CS5670: Compute Noah Snavely

Course review

Class	Date	Topic/notes	Readings	Assignments, etc.
0	Jan 24	Introduction and Overview [ppt pdf]	Szeliski 1	
1	29	Image filtering [ppt]pdf]	Szeliski 3.1	
2	31	Image filtering 2 [ppt pdf]	Szeliski 3.2	
3	31	Image Resampling[ppt]pdf]	Szeliski 3.4, 2.3.1	
4	Feb 4	Features Detection [ppt pdf]	Szeliski 4.1	
5	4	Features Invariance [ppt pdf]	Szeliski 4.1	
6	7	Descriptors [ppt]pdf]	Szeliski 4.1	
7	12	Image Transformation [ppt pdf]	Szeliski 3.6	
8	14	Alignment [ppt]pdf]	Szeliski 6.1	PA1 due
9	14	RANSAC [ppt pdf]	Szeliski 6.1	
10	21	Cameras [ppt pdf]	Szeliski 2.1.3-2.1.6	
11	28	Panoramas [ppt pdf]	Szeliski 9	

Topics – image processing

- Filtering
- Edge detection
- Image resampling / aliasing / interpolation
- Feature detection
 - Harris corners
 - SIFT
 - Invariant features
- Feature matching

Topics – 2D geometry

- Image transformations
- Image alignment / least squares
- RANSAC
- Panoramas

Topics – 3D geometry

- Cameras
- Perspective projection
- Single-view modeling (points, lines, vanishing points, etc.)
- Stereo
- Two-view geometry (F-matrices, E-matrices)
- Structure from motion
- Multi-view stereo

Topics – geometry, continued

- Light, color, perception
- Lambertian reflectance
- Photometric stereo

Topics – Recognition

- Different kinds of recognition problems
 - Classification, detection, segmentation, etc.
- Machine learning basics
 - Nearest neighbors
 - Linear classifiers
 - Hyperparameters
 - Training, test, validation datasets
- Loss functions for classification

Topics – Recognition, continued

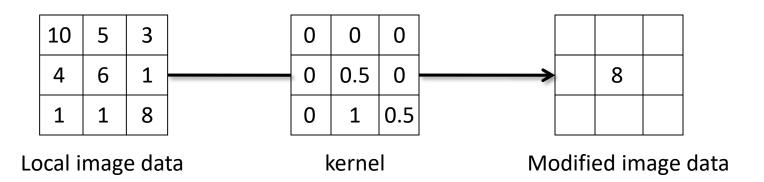
- Regularization
- Neural networks
- Stochastic gradient descent
- Backpropagation
- Convolutional neural networks
 - Architectural components: convolutional layers, pooling layers, fully connected layers
- Generative methods

Questions?

Image Processing

Linear filtering

- One simple function on images: linear filtering (cross-correlation, convolution)
 - Replace each pixel by a linear combination of its neighbors
- The prescription for the linear combination is called the "kernel" (or "mask", "filter")



Source: L. Zhang

Convolution

 Same as cross-correlation, except that the kernel is "flipped" (horizontally and vertically)

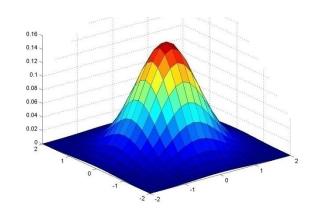
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

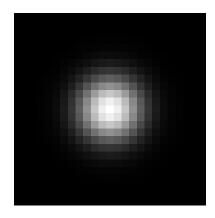
This is called a **convolution** operation:

$$G = H * F$$

Convolution is commutative and associative

Gaussian Kernel





$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2 + y^2)}{2\sigma^2}}$$

Image gradient

• The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

The gradient points in the direction of most rapid increase in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The *edge strength* is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Source: Steve Seitz

Finding edges

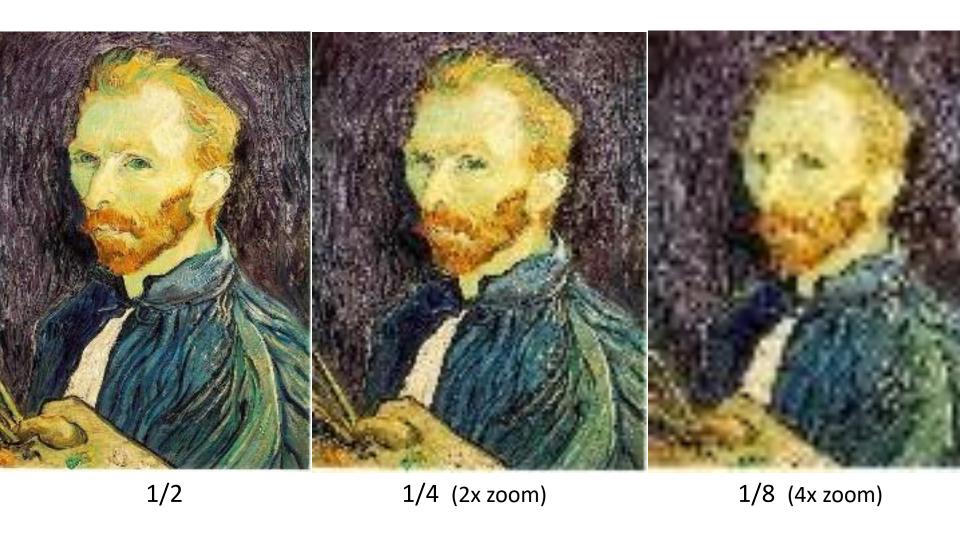
gradient magnitude

Finding edges

thinning

(non-maximum suppression)

