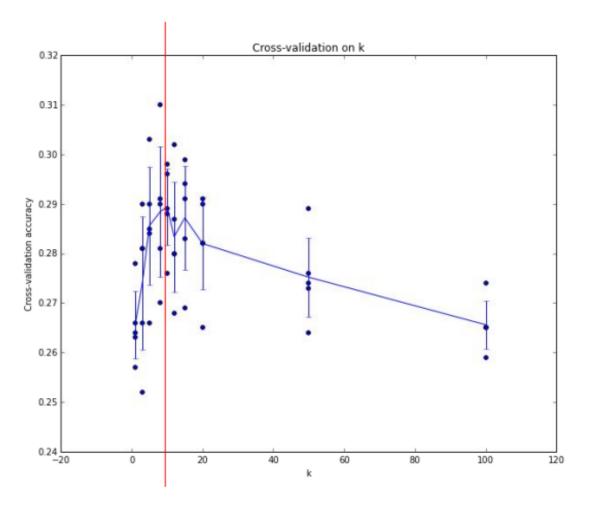
train	validation	test
-------	------------	------

Your Dataset

Idea #4: Cross-Validation: Split data into folds, try each fold as validation and average the results

fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test
fold 1	fold 2	fold 3	fold 4	fold 5	test

Useful for small datasets, but not used too frequently in deep learning



Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

Recap: How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test

- Train for original model
- Validate to find hyperparameters
- Test to understand generalizability

kNN -- Complexity and Storage

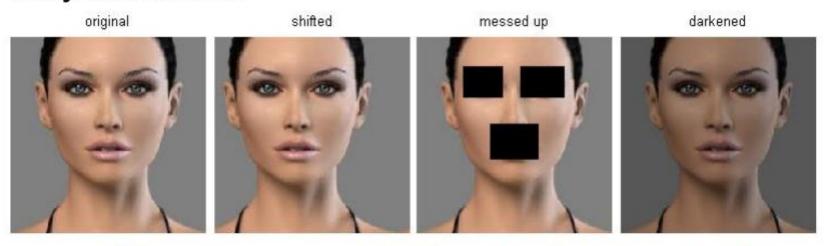
N training images, M test images

- Training: O(1)
- Testing: O(MN)

- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

k-Nearest Neighbor on images never used.

- terrible performance at test time
- distance metrics on level of whole images can be very unintuitive



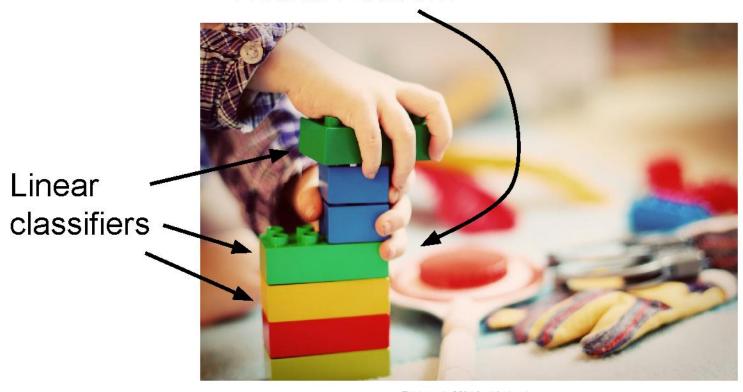
(all 3 images have same L2 distance to the one on the left)

k-Nearest Neighbors: Summary

- In image classification we start with a training set of images and labels, and must predict labels on the test set
- The K-Nearest Neighbors classifier predicts labels based on nearest training examples
- Distance metric and K are hyperparameters
- Choose hyperparameters using the validation
 set; only run on the test set once at the very end!

Linear classifiers

Neural Network



This image is CC0 1.0 public domain

Score function

class scores

Score function: f

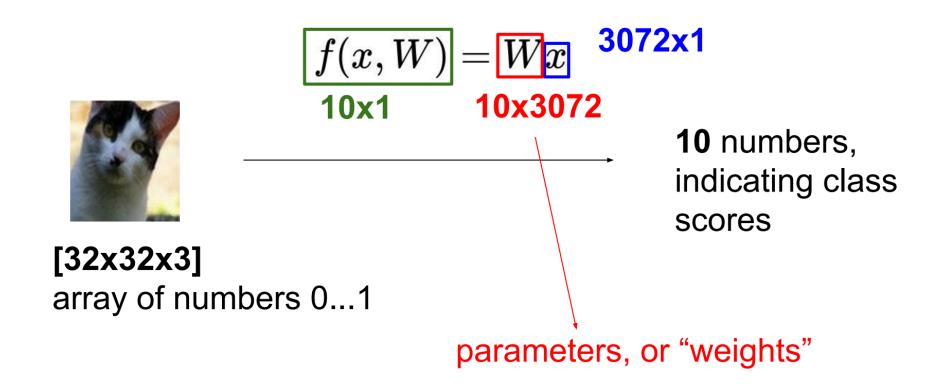
Parametric approach

image parameters f(x, W)

