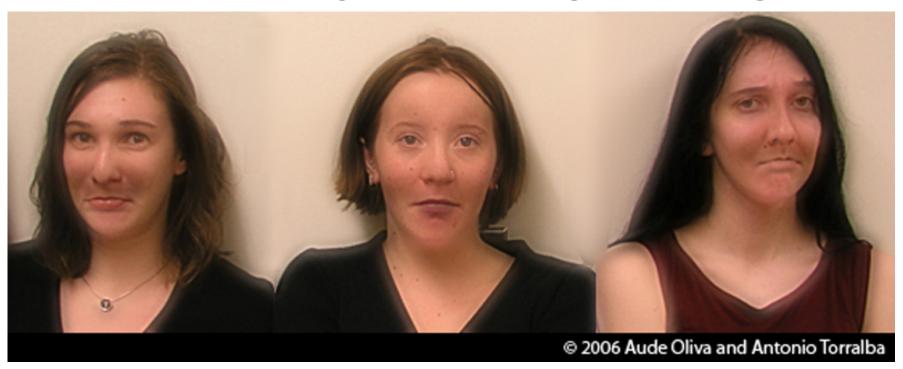
Lecture 1: Images and image filtering



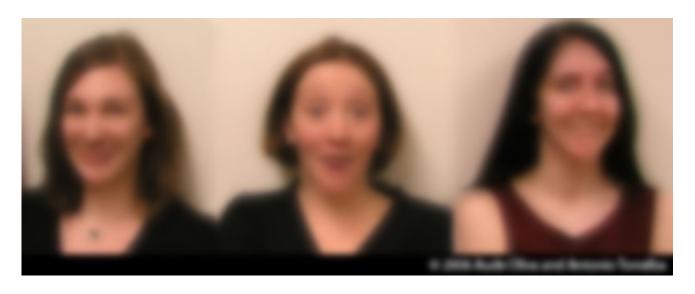
Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Lecture 1: Images and image filtering

Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Lecture 1: Images and image filtering

Lecture 1: Images and image filtering



Hybrid Images, Oliva et al., http://cvcl.mit.edu/hybridimage.htm

Reading

• Szeliski, Chapter 3.1-3.2

Announcements

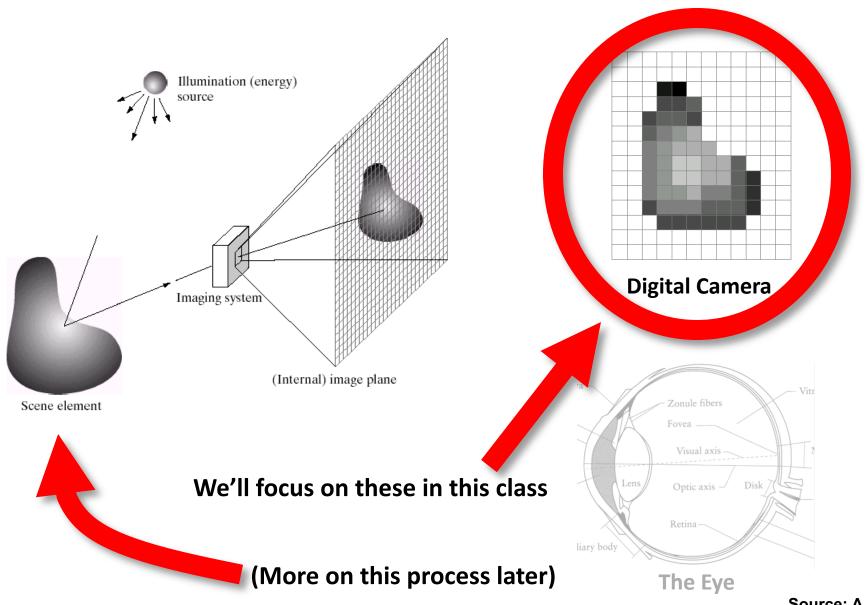
- You should have been invited to Piazza
- We will add students to CMS this week

Announcements

- Project 1 (Hybrid Images) will be released tomorrow or Wednesday
 - This project will be done solo
 - Other projects planned to be done in groups of 2