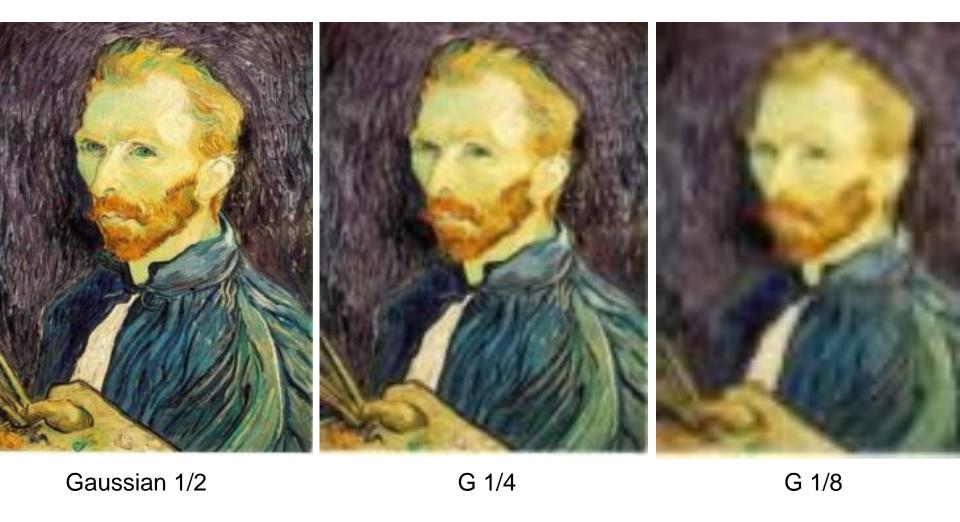
Image sub-sampling



Why does this look so crufty?

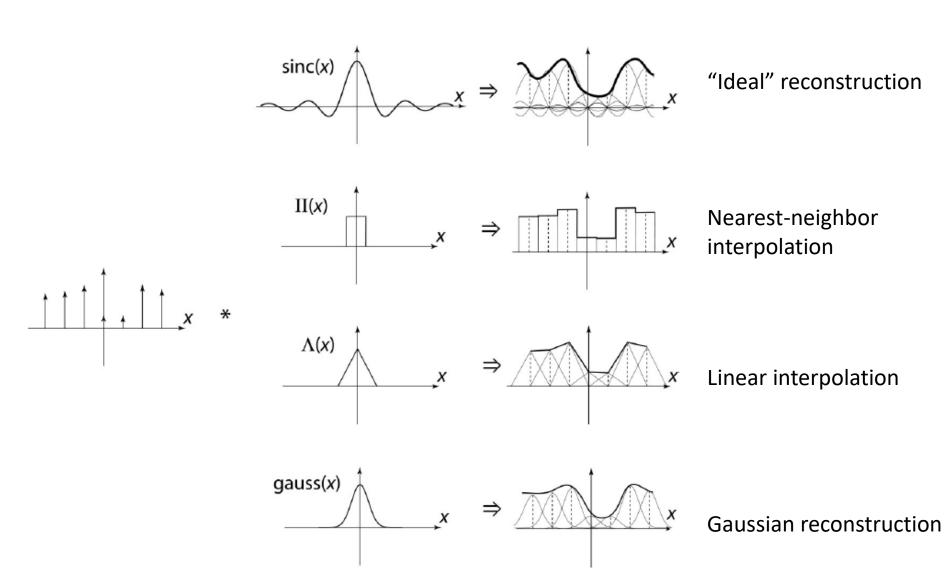
Source: S. Seitz

Subsampling with Gaussian pre-filtering



• Solution: filter the image, then subsample

Image interpolation



Source: B. Curless

Image interpolation

Original image: 🌆

x 10

Nearest-neighbor interpolation

Bilinear interpolation

Bicubic interpolation

The second moment matrix

The surface E(u,v) is locally approximated by a quadratic form.

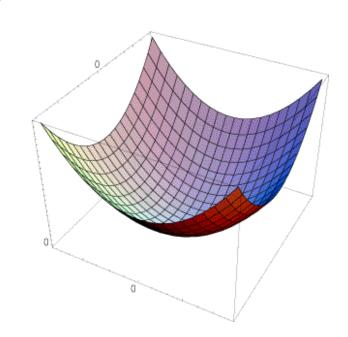
$$E(u,v) \approx Au^2 + 2Buv + Cv^2$$

$$\approx \left[\begin{array}{ccc} u & v \end{array}\right] \left[\begin{array}{ccc} A & B \\ B & C \end{array}\right] \left[\begin{array}{ccc} u \\ v \end{array}\right]$$

$$A = \sum_{(x,y)\in W} I_x^2$$

$$B = \sum_{(x,y)\in W} I_x I_y$$

$$C = \sum_{(x,y)\in W} I_y^2$$



The Harris operator

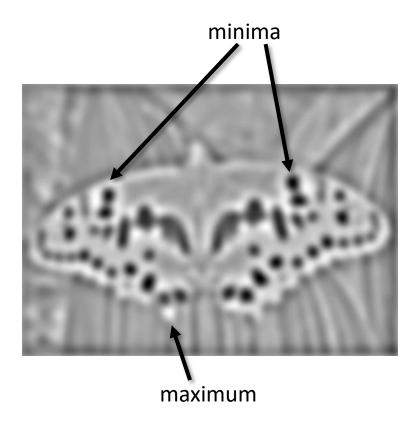
 λ_{min} is a variant of the "Harris operator" for feature detection

$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$
$$= \frac{determinant(H)}{trace(H)}$$

- The *trace* is the sum of the diagonals, i.e., $trace(H) = h_{11} + h_{22}$
- Very similar to λ_{min} but less expensive (no square root)
- Called the "Harris Corner Detector" or "Harris Operator"
- Lots of other detectors, this is one of the most popular

