CS5670: Computer Vision

Noah Snavely

Photometric stereo

Announcements

- Project 3 released
 - Due Monday, April 22, by 11:59pm
 - To be done in groups of 2
 - Demo by Kai

Recap: Lambertian (Diffuse) Reflectance

$$I = k_d \mathbf{N} \cdot \mathbf{L}$$

• *I* : observed image intensity

• k_d : object albedo

• N: surface normal

• L: light source direction

Lambertian sphere with constant albedo lit by a directional light source

Sample albedos

Surface	Typical albedo
Fresh asphalt	0.04 ^[4]
Open ocean	0.06 ^[5]
Worn asphalt	0.12 ^[4]
Conifer forest (Summer)	0.08, ^[6] 0.09 to 0.15 ^[7]
Deciduous trees	0.15 to 0.18 ^[7]
Bare soil	0.17 ^[8]
Green grass	0.25 ^[8]
Desert sand	0.40 ^[9]
New concrete	0.55 ^[8]
Ocean ice	0.5–0.7 ^[8]
Fresh snow	0.80-0.90 ^[8]

Objects can have varying albedo and albedo varies with wavelength

Source:

https://en.wikipedia.org/wiki/Albedo

Can we determine shape from lighting?

- Are these spheres?
 - Or just flat discs painted with varying albedo?

Shape from shading

Suppose
$$k_d = 1$$

$$I = k_d \mathbf{N} \cdot \mathbf{L}$$
$$= \mathbf{N} \cdot \mathbf{L}$$
$$= \cos \theta_i$$

You can directly measure angle between normal and light source

- Not quite enough information to compute surface shape
- But can be if you add some additional info, for example
 - assume a few of the normals are known (e.g., along silhouette)
 - constraints on neighboring normals—"integrability"
 - smoothness
- Hard to get it to work well in practice
 - plus, how many real objects have constant albedo?
 - But, deep learning can help

Let's take more than one photo!

Photometric stereo

Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{vmatrix} \mathbf{L_1}^T \\ \mathbf{L_2}^T \\ \mathbf{L_3}^T \end{vmatrix} \mathbf{N}$$

Solving the equations

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = \begin{bmatrix} \mathbf{L}_1^T \\ \mathbf{L}_2^T \\ \mathbf{L}_3^T \end{bmatrix} k_d \mathbf{N}$$

$$\mathbf{I}_{3 \times 1} \quad \mathbf{L}_{3 \times 3} \quad \mathbf{G}_{3 \times 1}$$

$$\mathbf{G} = \mathbf{L}^{-1} \mathbf{I}$$

$$k_d = \|\mathbf{G}\|$$

$$\mathbf{N} = \frac{1}{k_d} \mathbf{G}$$

Solve one such linear system per pixel to solve for that pixel's surface normal

More than three lights

Get better results by using more lights

$$\begin{bmatrix} I_1 \\ \vdots \\ I_n \end{bmatrix} = \begin{bmatrix} \mathbf{L_1} \\ \vdots \\ \mathbf{L_n} \end{bmatrix} k_d \mathbf{N}$$

Least squares solution:

Computing light source directions

Trick: place a chrome sphere in the scene

the location of the highlight tells you where the light source is

Example

Depth from normals

 Solving the linear system per-pixel gives us an estimated surface normal for each pixel

- How can we compute depth from normals?
 - Normals are like the "derivative" of the true depth

Normal Integration

- Integrating a set of derivatives is easy in 1D
 - (similar to Euler's method from diff. eq. class)

- Could just integrate normals in each column / row separately
- Instead, we formulate as a linear system and solve for depths that best agree with the surface normals

Depth from normals

Get a similar equation for V₂

- Each normal gives us two linear constraints on z
- compute z values by solving a matrix equation

Results

from Athos Georghiades

Results

Extension

Photometric Stereo from Colored Lighting

Video Normals from Colored Lights

Gabriel J. Brostow, Carlos Hernández, George Vogiatzis, Björn Stenger, Roberto Cipolla <u>IEEE TPAMI</u>, Vol. 33, No. 10, pages 2104-2114, October 2011.

Questions?

For now, ignore specular reflection

And Refraction...

And Interreflections...

Slides from Photometric Methods for 3D Modeling, Matsushita, Wilburn, Ben-Ezra

And Subsurface Scattering...

Limitations

Bigger problems

- doesn't work for shiny things, semi-translucent things
- shadows, inter-reflections

Smaller problems

- camera and lights have to be distant
- calibration requirements
 - measure light source directions, intensities
 - camera response function

Newer work addresses some of these issues

Some pointers for further reading:

- Zickler, Belhumeur, and Kriegman, "<u>Helmholtz Stereopsis: Exploiting</u>
 <u>Reciprocity for Surface Reconstruction</u>." IJCV, Vol. 49 No. 2/3, pp 215-227.
- Hertzmann & Seitz, "<u>Example-Based Photometric Stereo: Shape</u>
 <u>Reconstruction with General, Varying BRDFs</u>." IEEE Trans. PAMI 2005

HOME PRODUCTS VIDEOS IMAGES PAPERS NEWS ABOUT US CONTACT

Johnson and Adelson, 2009

Clear Elastomer

Johnson and Adelson, 2009

Lights, camera, action

Figure 7: Comparison with the high-resolution result from the original retrographic sensor. (a) Rendering of the high-resolution \$20 bill example from the original retrographic sensor with a close-up view. (b) Rendering of the captured geometry using our method.

Figure 9: Example geometry measured with the bench and portable configurations. Outer image: rendering under direct lighting. Inset: macro photograph of original sample. Scale shown in upper left. Color images are shown for context and are to similar, but not exact scale.

Sensing Surfaces with GelSight

138,850 views

InverseRenderNet: Learning single image inverse rendering

Ye Yu and William A. P. Smith Department of Computer Science, University of York, UK

{yy1571, william.smith}@york.ac.uk

Figure 1: From a single image (col. 1), we estimate albedo and normal maps and illumination (col. 2-4); comparison multiview stereo result from several hundred images (col. 5); re-rendering of our shape with frontal/estimated lighting (col. 6-7).

Questions?