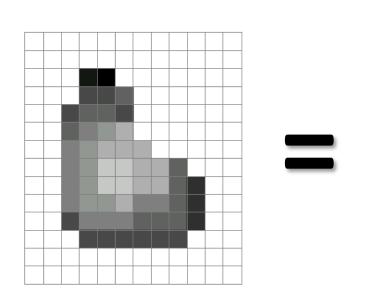
Announcements

- We provide a walkthrough for setting up a python environment for the project
- As a backup, we also have a course virtual machine (VM) for you to run the assignments
- The assignment also works on lab machines



Source: A. Efros

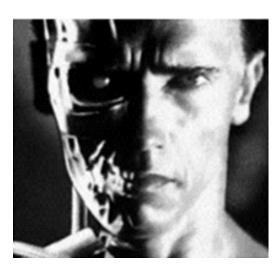
A grid (matrix) of intensity values



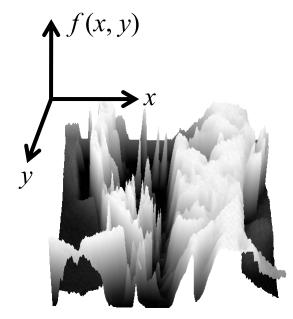
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	20	0	255	255	255	255	255	255	255
255	255	255	75	75	75	255	255	255	255	255	255
255	255	75	95	95	75	255	255	255	255	255	255
255	255	96	127	145	175	255	255	255	255	255	255
255	255	127	145	175	175	175	255	255	255	255	255
255	255	127	145	200	200	175	175	95	255	255	255
255	255	127	145	200	200	175	175	95	47	255	255
255	255	127	145	145	175	127	127	95	47	255	255
255	255	74	127	127	127	95	95	95	47	255	255
255	255	255	74	74	74	74	74	74	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255	255	255

(common to use one byte per value: 0 = black, 255 = white)

- We can think of a (grayscale) image as a function, f, from R² to R:
 - -f(x,y) gives the **intensity** at position (x,y)



snoop



3D view

A digital image is a discrete (sampled, quantized)
version of this function

Image transformations

 As with any function, we can apply operators to an image

 Today we'll talk about a special kind of operator, convolution (linear filtering)

Filters

- Filtering
 - Form a new image whose pixels are a combination of the original pixels
- Why?
 - To get useful information from images
 - E.g., extract edges or contours (to understand shape)
 - To enhance the image
 - E.g., to remove noise
 - E.g., to sharpen and "enhance image" a la CSI
 - A key operator in Convolutional Neural Networks

Canonical Image Processing problems

- Image Restoration
 - denoising
 - deblurring
- Image Compression
 - JPEG, JPEG2000, MPEG..
- Computing Field Properties
 - optical flow
 - disparity
- Locating Structural Features
 - corners
 - edges

Question: Noise reduction

 Given a camera and a still scene, how can you reduce noise?

Take lots of images and average them!

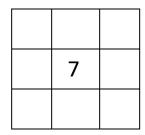
What's the next best thing?

Image filtering

 Modify the pixels in an image based on some function of a local neighborhood of each pixel

10	5	3		
4	5	1		
1	1	7		

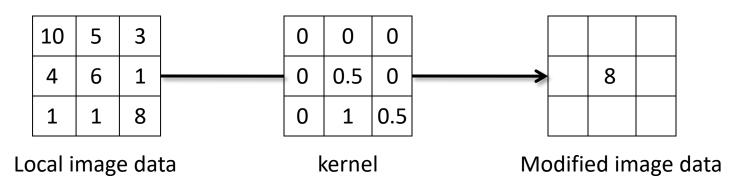
ocal image data



Modified image data

Linear filtering

- One simple version of filtering: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination (a weighted sum) of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Source: L. Zhang

Cross-correlation

Let F be the image, H be the kernel (of size $2k+1 \times 2k+1$), and G be the output image

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

This is called a **cross-correlation** operation:

$$G = H \otimes F$$

 Can think of as a "dot product" between local neighborhood and kernel for each pixel

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

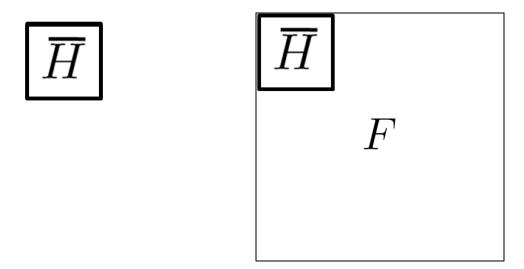
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Convolution