Laplacian of Gaussian

"Blob" detector



Find maxima and minima of LoG operator in space and scale

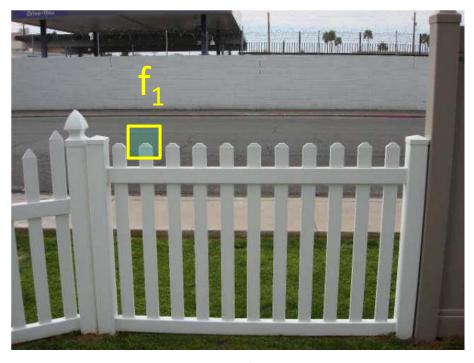
Scale-space blob detector: Example

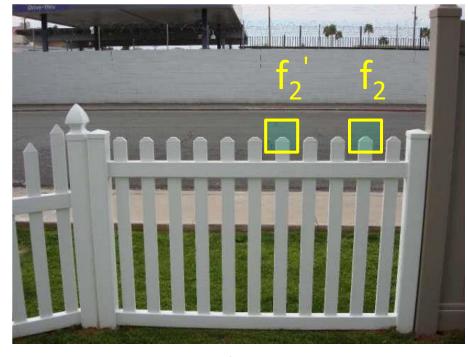
sigma = 11.9912

Feature distance

How to define the difference between two features f_1 , f_2 ?

- Better approach: ratio distance = ||f₁ f₂ || / || f₁ f₂' ||
 - f₂ is best SSD match to f₁ in l₂
 - f₂' is 2nd best SSD match to f₁ in I₂
 - gives large values for ambiguous matches

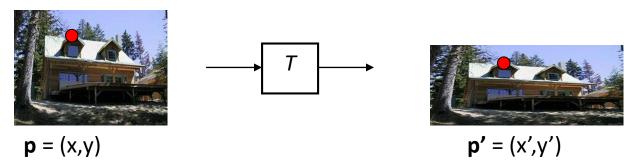




 I_1

2D Geometry

Parametric (global) warping



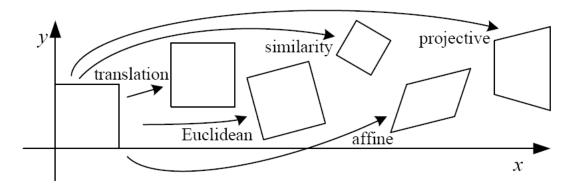
• Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

- What does it mean that T is global?
 - Is the same for any point p
 - can be described by just a few numbers (parameters)
- Let's consider linear xforms (can be represented by a 2D matrix):

$$\mathbf{p}' = \mathbf{T}\mathbf{p} \qquad \left[egin{array}{c} x' \ y' \end{array}
ight] = \mathbf{T} \left[egin{array}{c} x \ y \end{array}
ight]$$

2D image transformations



Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} ig[egin{array}{c} ig[egin{array}{c} ig[egin{array}{c} ig[egin{array}{c} ig]_{2 imes 3} \end{array} \end{bmatrix}$	2	orientation $+\cdots$	
rigid (Euclidean)	$igg[egin{array}{c c} R & t \end{bmatrix}_{2 imes 3}$	3	lengths + · · ·	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2\times 3}$	4	angles $+\cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism + · · ·	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

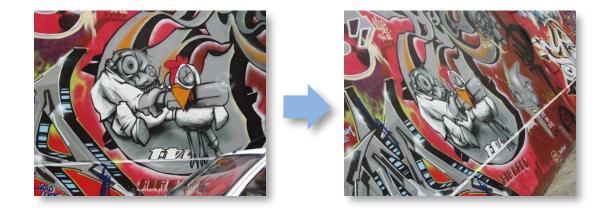
These transformations are a nested set of groups

• Closed under composition and inverse is a member

Projective Transformations aka Homographies aka Planar Perspective Maps

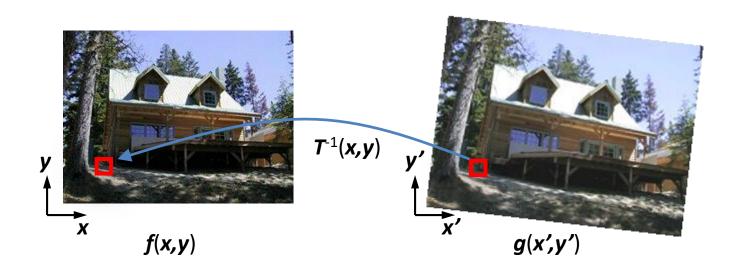
$$\mathbf{H} = \left[egin{array}{cccc} a & b & c \ d & e & f \ g & h & 1 \end{array}
ight]$$

Called a homography (or planar perspective map)



Inverse Warping

- Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x,y)$ in f(x,y)
 - Requires taking the inverse of the transform



Affine transformations

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} ax + by + c \\ dx + ey + f \\ 1 \end{bmatrix}$$

Solving for affine transformations

Matrix form

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ \vdots & & & & & \\ x_n & y_n & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x_n & y_n & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} x'_1 \\ y'_1 \\ x'_2 \\ y'_2 \\ \vdots \\ x'_n \\ y'_n \end{bmatrix}$$

$$\mathbf{A} \qquad \mathbf{t} = \mathbf{b}$$

RANSAC

- General version:
 - 1. Randomly choose *s* samples
 - Typically s = minimum sample size that lets you fit a model
 - 2. Fit a model (e.g., line) to those samples
 - 3. Count the number of inliers that approximately fit the model
 - 4. Repeat N times
 - 5. Choose the model that has the largest set of inliers

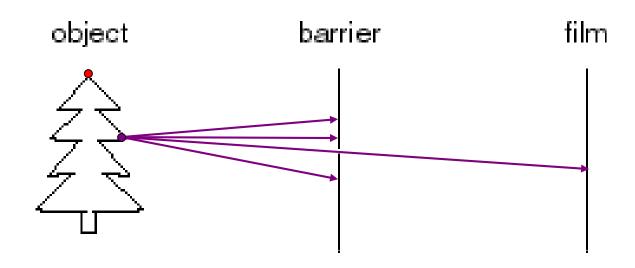
Projecting images onto a common plane



mosaic PP

3D Geometry

Pinhole camera



- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Perspective Projection

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

This is known as **perspective projection**

• The matrix is the **projection matrix**

Projection matrix

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & 0 \\ 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{I}_{3 \times 3} & -\mathbf{c} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

