CS5670 : Computer Vision Noah Snavely

Photometric stereo

Announcements

- Project 3 released
- Due Monday, April 22, by 11:59pm
- To be done in groups of 2
- Demo by Kai

Recap:

Lambertian (Diffuse) Reflectance

$$
I=k_{d} \mathbf{N} \cdot \mathbf{L}
$$

- I : observed image intensity
- k_{d} : object albedo
- \mathbf{N} : surface normal
- \mathbf{L} : light source direction

Sample albedos

Surface	Typical albedo
Fresh asphalt	$0.04^{[4]}$
Open ocean	$0.06^{[5]}$
Worn asphalt	$0.12^{[4]}$
Conifer forest (Summer)	$0.08,^{[6]} 0.09$ to $0.15^{[7]}$
Deciduous trees	0.15 to $0.18^{[7]}$
Bare soil	$0.17^{[8]}$
Green grass	$0.25^{[8]}$
Desert sand	$0.40^{[9]}$
New concrete	$0.55^{[8]}$
Ocean ice	$0.5-0.7^{[8]}$
Fresh snow	$0.80-0.90^{[8]}$

Can we determine shape from lighting?

- Are these spheres?
- Or just flat discs painted with varying albedo?

Shape from shading

Suppose $k_{d}=1$

$$
\begin{aligned}
I & =k_{d} \mathbf{N} \cdot \mathbf{L} \\
& =\mathbf{N} \cdot \mathbf{L} \\
& =\cos \theta_{i}
\end{aligned}
$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
- assume a few of the normals are known (e.g., along silhouette)
- constraints on neighboring normals-"integrability"
- smoothness
- Hard to get it to work well in practice
- plus, how many real objects have constant albedo?
- But, deep learning can help

Photometric stereo

Can write this as a matrix equation:

$$
\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right]=k_{d}\left[\begin{array}{l}
\mathbf{L}_{1}^{T} \\
\mathbf{L}_{2}^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right] \mathbf{N}
$$

Solving the equations

$$
\begin{aligned}
& {\left[\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}\right] }=\underbrace{\left[\begin{array}{l}
\mathbf{L}_{\mathbf{1}}{ }^{T} \\
\mathbf{L}_{2}{ }^{T} \\
\mathbf{L}_{3}^{T}
\end{array}\right]}_{\mathbf{3}_{\mathbf{I}}} \underbrace{}_{3_{d}} k_{d} \mathbf{N} \\
& \mathbf{G} \\
& \mathbf{G}=\mathbf{L}^{-1} \mathbf{I} \\
& k_{d}=\|\mathbf{G}\| \\
& \mathbf{N}=\frac{1}{k_{d}} \mathbf{G}
\end{aligned}
$$

More than three lights

Get better results by using more lights

$$
\left[\begin{array}{c}
I_{1} \\
\vdots \\
I_{n}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{L}_{\mathbf{1}} \\
\vdots \\
\mathbf{L}_{\mathbf{n}}
\end{array}\right] k_{d} \mathbf{N}
$$

Least squares solution:

$$
\begin{aligned}
\mathbf{I} & =\mathbf{L G} \\
\mathbf{L}^{\mathrm{T}} \mathbf{I} & =\mathbf{L}^{\mathrm{T}} \mathbf{L G} \\
\mathbf{G} & =\left(\mathbf{L}^{\mathrm{T}} \mathbf{L}\right)^{-1}\left(\mathbf{L}^{\mathrm{T}} \mathbf{I}\right)
\end{aligned}
$$

Solve for $\mathrm{N}, \mathrm{k}_{\mathrm{d}}$ as before
What's the size of $L^{\top} L$?

Computing light source directions

Trick: place a chrome sphere in the scene

- the location of the highlight tells you where the light source is

Example

Recovered normal field

Depth from normals

- Solving the linear system per-pixel gives us an estimated surface normal for each pixel

Input photo

Estimated normals

Estimated normals (needle diagram)

- How can we compute depth from normals?
- Normals are like the "derivative" of the true depth

Normal Integration

- Integrating a set of derivatives is easy in 1D
- (similar to Euler's method from diff. eq. class)

- Could just integrate normals in each column / row separately
- Instead, we formulate as a linear system and solve for depths that best agree with the surface normals

Depth from normals

Get a similar equation for $\mathbf{V}_{\mathbf{2}}$

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Results

from Athos Georghiades

Results

Extension

Photometric Stereo from Colored Lighting

Fig. 2. Applying the original algorithm to a face with white makeup. Top: example input frames from video of an actor smiling and grimacing. Bottom: the resulting integrated surfaces.

Video Normals from Colored Lights

Gabriel J. Brostow, Carlos Hernández, George Vogiatzis, Björn Stenger, Roberto Cipolla IEEE TPAMI, Vol. 33, No. 10, pages 2104-2114, October 2011.

Questions?

For now, ignore specular reflection

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra

And Refraction...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra

And Interreflections...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra

And Subsurface Scattering...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra

Limitations

Bigger problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
- measure light source directions, intensities
- camera response function

Newer work addresses some of these issues
Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann \& Seitz, "Example-Based Photometric Stereo: Shape Reconstruction with General, Varying BRDFs." IEEE Trans. PAMI 2005

GE

 H

Johnson and Adelson, 2009

Johnson and Adelson, 2009

$$
\infty
$$

Lights, camera, action

Lights

Camera

(a) bench configuration

(b) captured

(d) portable configuration

Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution $\$ 20$ bill example from the original retrographic sensor with a closeup view. (b) Rendering of the captured geometry using our method.

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset: macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.

Sensing Surfaces with GelSight

https://www.youtube.com/watch?v=S7gXih4XS7A

InverseRenderNet: Learning single image inverse rendering

Ye Yu and William A. P. Smith
Department of Computer Science, University of York, UK
\{yy1571,william.smith\}@york.ac.uk

Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multiview stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

Questions?