Mean filtering

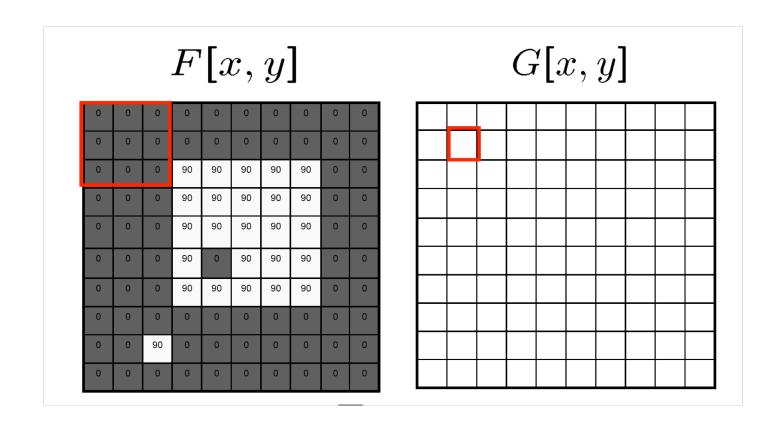
	*
H	

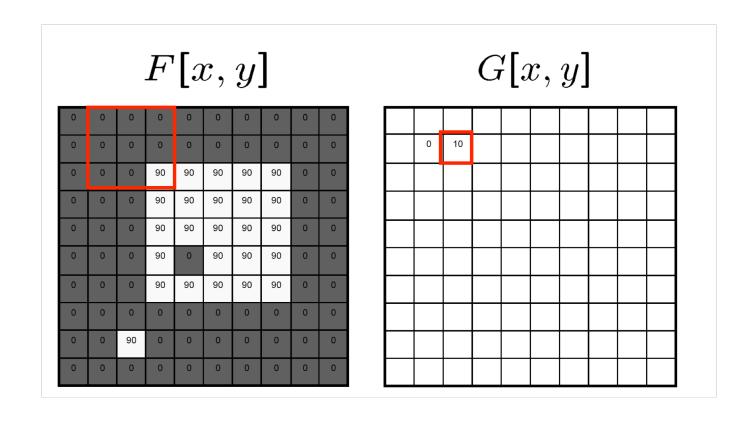
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

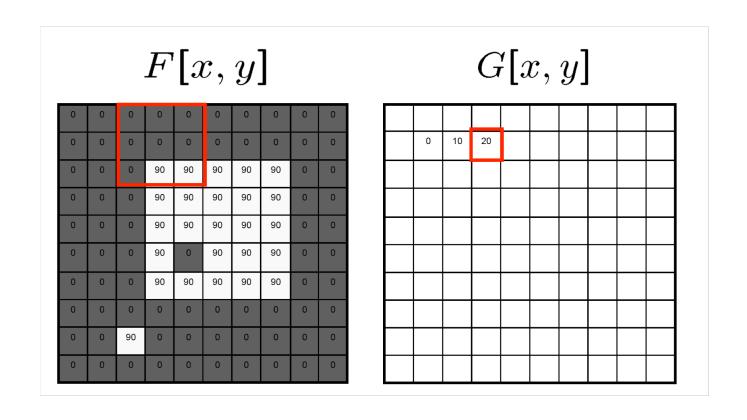
0	10	20	30	30	30	20	10	
0	20	40	60	60	60	40	20	
0	30	60	90	90	90	60	30	
0	30	50	80	80	90	60	30	
0	30	50	80	80	90	60	30	
0	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0	0	0	