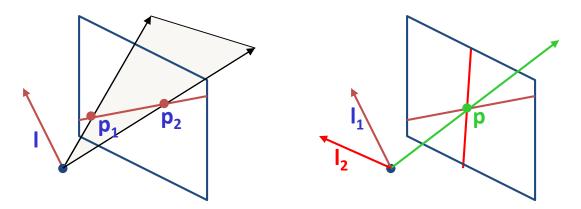
$$\begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

$$(t \text{ in book's notation})$$

$$\boldsymbol{\Pi} = \mathbf{K} \begin{bmatrix} \mathbf{R} & -\mathbf{Rc} \end{bmatrix}$$

Point and line duality

- A line I is a homogeneous 3-vector
- It is \perp to every point (ray) **p** on the line: **I p**=0



What is the line I spanned by rays p_1 and p_2 ?

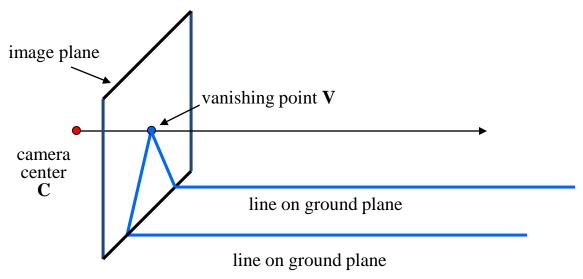
- I is \perp to $\mathbf{p_1}$ and $\mathbf{p_2} \implies \mathbf{I} = \mathbf{p_1} \times \mathbf{p_2}$
- I can be interpreted as a *plane normal*

What is the intersection of two lines l_1 and l_2 ?

• \mathbf{p} is \perp to $\mathbf{l_1}$ and $\mathbf{l_2}$ \Rightarrow $\mathbf{p} = \mathbf{l_1} \times \mathbf{l_2}$

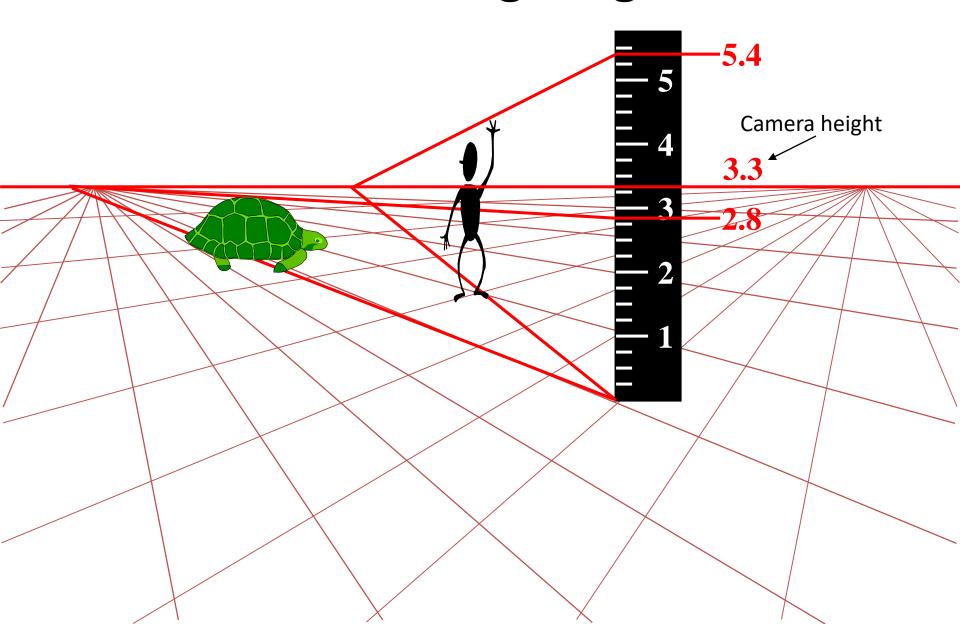
Points and lines are dual in projective space

Vanishing points

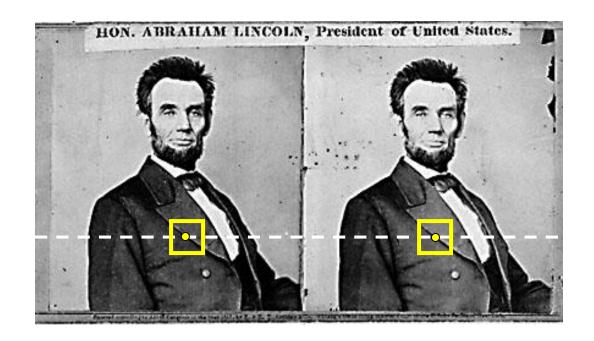


- Properties
 - Any two parallel lines (in 3D) have the same vanishing point v
 - The ray from C through v is parallel to the lines
 - An image may have more than one vanishing point
 - in fact, every image point is a potential vanishing point

Measuring height



Your basic stereo algorithm



For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- pick pixel with minimum match cost

Improvement: match windows

Stereo as energy minimization

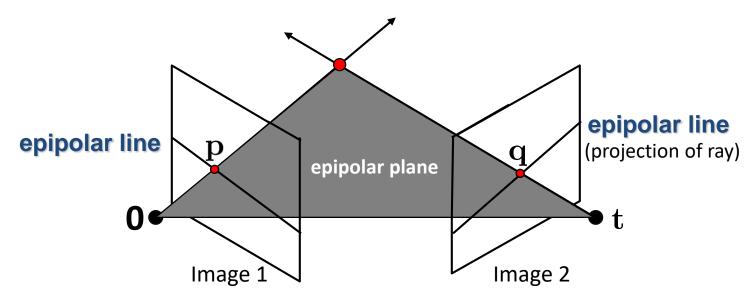
Better objective function

$$E(d) = E_d(d) + \lambda E_s(d)$$
match cost smoothness cost

Want each pixel to find a good match in the other image

Adjacent pixels should (usually) move about the same amount

Fundamental matrix



- This *epipolar geometry* of two views is described by a Very Special 3x3 matrix \mathbf{F} , called the F`undamental matrix
- ${f F}$ maps (homogeneous) *points* in image 1 to *lines* in image 2!
- The epipolar line (in image 2) of point ${f p}$ is: ${f Fp}$
- Epipolar constraint on corresponding points: $\mathbf{q}^T\mathbf{F}\mathbf{p}=0$