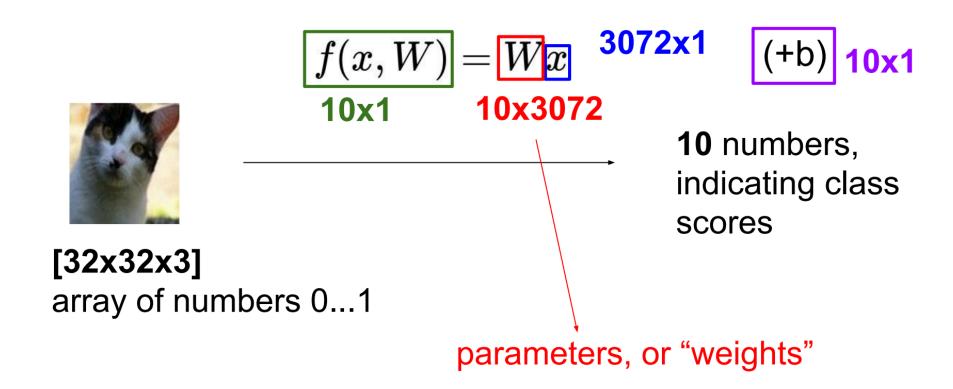
10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

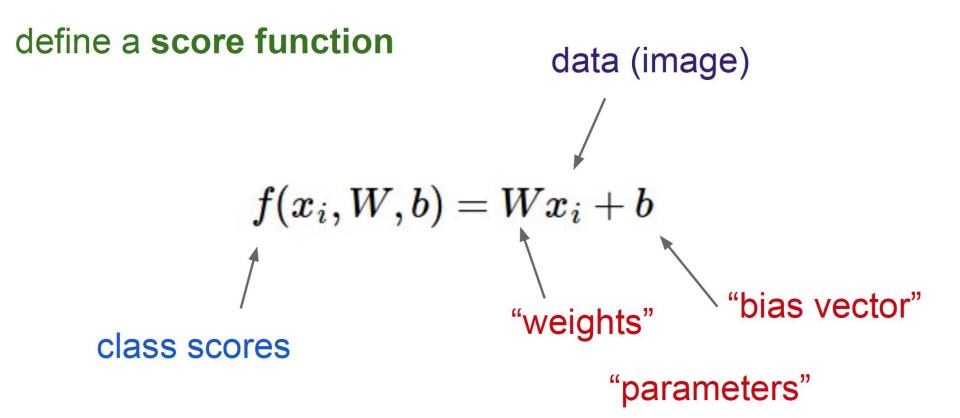
Parametric approach: Linear classifier



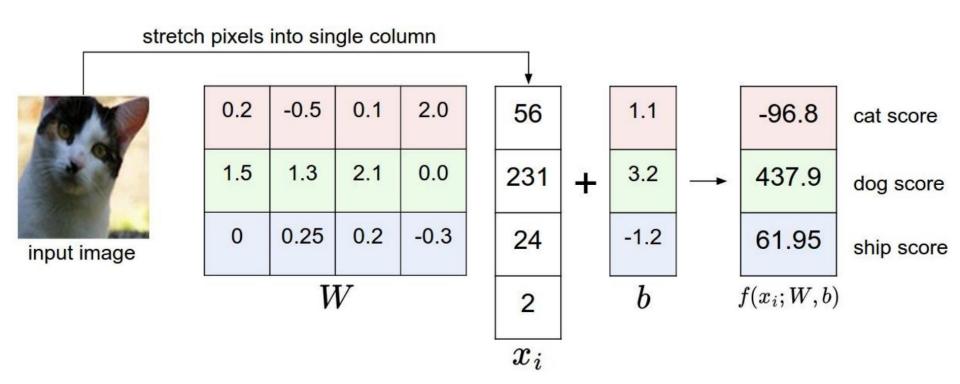
Parametric approach: Linear classifier



Linear Classifier



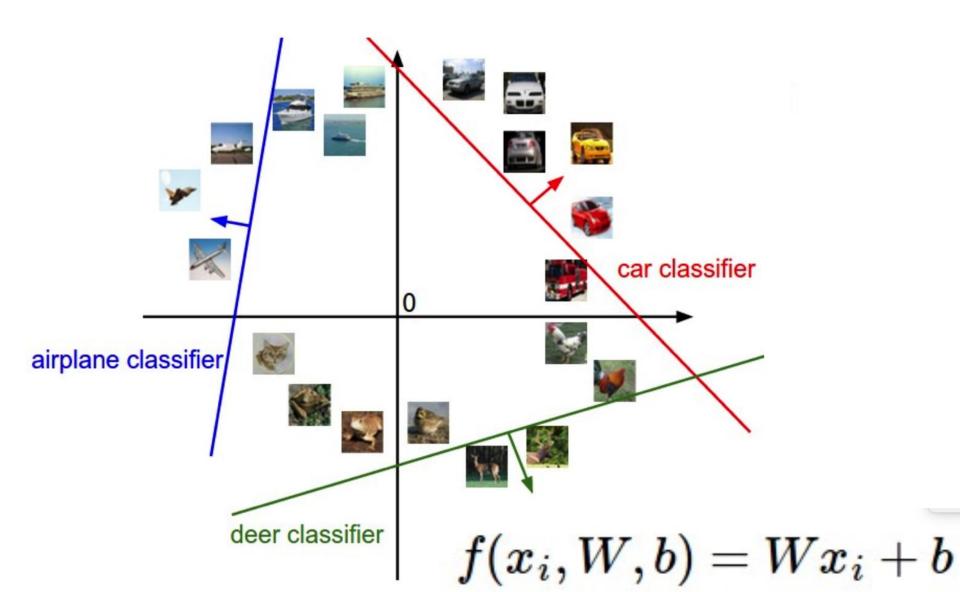
Example with an image with 4 pixels, and 3 classes (cat/dog/ship)



Interpretation: Template matching

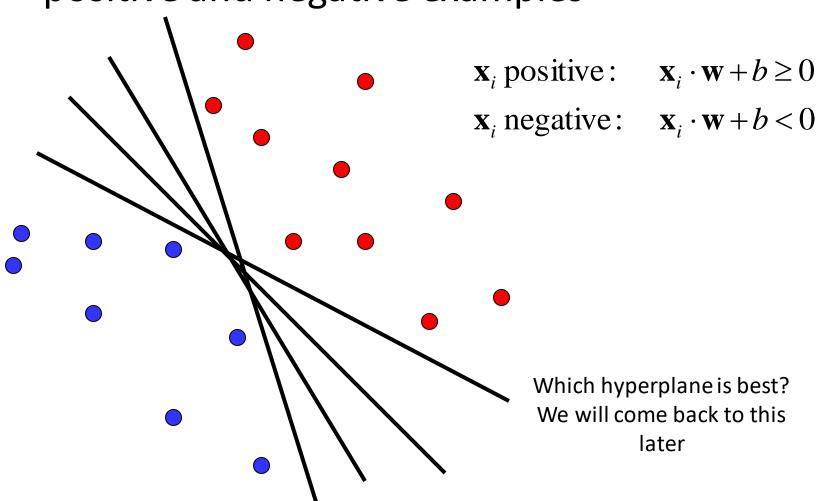
$$f(x_i, W, b) = Wx_i + b$$

Geometric Interpretation



Linear classifiers

 Find linear function (hyperplane) to separate positive and negative examples



Hard cases for a linear classifier

