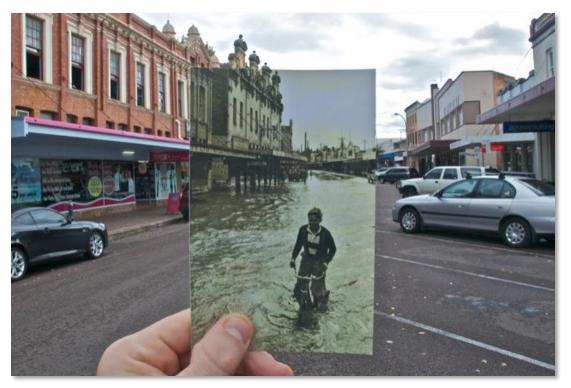
CS5760: Computer Vision Noah Snavely

Lecture 9: RANSAC



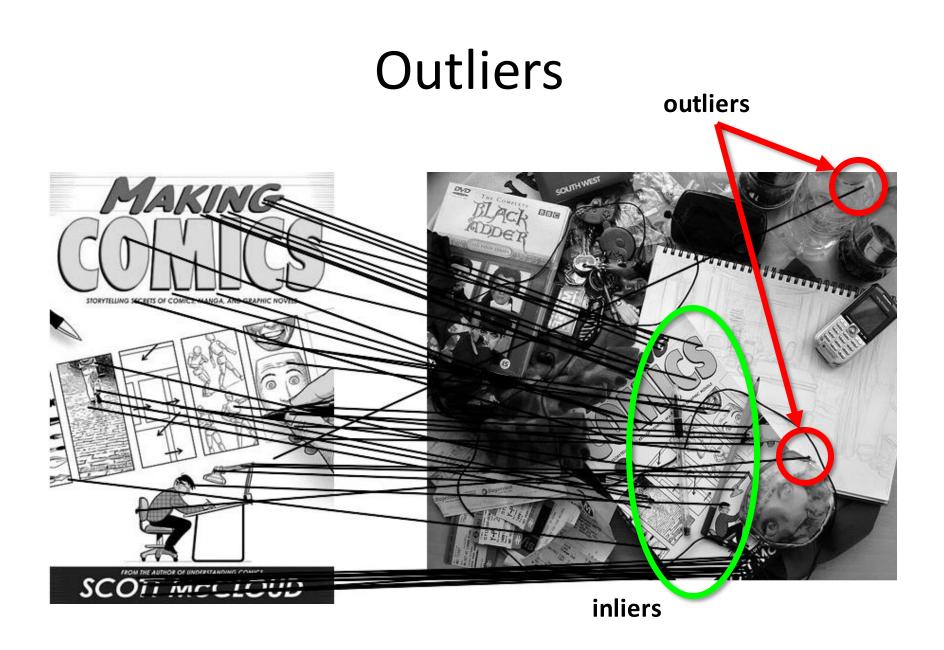
http://www.wired.com/gadgetlab/2010/07/camera-software-lets-you-see-into-the-past/

Reading

• Szeliski: Chapter 6.1

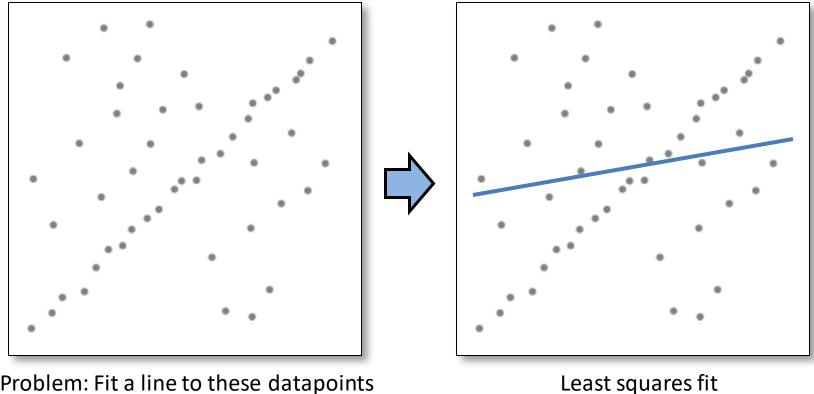
Announcements

- Project 2 code due today at 11:59pm
 Report due Friday at 11:59pm
- Midterm
 - Plan to release in class next Wednesday, 3/13
 - Due at the beginning of class, Monday, 3/18
- Kristen Grauman talk
 - Friday at noon



Robustness

• Let's consider a simpler example... linear regression



Problem: Fit a line to these datapoints

• How can we fix this?