Epipolar geometry demo

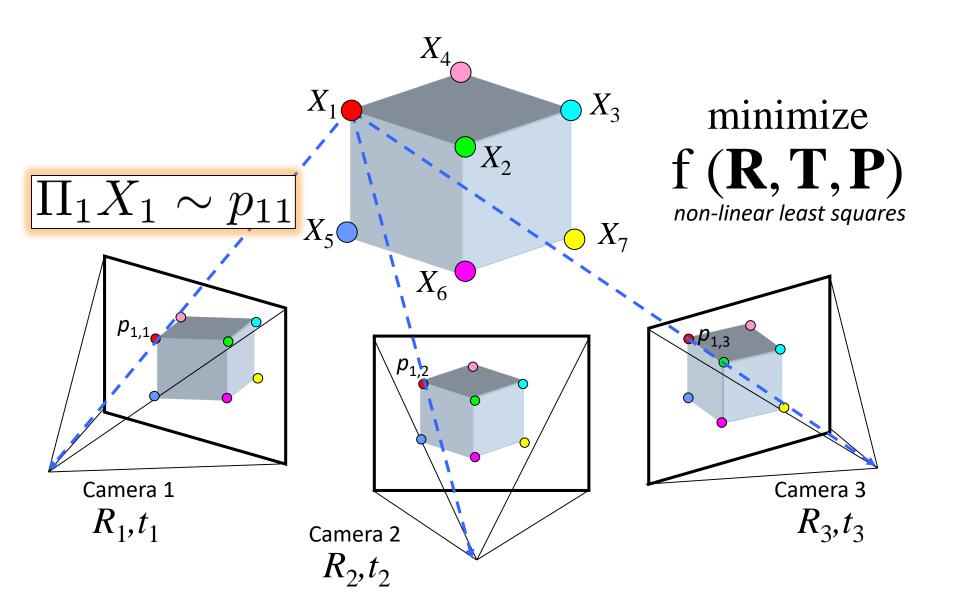


8-point algorithm

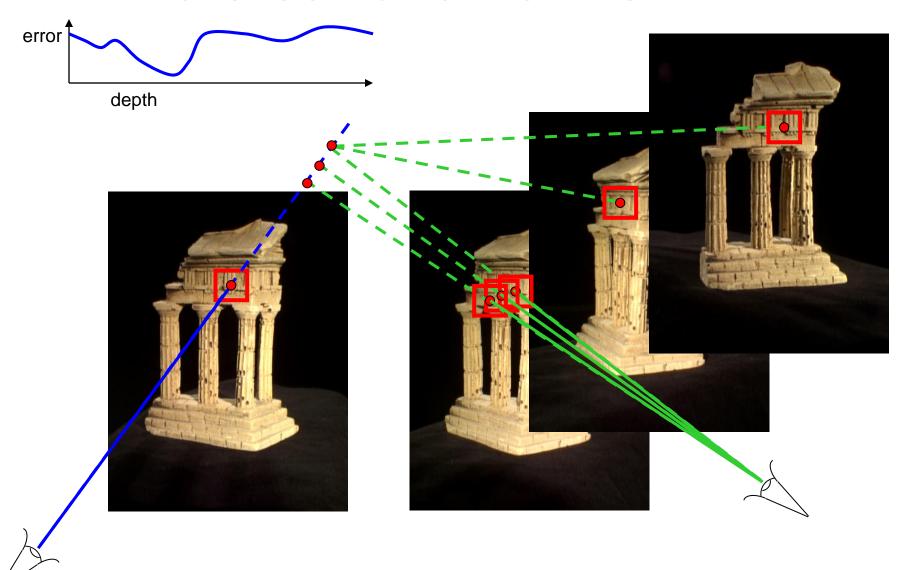
Point algorithm
$$\begin{bmatrix} u_1u_1' & v_1u_1' & u_1' & u_1v_1' & v_1v_1' & v_1' & u_1 & v_1 & 1 \\ u_2u_2' & v_2u_2' & u_2' & u_2v_2' & v_2v_2' & v_2' & u_2 & v_2 & 1 \\ \vdots & \vdots \\ u_nu_n' & v_nu_n' & u_n' & u_nv_n' & v_nv_n' & v_n' & u_n & v_n & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ f_{22} \\ f_{23} \\ f_{31} \\ f_{32} \\ f_{33} \end{bmatrix}$$
• In reality, instead of solving $\mathbf{Af} = 0$, we seek \mathbf{f} to minimize $\|\mathbf{Af}\|$, least eigenvector of $\mathbf{A}^T\mathbf{A}$.

to minimize $\|\mathbf{Af}\|$, least eigenvector of $\mathbf{A}^{\mathrm{T}}\mathbf{A}$.

Structure from motion



Stereo: another view



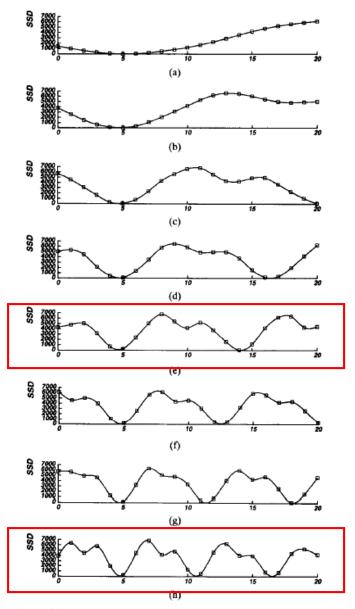


Fig. 5. SSD values versus inverse distance: (a) B=b; (b) B=2b; (c) B=3b; (d) B=4b; (e) B=5b; (f) B=6b; (g) B=7b; (h) B=8b. The horizontal axis is normalized such that 8bF=1.

