CS5670: Intro to Computer Vision Noah Snavely

Introduction to Recognition

Where we go from here

- What we know: Geometry
 - What is the shape of the world?
 - How does that shape appear in images?
 - How can we infer that shape from one or more images?

- What's next: Recognition
 - What are we looking at?

What do we mean by "object recognition"?

Next slides adapted from Li, Fergus, & Torralba's excellent short course on category and object recognition

Verification: is that a lamp?

Detection: where are the people?

Identification: is that Potala Palace?

Object categorization

Scene and context categorization

Activity / Event Recognition

Object recognition Is it really so hard?

Find the chair in this image

Output of normalized correlation

This is a chair

Object recognition Is it really so hard?

Find the chair in this image

Pretty much garbage
Simple template matching is not going to do the trick

Object recognition Is it really so hard?

Find the chair in this image

A "popular method is that of template matching, by point to point correlation of a model pattern with the image pattern. These techniques are inadequate for three-dimensional scene analysis for many reasons, such as occlusion, changes in viewing angle, and articulation of parts." Nivatia & Binford, 1977.

Why not use SIFT matching for everything?

Works well for object *instances* (or distinctive images such as logos)

Not great for generic object categories

And it can get a lot harder

Brady, M. J., & Kersten, D. (2003). Bootstrapped learning of novel objects. J Vis, 3(6), 413-422

Applications: Photography

Applications: Shutter-free Photography

Take Your Best Selfie Automatically, with Photobooth on Pixel 3

https://ai.googleblog.com/2019/04/take-your-best-selfie-automatically.html (Also features "kiss detection")

Applications: Assisted / autonomous driving

https://www.extremetech.com/extreme/226071-nvidia-goes-all-in-on-self-driving-cars-including-a-robotic-car-racing-league

Applications: Photo organization

Source: Google Photos

Applications: medical imaging

Dermatologist-level classification of skin cancer

https://cs.stanford.edu/people/esteva/nature/

Why is this hard?

Variability: Camera position
Illumination
Shape parameters

How many object categories are there? ~10,000 to 30,00

Challenge: variable viewpoint

Michelangelo 1475-1564

Challenge: variable illumination

from Apple.

(Actual size)

Challenge: scale

Challenge: deformation

Challenge: Occlusion

Challenge: background clutter

Challenge: intra-class variations

- What worked in 2011 (pre-deep-learning era in computer vision)
 - Optical character recognition
 - Face detection
 - Instance-level recognition (what logo is this?)
 - Pedestrian detection (sort of)
 - ... that's about it

- What works now, post-2012 (deep learning era)
 - Robust object classification across thousands of object categories (outperforming humans)

"Spotted salamander"

What works now, post-2012 (deep learning era)

- Face recognition at scale

FaceNet: A Unified Embedding for Face Recognition and Clustering

Florian Schroff
fschroff@google.com
Google Inc.

Dmitry Kalenichenko
dkalenichenko@google.com
Google Inc.

James Philbin
jphilbin@google.com
Google Inc.

Figure 1. **Illumination and Pose invariance.** Pose and illumination have been a long standing problem in face recognition. This figure shows the output distances of FaceNet between pairs of faces of the same and a different person in different pose and illumination combinations. A distance of 0.0 means the faces are identical, 4.0 corresponds to the opposite spectrum, two different identities. You can see that a threshold of 1.1 would classify every pair correctly.

- What works now, post-2012 (deep learning era)
 - High-quality face synthesis (but not yet for completely general scenes)

These people are not real – they were produced by our generator that allows control over different aspects of the image.

A Style-Based Generator Architecture for Generative Adversarial Networks

Tero Karras (NVIDIA), Samuli Laine (NVIDIA), Timo Aila (NVIDIA) http://stylegan.xyz/paper

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features
- Data
 - More is always better (as long as it is good data)
 - Annotation is the hard part

What Matters in Recognition?

- Learning Techniques
 - E.g. choice of classifier or inference method
- Representation
 - Low level: SIFT, HoG, GIST, edges
 - Mid level: Bag of words, sliding window, deformable model
 - High level: Contextual dependence
 - Deep learned features

Data

- More is always better (as long as it is good data)
- Annotation is the hard part

24 Hrs in Photos

Data Sets

- ImageNet
 - Huge, Crowdsourced, Hierarchical, Iconic objects
- PASCAL VOC
 - Not Crowdsourced, bounding boxes, 20 categories
- SUN Scene Database, Places
 - Not Crowdsourced, 397 (or 720) scene categories
- LabelMe (Overlaps with SUN)
 - Sort of Crowdsourced, Segmentations, Open ended
- SUN Attribute database (Overlaps with SUN)
 - Crowdsourced, 102 attributes for every scene
- OpenSurfaces
 - Crowdsourced, materials
- Microsoft COCO
 - Crowdsourced, large-scale objects

IMAGENET Large Scale Visual Recognition Challenge (ILSVRC) 2010-2012

20 object classes

22,591 images

1000 object classes

1,431,167 images

http://image-net.org/challenges/LSVRC/{2010,2011,2012}

Variety of object classes in ILSVRC

PASCAL

birds

bottles

cars

bird

bottle

car

ILSVRC

flamingo

cock

ruffed grouse

quail

partridge

pill bottle

beer bottle wine bottle water bottle pop bottle

race car

wagon

minivan

jeep

cab

Variety of object classes in ILSVRC

Questions?