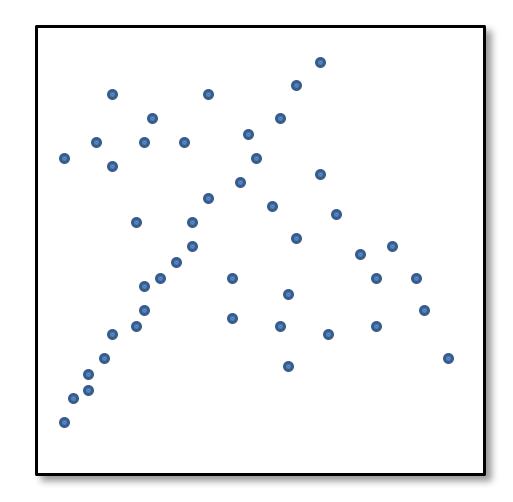
We need a better cost function...

• Suggestions?

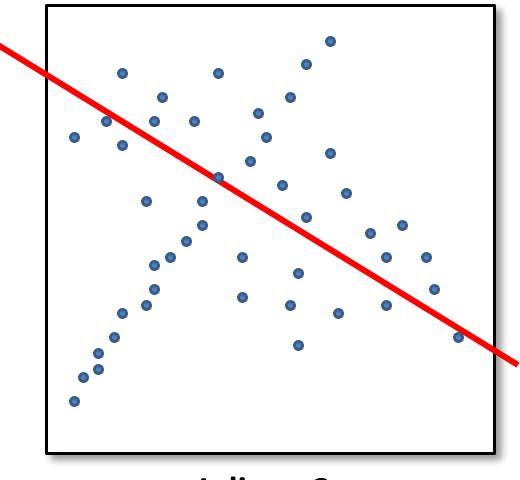
Idea

- Given a hypothesized line
- Count the number of points that "agree" with the line
 - "Agree" = within a small distance of the line
 - I.e., the **inliers** to that line
- For all possible lines, select the one with the largest number of inliers

Counting inliers

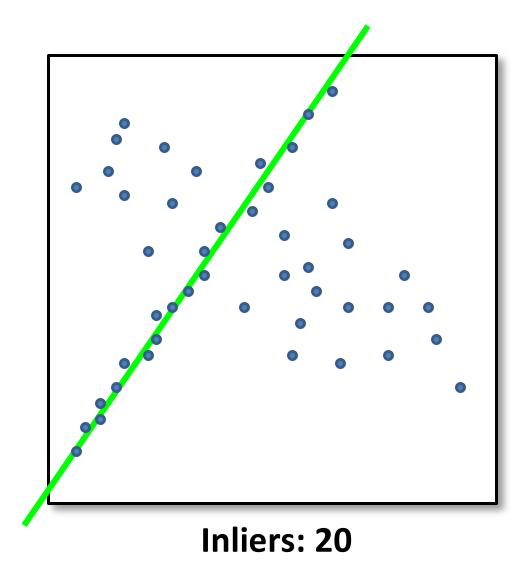


Counting inliers



Inliers: 3

Counting inliers

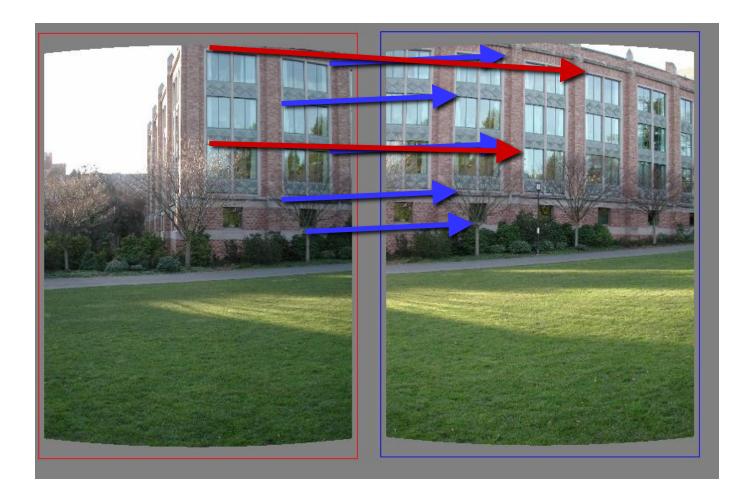


How do we find the best line?

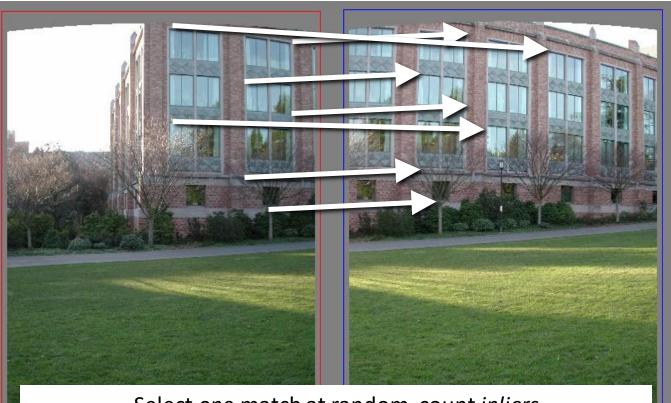
 Unlike least-squares, no simple closed-form solution

- Hypothesize-and-test
 - Try out many lines, keep the best one
 - Which lines?