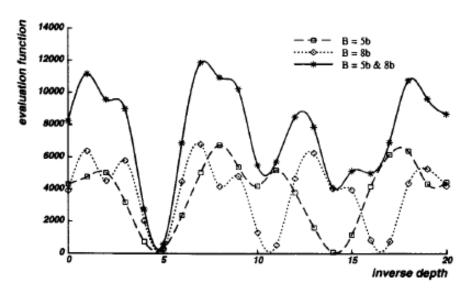


Fig. 6. Combining two stereo pairs with different baselines.

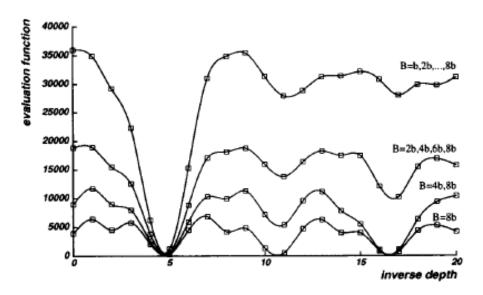
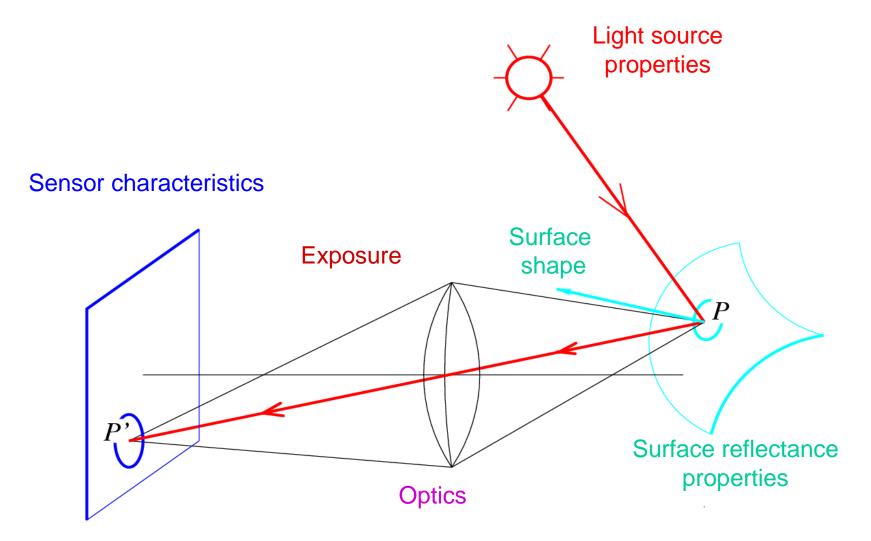


Fig. 7. Combining multiple baseline stereo pairs.

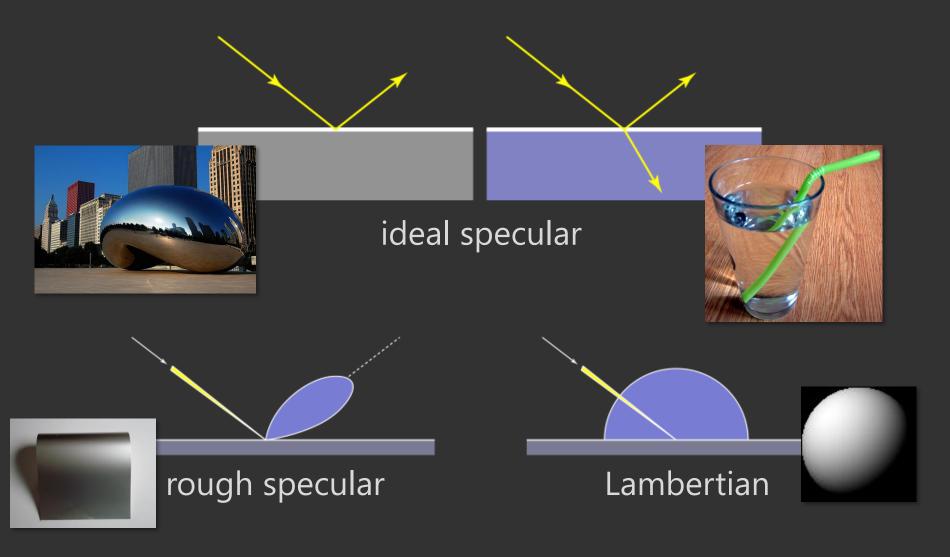
Light, reflectance, cameras

Radiometry

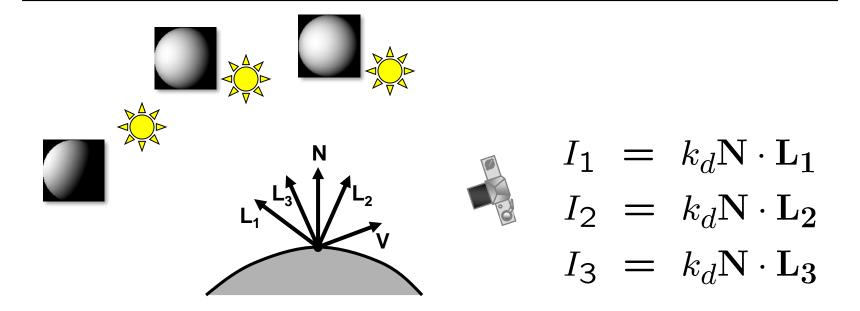
What determines the brightness of an image pixel?



