CS5670: Computer Vision Noah Snavely

Panoramas

What's inside your fridge?

Announcements

- Project 3 (Autostitch) is out, due next Thursday, March 28 by 11:59pm
- Artifact due Friday, March 29 by 11:59pm
- Project to be done in pairs
- Take-home midterm
- To be distributed at the end of class
- Due at the beginning of class in one week, Wednesday, March 20

Camera projection matrix: recap

Projection matrix

This part converts 3D points in world coordinates to 3D rays in the camera's coordinate system. There are 6 parameters represented (3 for position/translation, 3 for rotation).

Projection matrix

$$
\begin{aligned}
& {\left[\begin{array}{l|l}
\mathbf{R} & -\mathbf{R c}]
\end{array}\right.} \\
& \text { (} \mathrm{t} \text { in book's notation) } \\
& \boldsymbol{\Pi}=\mathbf{K}[\mathbf{R} \mid-\mathbf{R c}]
\end{aligned}
$$

Typical intrinsics matrix

$$
\mathbf{K}=\left[\begin{array}{ccc}
-f & 0 & x_{c} \\
0 & -f & y_{c} \\
0 & 0 & 1
\end{array}\right]
$$

- 2D affine transform corresponding to a scale by f (focal length) and a translation by (x_{c}, y_{c}) (principal point)

Questions?

Perspective distortion

- Problem for architectural photography: converging verticals

Perspective distortion

- Problem for architectural photography: converging verticals

Tilting the camera upwards results in converging verticals

Keeping the camera level, with an ordinary lens, captures only the bottom portion of the building

Shifting the lens upwards results in a picture of the entire subject

- Solution: view camera (lens shifted w.r.t. film)

(Corresponds to shifting the principal point)

Perspective distortion

- Problem for architectural photography: converging verticals
- Result:

Perspective distortion

- What does a sphere project to?

Perspective distortion

- The exterior columns appear bigger
- The distortion is not due to lens flaws
- Problem pointed out by Da Vinci

Perspective distortion: People

Wide angle

Standard

Telephoto

http://petapixel.com/2013/01/11/how-focal-length-affects-your-subjects-apparent-weight-as-seen-with-a-cat/

Lens distortion

- Radial distortion of the image
- Caused by imperfect lenses
- Points are distorted along radial lines
- Deviations are most noticeable for rays that pass through the edge of the lens

Radial distortion

Radial distortion

- Arrows show motion of projected points relative to an ideal (distortion-free lens)
[Image credit: J. Bouguet http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html]

Correcting radial distortion

from Helmut Dersch

Moceine cistortion

$$
\begin{array}{cl}
\begin{array}{c}
\text { Project }(\hat{x}, \hat{y}, \widehat{z}) \\
\text { to "normalized" } \\
\text { image coordinates }
\end{array} & x_{n}^{\prime}=\widehat{x} / \widehat{z} \\
\text { in }_{n}^{\prime}=\widehat{y} / \widehat{z}
\end{array}
$$

Apply radial distortion by

$$
r^{2}=x_{n}^{\prime 2}+y_{n}^{\prime 2}
$$

approximating with a (low-degree) polynomial

$$
\begin{aligned}
x_{d}^{\prime} & =x_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right) \\
y_{d}^{\prime} & =y_{n}^{\prime}\left(1+\kappa_{1} r^{2}+\kappa_{2} r^{4}\right)
\end{aligned}
$$

Apply focal length \& $\quad x^{\prime}=f x_{d}^{\prime}+x_{c}$ translate image center
$y^{\prime}=f y_{d}^{\prime}+y_{c}$

- To model lens distortion
- Use the above conversion of rays to pixels, rather than simply multiplying by the intrinsics matrix

Other types of projection

- Lots of intriguing variants...
- (I'll just mention a few fun ones)

360 degree field of view...