Translations

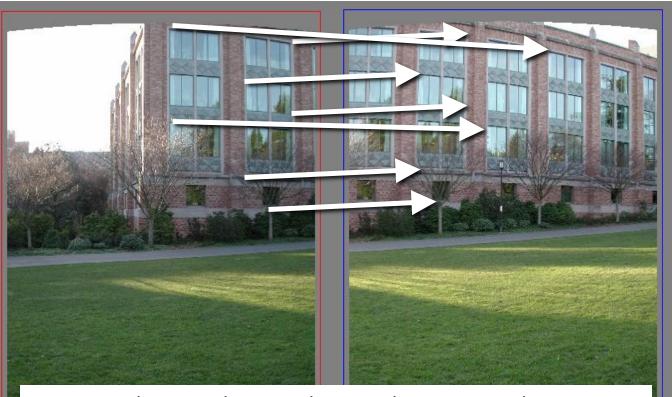


<u>RAndom SAmple Consensus</u>



Select one match at random, count inliers

<u>RAndom SAmple Consensus</u>



Select another match at random, count inliers

<u>RAndom SAmple Consensus</u>

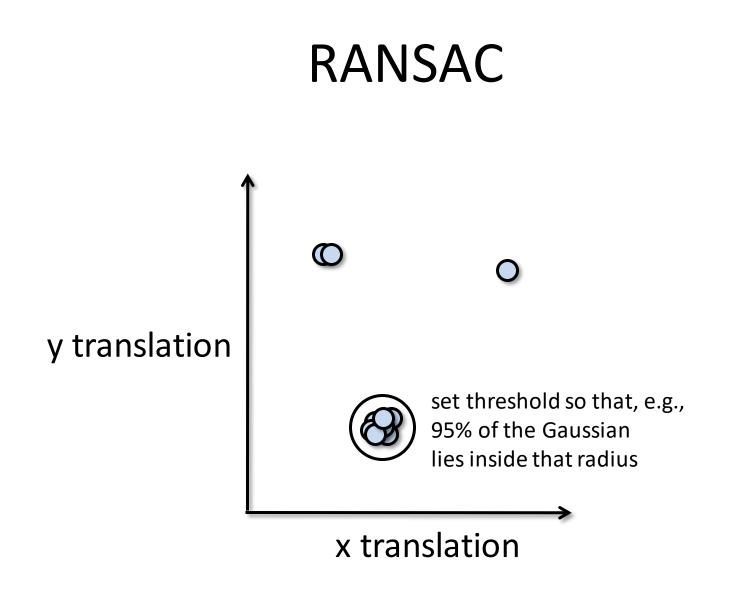


Output the translation with the highest number of inliers

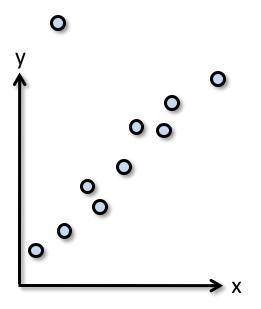
- Idea:
 - All the inliers will agree with each other on the translation vector; the (hopefully small) number of outliers will (hopefully) disagree with each other
 - RANSAC only has guarantees if there are < 50% outliers
 - "All good matches are alike; every bad match is bad in its own way."

– Tolstoy via Alyosha Efros

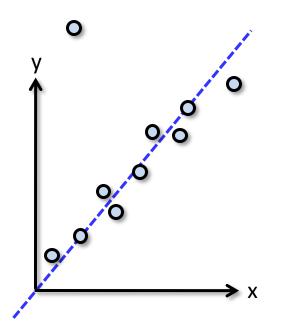
- Inlier threshold related to the amount of noise we expect in inliers
 - Often model noise as Gaussian with some standard deviation (e.g., 3 pixels)
- Number of rounds related to the percentage of outliers we expect, and the probability of success we'd like to guarantee
 - Suppose there are 20% outliers, and we want to find the correct answer with 99% probability
 - How many rounds do we need?



- Back to linear regression
- How do we generate a hypothesis?



- Back to linear regression
- How do we generate a hypothesis?



- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat *N* times
 - 5. Choose the model that has the largest set of inliers

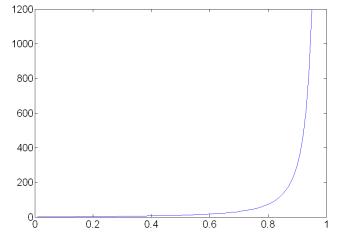
How many rounds?