Class 1

First and third quadrants

Class 2

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2

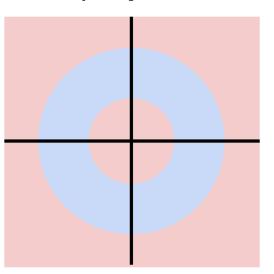
Everything else

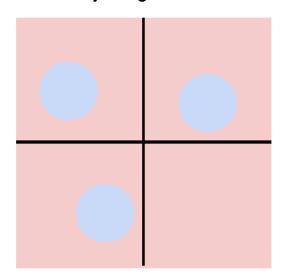
Class 1:

Three modes

Class 2

Everything else

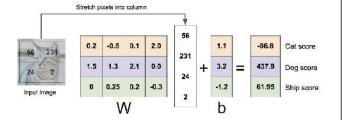




Linear Classifier: Three Viewpoints

Algebraic Viewpoint

$$f(x,W) = Wx$$

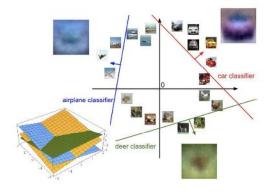


Visual Viewpoint

One template per class

Geometric Viewpoint

Hyperplanes cutting up space



So far: Defined a (linear) score function f(x,W) = Wx + b

Example class scores for 3 images for some W:

How can we tell whether this W is good or bad?