- Basic approach
- Take a photo of a parabolic mirror with an orthographic lens (Nayar)
- Or buy one a lens from a variety of omnicam manufacturers...
- See http://www.cis.upenn.edu/~kostas/omni.html

Tilt-shift

http://www.northlight-images.co.uk/article pages/tilt_and shift ts-e.html

Titt-shift images from Olivo Barbieri and Photoshop imitations

Rotating sensor (or object)

Rollout Photographs © Justin Kerr http://research.famsi.org/kerrmaya.html

Also known as "cyclographs", "peripheral images"

Back to panoramas

Can we use homographies to create a 360 panorama?

Idea: projecting images onto a common plane

We'll see what this homography means next Can't create a 360 panorama this way... we'll fix this shortly
mosaic projection plane

Creating a panorama

- Basic Procedure
- Take a sequence of images from the same position
- Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- If there are more images, repeat

Geometric Interpretation of Mosaics

- If we capture all 3600 of rays, we can create a 3600 panorama
- The basic operation is projecting an image from one plane to another
- The projective transformation is scene-INDEPENDENT
- This depends on all the images having the same optical center

Image reprojection

- Basic question
- How to relate two images from the same camera center?
- how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

What is the transformation?

How do we map points in image 2 into image 1?

	image 1	image 2
intrinsics	\mathbf{K}_{1}	\mathbf{K}_{2}
extrinsics		
(rotation only)	$\mathbf{R}_{1}=\mathbf{I}_{3 \times 3}$	\mathbf{R}_{2}

Step 3: Convert rays in camera 1's coordinates to pixels in image 1's coordinates.

Step 1: Convert pixels in image 2 to rays in camera 2's coordinate system. $\left[\begin{array}{c}X_{2} \\ Y_{2} \\ Z_{2}\end{array}\right]=\mathbf{K}_{2}^{-1}\left[\begin{array}{c}x_{2} \\ y_{2} \\ 1\end{array}\right]$

Step 2: Convert rays in camera 2's coordinates to rays in camera 1's coordinates.
$\left[\begin{array}{c}X_{1} \\ Y_{1} \\ Z_{1}\end{array}\right]=\mathbf{R}_{2}^{T} \mathbf{K}_{2}^{-1}\left[\begin{array}{c}x_{2} \\ y_{2} \\ 1\end{array}\right]$

$$
\left[\begin{array}{c}
x_{1} \\
y_{1} \\
1
\end{array}\right] \underset{\text { 3×3 homography }}{\underset{\uparrow}{\mathbf{K}_{1} \mathbf{R}_{2}^{T} \mathbf{K}_{2}^{-1}}\left[\begin{array}{c}
x_{2} \\
y_{2} \\
1
\end{array}\right]}
$$

Can we use homography to create a 360 panorama?

Panoramas

- What if you want a 360° field of view?

Spherical projection

- Map 3D point (X, Y, Z) onto sphere

$$
(\widehat{x}, \widehat{y}, \widehat{z})=\frac{1}{\sqrt{X^{2}+Y^{2}+Z^{2}}}(X, Y, Z)
$$

- Convert to spherical coordinates $(\sin \theta \cos \phi, \sin \phi, \cos \theta \cos \phi)=(\hat{x}, \hat{y}, \hat{z})$
- Convert to spherical image coordinates

$$
(\tilde{x}, \tilde{y})=(s \theta, s \phi)+\left(\tilde{x}_{c}, \tilde{y}_{c}\right)
$$

- s defines size of the final image
" often convenient to set s = camera focal length

Unwrapping a sphere

Spherical reprojection

input

$\mathrm{f}=\mathbf{2 0 0}$ (pixels)

$\mathrm{f}=\mathbf{4 0 0}$

$\mathrm{f}=\mathbf{8 0 0}$

- Map image to spherical coordinates
- need to know the focal length

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?