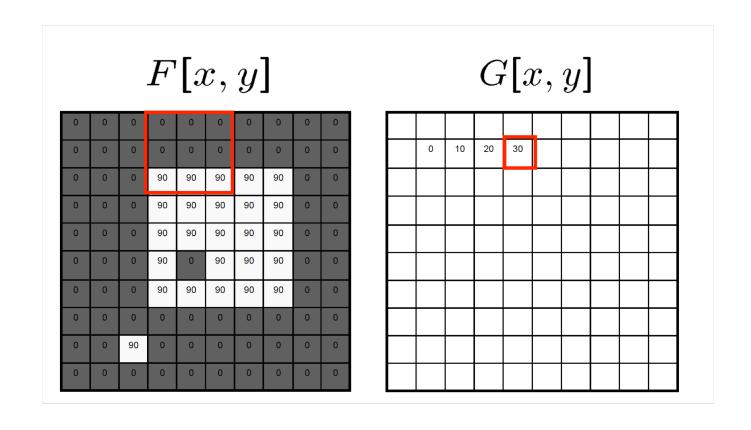
F

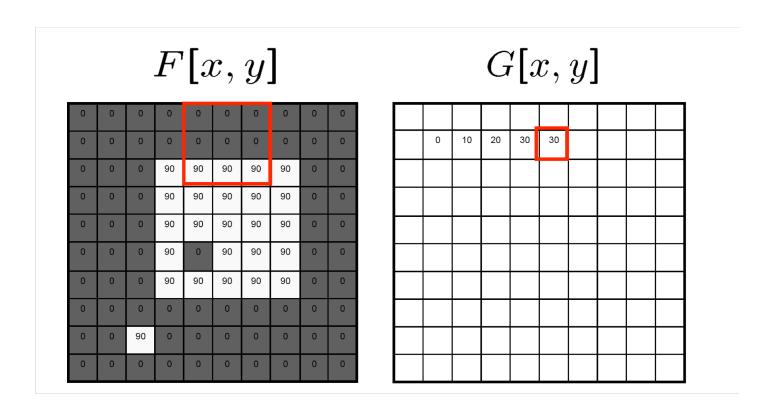
G

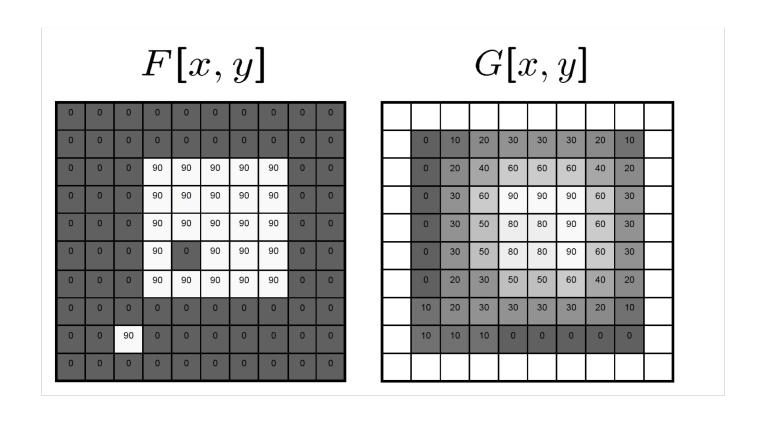


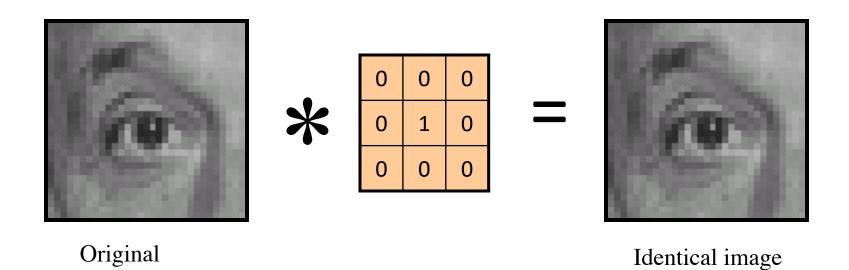


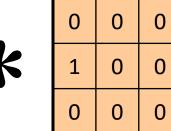


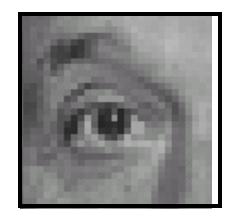