Classic reflection behavior



Photometric stereo



Can write this as a matrix equation:

$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix} = k_d \begin{vmatrix} \mathbf{L_1}^T \\ \mathbf{L_2}^T \\ \mathbf{L_3}^T \end{vmatrix} \mathbf{N}$$

Example

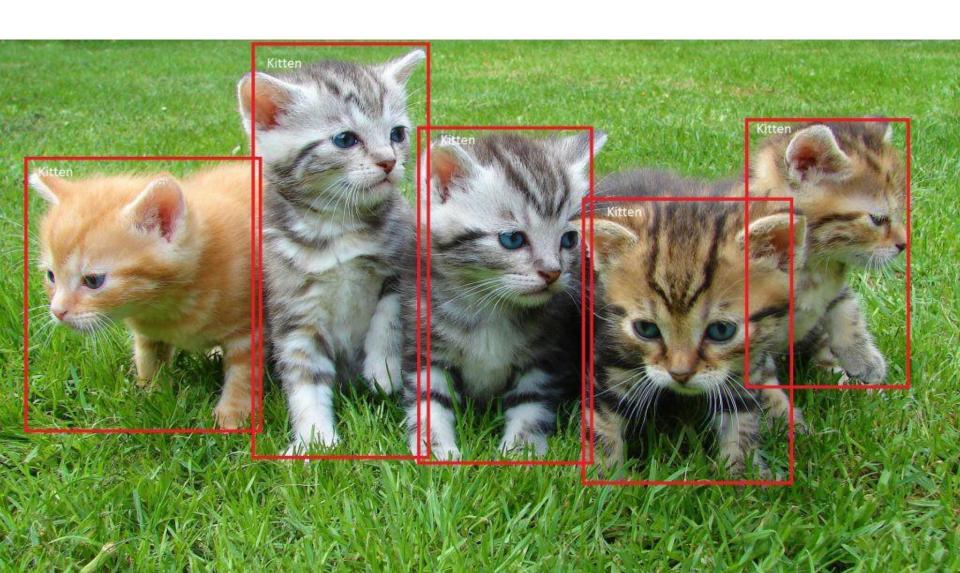
Recognition

Image Classification

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

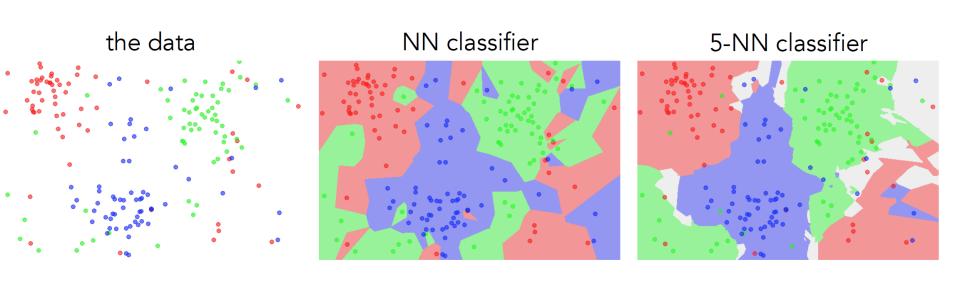
cat

Object detection



k-nearest neighbor

- Find the k closest points from training data
- Take majority vote from K closest points



Hyperparameters

- What is the **best distance** to use?
- What is the best value of k to use?

 These are hyperparameters: choices about the algorithm that we set rather than learn

- How do we set them?
 - One option: try them all and see what works best

Setting Hyperparameters

Idea #1: Choose hyperparameters that work best on the data

BAD: K = 1 always works perfectly on training data

Your Dataset

Idea #2: Split data into train and test, choose hyperparameters that work best on test data

Your Dataset

BAD: No idea how algorithm will perform on new data

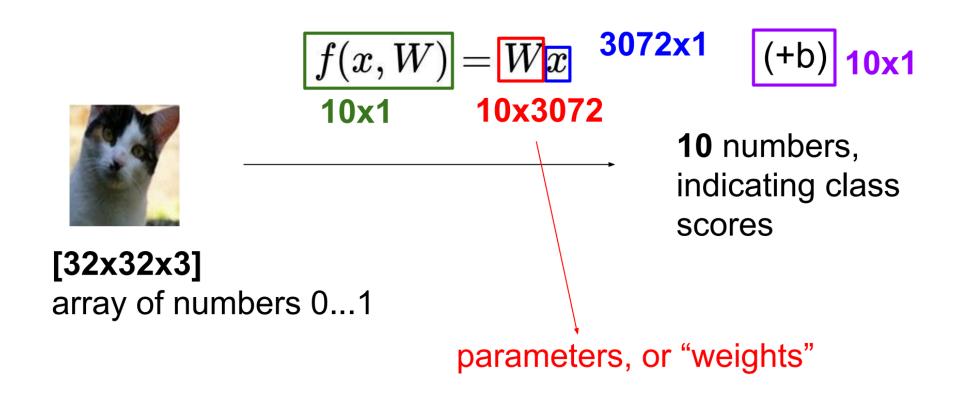
train test

Idea #3: Split data into **train**, **val**, and **test**; choose hyperparameters on val and evaluate on test

Better!

train validation test

Parametric approach: Linear classifier



Loss function, cost/objective function

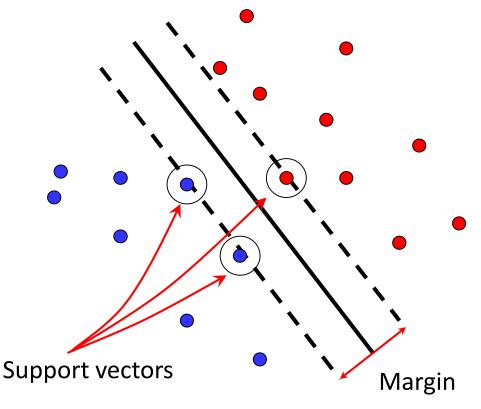
- Given ground truth labels (y_i) , scores $f(x_i, \mathbf{W})$
 - how unhappy are we with the scores?