- If we have to choose *s* samples each time
 - with an outlier ratio e
 - and we want the right answer with probability p

$$N \geq \frac{\log(1-p)}{\log(1-(1-e)^s)}$$

	proportion of outliers <i>e</i>							
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

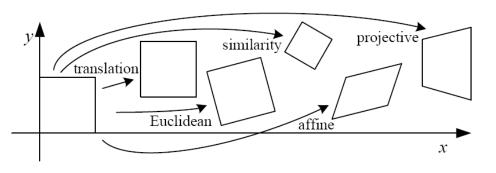
p = 0.99



Source: M. Pollefeys

How big is s?

- For alignment, depends on the motion model
 - Here, each sample is a correspondence (pair of matching points)



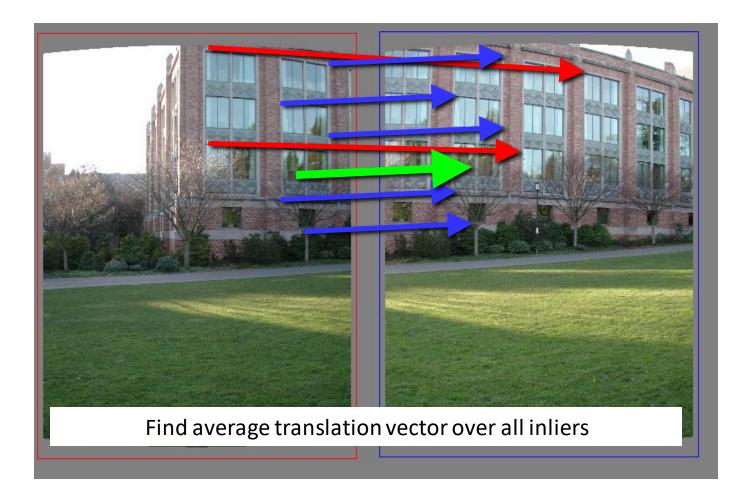
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$igg[egin{array}{c c c c c c c c c c c c c c c c c c c $	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} m{R} & t \end{array} ight]_{2 imes 3}$	3	lengths $+\cdots$	\bigcirc
similarity	$\left[\left. s oldsymbol{R} \right oldsymbol{t} ight]_{2 imes 3}$	4	angles $+ \cdots$	\bigcirc
affine	$\left[egin{array}{c} m{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

RANSAC pros and cons

• Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
 - Parameters to tune
 - Sometimes too many iterations are required
 - Can fail for extremely low inlier ratios
 - We can often do better than brute-force sampling

Final step: least squares fit



- An example of a "voting"-based fitting scheme
- Each hypothesis gets voted on by each data point, best hypothesis wins

- There are many other types of voting schemes
 - E.g., Hough transforms...

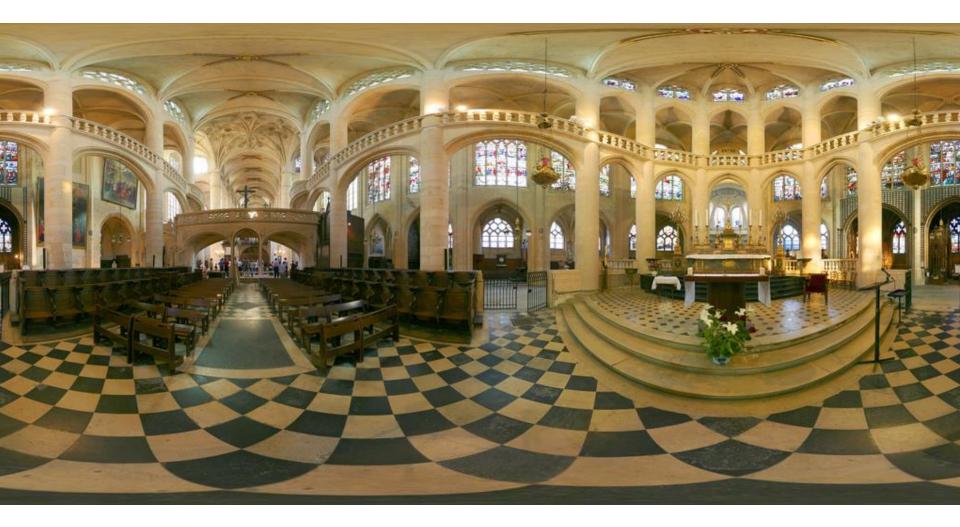
Panoramas

- Now we know how to create panoramas!
- Given two images:
 - Step 1: Detect features
 - Step 2: Match features
 - Step 3: Compute a homography using RANSAC
 - Step 4: Combine the images together (somehow)
- What if we have more than two images?

Can we use homographies to create a 360 panorama?

 In order to figure this out, we need to learn what a camera is

360 panorama



Questions?