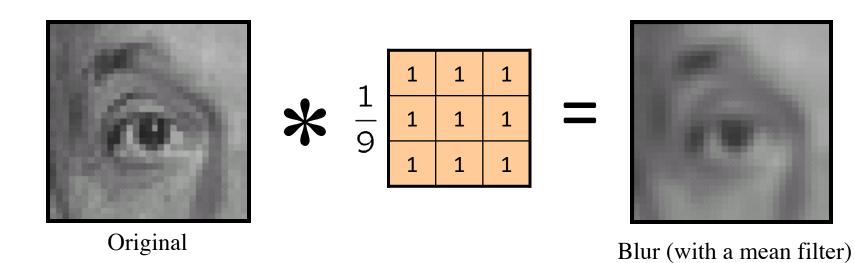


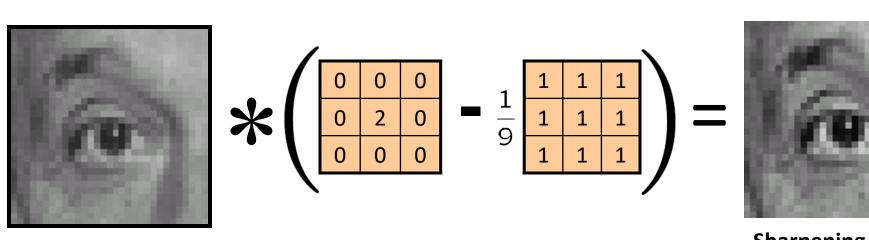






Shifted left By 1 pixel

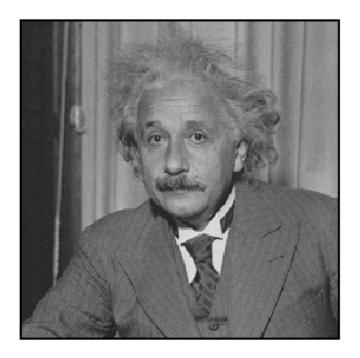


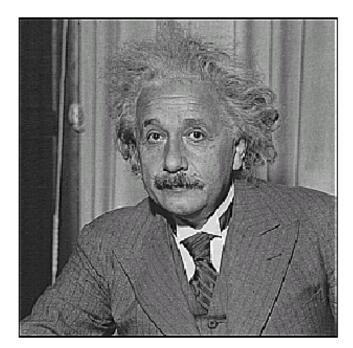


Original

Sharpening filter (accentuates edges)