Cat image by <u>Nikita</u> is licensed under <u>CC-BY 2.0</u> Car image is <u>CC0 1.0</u> public domain Frog image is in the public domain

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.3 7	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Recap

- Learning methods
 - k-Nearest Neighbors
 - Linear classification

- Classifier outputs a score function giving a score to each class
- Today: how do we define how good a classifier is based on the training data? (Spoiler: define a loss function)

Linear classification

airplane	-3.45	-0.51	3.42
automobile	-8.87	6.04	4.64
bird	0.09	5.31	2.65
cat	2.9	-4.22	5.1
deer	4.48	-4.19	2.64
dog	8.02	3.58	5.55
frog	3.78	4.49	-4.34
horse	1.06	-4.37	-1.5
ship	-0.36	-2.09	-4.79
truck	-0.72	-2.93	6.14

Cat image by Nikita is licensed under CC-BY 2.0; Car image is CC0 1.0 public domain; Frog image is in the public domain

TODO:

- Define a loss function that quantifies our unhappiness with the scores across the training data.
- Come up with a way of efficiently finding the parameters that minimize the loss function. (optimization)

Output scores

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

A **loss function** tells how good our current classifier is

Given a dataset of examples

$$\{(x_i, y_i)\}_{i=1}^N$$

Where $oldsymbol{x_i}$ is image and $oldsymbol{y_i}$ is (integer) label

Loss over the dataset is a sum of loss over examples:

$$L = \frac{1}{N} \sum_{i} L_i(f(x_i, W), y_i)$$

Loss function, cost/objective function

- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?

Loss function or objective/cost function measures unhappiness

 During training, want to find the parameters W that minimizes the loss function

Simpler example: binary classification

- Two classes (e.g., "cat" and "not cat")
 - AKA "positive" and "negative" classes

not cat

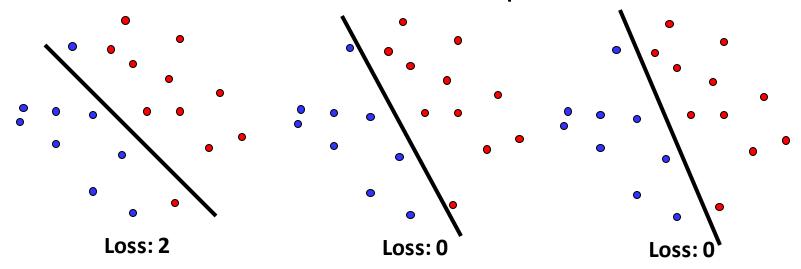
Linear classifiers

 Find linear function (hyperplane) to separate positive and negative examples



What is a good loss function?

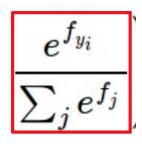
- One possibility
 - Number of misclassified examples



- Problems: discrete, can't break ties
- We want the loss to lead to good generalization
- We want the loss to work for more than 2 classes

Softmax classifier

$$f(x_i, W) = Wx_i$$
 (score function)



softmax function

Example with three classes:

$$[1,-2,0] o [e^1,e^{-2},e^0] = [2.71,0.14,1] o [0.7,0.04,0.26]$$

Interpretation: squashes values into probabilities ranging from 0 to 1

$$P(y_i \mid x_i; W)$$

Cross-entropy loss

$$f(x_i, W) = Wx_i$$
 (score function)

Losses

- Cross-entropy loss is just one possible loss function
 - One nice property is that it reinterprets scores as probabilities, which have a natural meaning

- SVM (max-margin) loss functions also used to be popular
 - But currently, cross-entropy is the most common classification loss

Summary

- Have score function and loss function
 - Currently, score function is based on linear classifier
 - Next, will generalize to convolutional neural networks
- Find W and b to minimize loss

$$L = rac{1}{N} \sum_i -\log \left(rac{e^{f_{y_i}}}{\sum_j e^{f_j}}
ight) + \lambda \sum_k \sum_l W_{k,l}^2$$