Aligning spherical images

- Suppose we rotate the camera by θ about the vertical axis
- How does this change the spherical image?
- Translation by θ
- This means that we can align spherical images by translation

Assembling the panorama

- Stitch pairs together, blend, then crop

Problem: Drift

- Error accumulation
- small errors accumulate over time

Problem: Drift

- Solution
- add another copy of first image at the end
- this gives a constraint: $y_{n}=y_{1}$
- there are a bunch of ways to solve this problem
- add displacement of $\left(y_{1}-y_{n}\right) /(n-1)$ to each image after the first
- apply an affine warp: $y^{\prime}=y+a x$ [you will implement this for P3]
- run a big optimization problem, incorporating this constraint
- best solution, but more complicated
- known as "bundle adjustment"

Project 3

- Take pictures on a tripod (or handheld)
- Warp to spherical coordinates (optional if using homographies to align images)
- Extract features
- Align neighboring pairs using RANSAC
- Write out list of neighboring translations
- Correct for drift
- Read in warped images and blend them
- Crop the result and import into a viewer
- Roughly based on Autostitch
- By Matthew Brown and David Lowe
- http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.htm

Spherical panoramas

Microsoft Lobby: http://www.acm.org/pubs/citations/proceedings/graph/258734/p251-szeliski

Different projections are possible

Cube-map

Blending

- We've aligned the images - now what?

Blending

- Want to seamlessly blend them together

Image Blending

Feathering

Effect of window size

Effect of window size

Good window size

"Optimal" window: smooth but not ghosted

- Doesn't always work...

Pyramid blending

(d)

(h)

(1)

Create a Laplacian pyramid, blend each level

- Burt, P. J. and Adelson, E. H., A multiresolution spline with applications to image mosaics, ACM Transactions on Graphics, 42(4), October 1983, 217-236.

The Laplacian Pyramid

$$
L_{i}=G_{i}-\operatorname{expand}\left(G_{i+1}\right)
$$

Gaussian Pyramid $\quad G_{i}=L_{i}+\operatorname{expand}\left(G_{i+1}\right) \quad$ Laplacian Pyramid

Alpha Blending

Optional: see Blinn (CGA, 1994) for details:
http://ieeexplore.ieee.org/iel1/38/7531/00310740.pdf?isNumb er=7531\&prod=JNL\&arnumber=310740\&arSt=83\&ared=87\&a $\underline{\text { rAuthor }=\text { Blinn \% 2C+J.F. }}$

Encoding blend weights: $\mathrm{I}(\mathrm{x}, \mathrm{y})=(\alpha \mathrm{R}, \alpha \mathrm{G}, \alpha \mathrm{B}, \alpha)$
color at $\mathrm{p}=\frac{\left(\alpha_{1} R_{1}, \alpha_{1} G_{1}, \alpha_{1} B_{1}\right)+\left(\alpha_{2} R_{2}, \alpha_{2} G_{2}, \alpha_{2} B_{2}\right)+\left(\alpha_{3} R_{3}, \alpha_{3} G_{3}, \alpha_{3} B_{3}\right)}{\alpha_{1}+\alpha_{2}+\alpha_{3}}$
Implement this in two steps:

1. accumulate: add up the (α premultiplied) $\mathrm{RGB} \alpha$ values at each pixel
2. normalize: divide each pixel's accumulated RGB by its α value

Q: what if $\alpha=0$?

Poisson Image Editing

- For more info: Perez et al, SIGGRAPH 2003
- http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

Some panorama examples

"Before SIGGRAPH Deadline" Photo credit: Doug Zongker

Some panorama examples

- Every image on Google Streetview

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski.

Eliminating ghosting and exposure artifacts in image mosaics.
In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Magic: ghost removal

M. Uyttendaele, A. Eden, and R. Szeliski.

Eliminating ghosting and exposure artifacts in image mosaics.
In Proceedings of the Interational Conference on Computer Vision and Pattern Recognition, volume 2, pages 509--516, Kauai, Hawaii, December 2001.

Other types of mosaics

- Can mosaic onto any surface if you know the geometry
- See NASA's Visible Earth project for some stunning earth mosaics
- http://earthobservatory.nasa.gov/Newsroom/BlueMarble/
- Click for images...

Questions?

Alternative to feathering

- Cut and fuse

Interactive Digital Photomontage

Aseem Agarwala, Mira Dontcheva Maneesh Agrawala, Steven Drucker, Alex Colburn Brian Curless, David Salesin, Michael Cohen