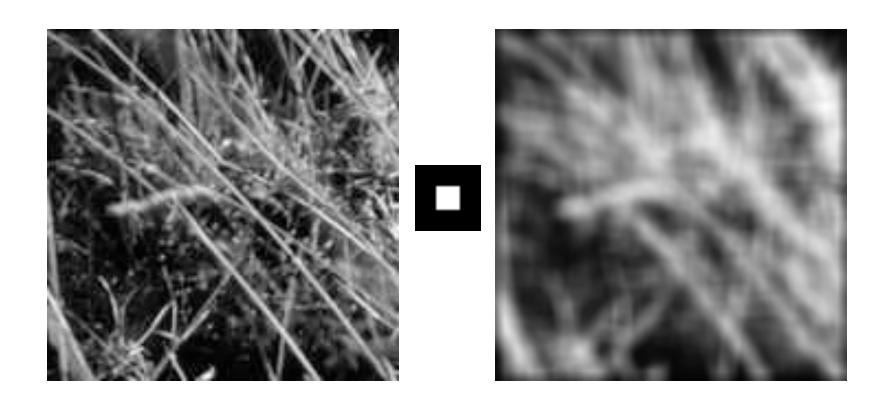
Sharpening





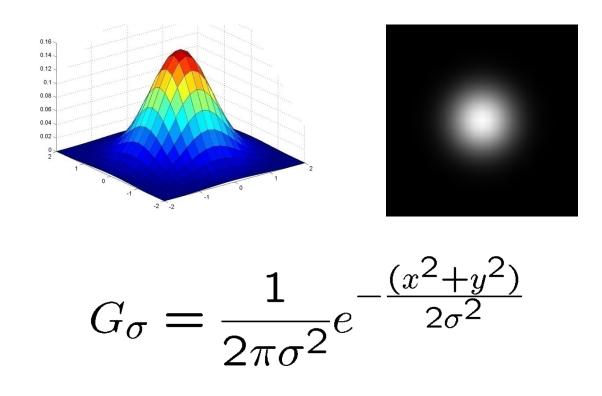
before after

Smoothing with box filter revisited

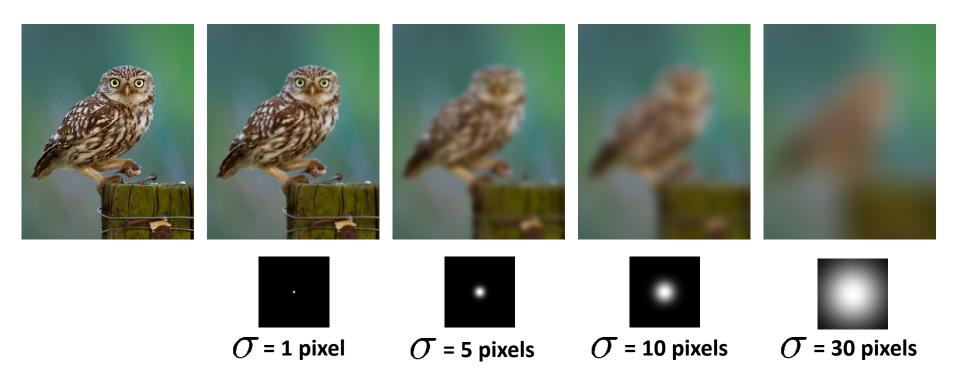


Source: D. Forsyth

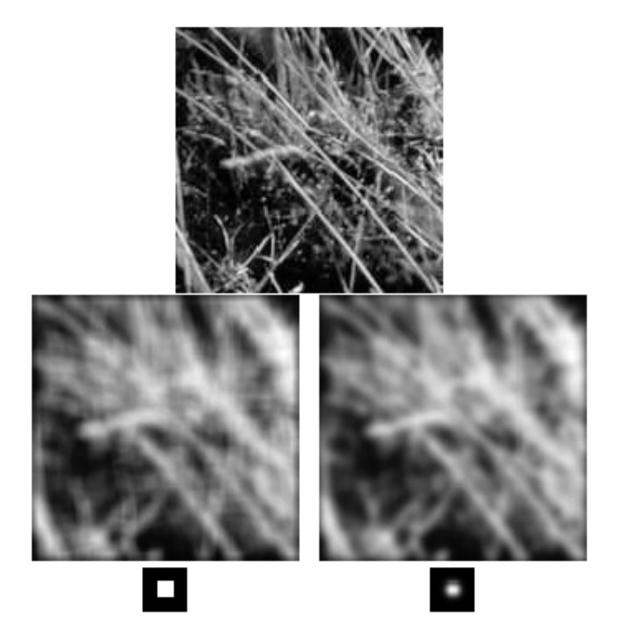
Gaussian Kernel



Gaussian filters

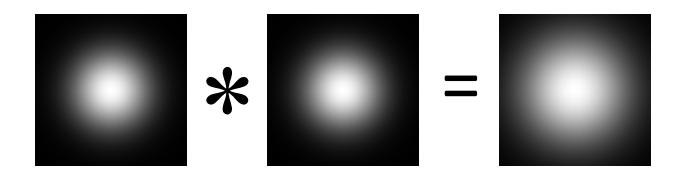


Mean vs. Gaussian filtering



Gaussian filter

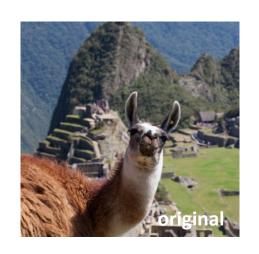
- Removes "high-frequency" components from the image (low-pass filter)
- Convolution with self is another Gaussian



– Convolving twice with Gaussian kernel of width σ = convolving once with kernel of width $\sigma\sqrt{2}$

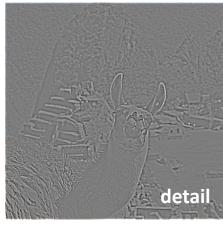
Sharpening revisited

What does blurring take away?



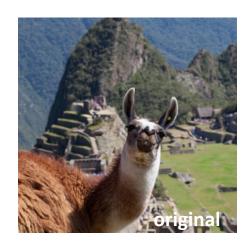
smoothed (5x5)

=

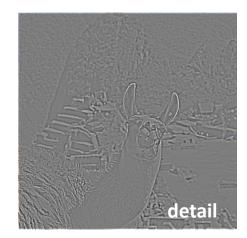


Let's add it back:

(This "detail extraction" operation is also called a *high-pass filter*)



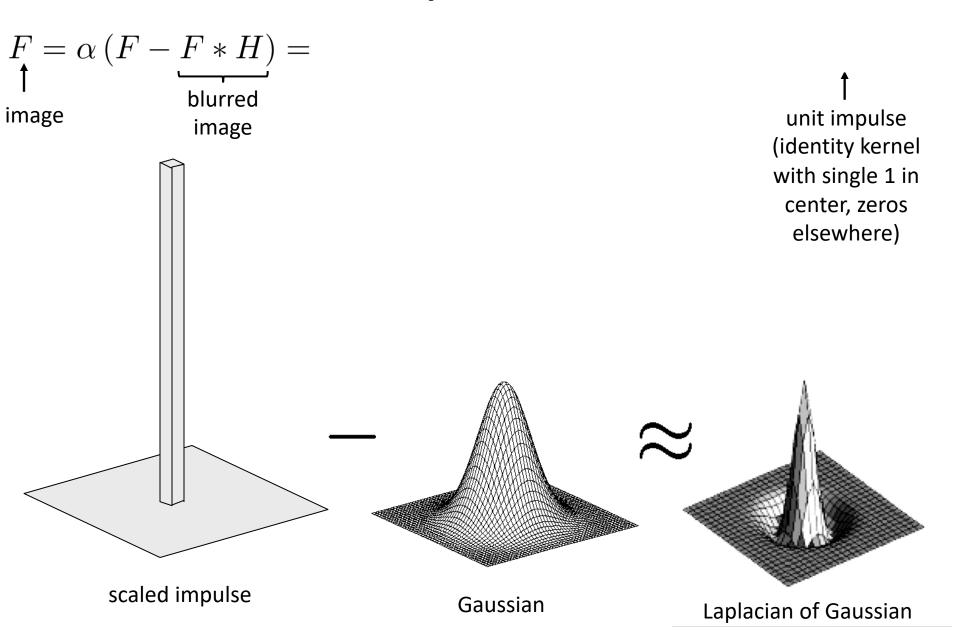
+ α



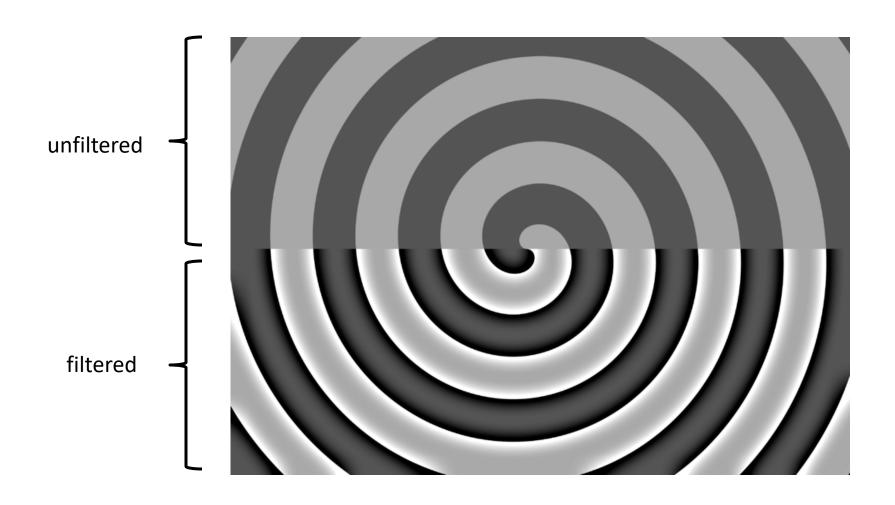
=

Photo credit: https://www.flickr.com/photos/geezaweezer/16089096376/

Sharpen filter



Sharpen filter



"Optical" Convolution

Camera shake

Source: Fergus, et al. "Removing Camera Shake from a Single Photograph", SIGGRAPH 2006

Bokeh: Blur in out-of-focus regions of an image.

Source: http://lullaby.homepage.dk/diy-camera/bokeh.html

Filters: Thresholding



$$g(m,n) = \begin{cases} 255, & f(m,n) > A \\ 0 & otherwise \end{cases}$$

Linear filters

• Is thresholding a linear filter?

Questions?