Loss function or objective/cost function measures unhappiness

 During training, want to find the parameters W that minimizes the loss function

Support vector machines

 Find hyperplane that maximizes the margin between the positive and negative examples



$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i$$
 negative $(y_i = -1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \le -1$

For support vectors,
$$\mathbf{x}_i \cdot \mathbf{w} + b = \pm 1$$

Distance between point and hyperplane:

$$\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\|\mathbf{w}\|}$$

Therefore, the margin is $2/||\mathbf{w}||$

Multi-class SVM loss

Suppose: 3 training examples, 3 classes. With some W the scores f(x, W) = Wx are:

cat

3.2

1.3

2.2

car

5.1

4.9

2.5

frog

-1.7

2.0

-3.1

Multiclass SVM loss:

Given an example (x_i, y_i) where x_i is the image and where y_i is the (integer) label,

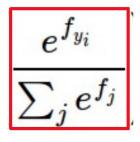
and using the shorthand for the scores vector: $s = f(x_i, W)$

the SVM loss has the form:

$$L_i = \sum_{j
eq y_i} \max(0, s_j - s_{y_i} + 1)$$

Softmax classifier

$$f(x_i, W) = Wx_i$$
 score function is the same



softmax function

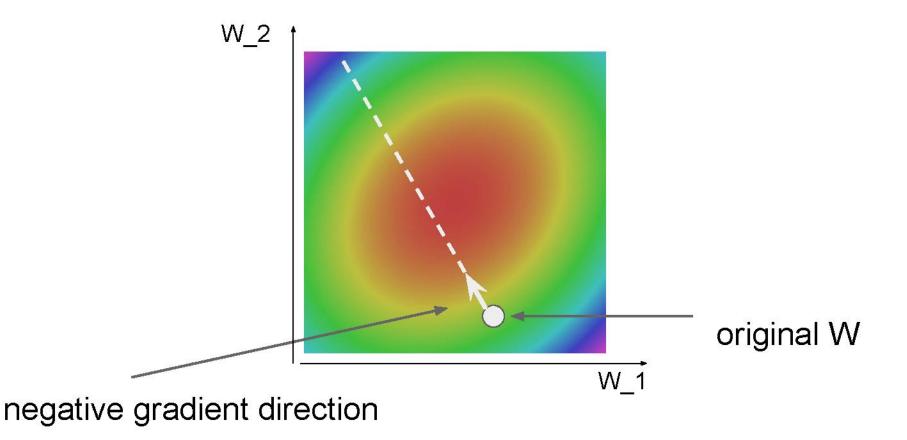
$$[1,-2,0] o [e^1,e^{-2},e^0] = [2.71,0.14,1] o [0.7,0.04,0.26]$$

Interpretation: squashes values into range 0 to 1

$$P(y_i \mid x_i; W)$$

Optimizing weights to minimize loss

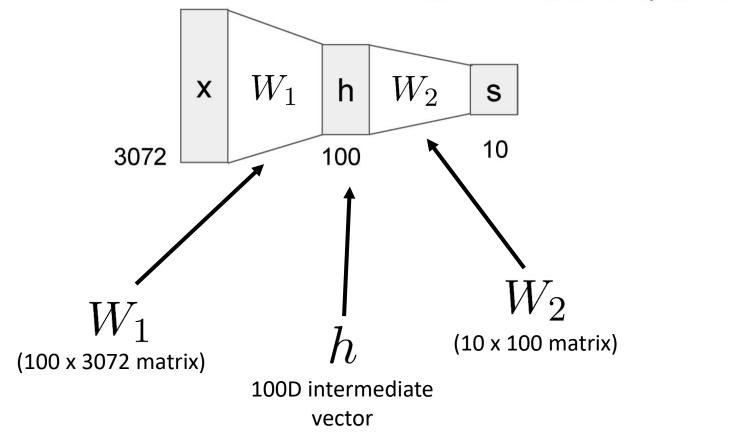
Stochastic gradient descent



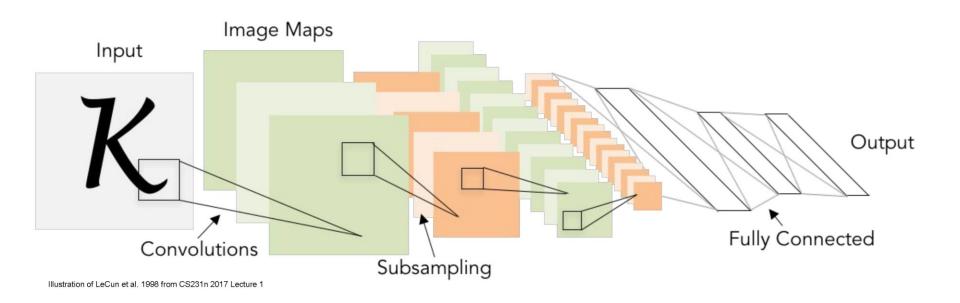
Neural networks

(**Before**) Linear score function: f = Wx

(Now) 2-layer Neural Network $f = W_2 \max(0, W_1 x)$



Convolutional neural networks



Backpropagation: a simple example

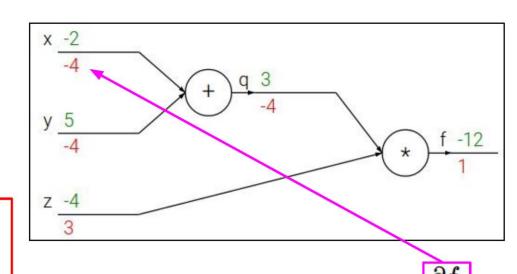
$$f(x, y, z) = (x + y)z$$

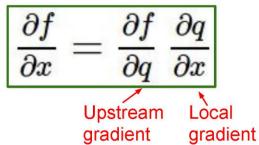
e.g. x = -2, y = 5, z = -4

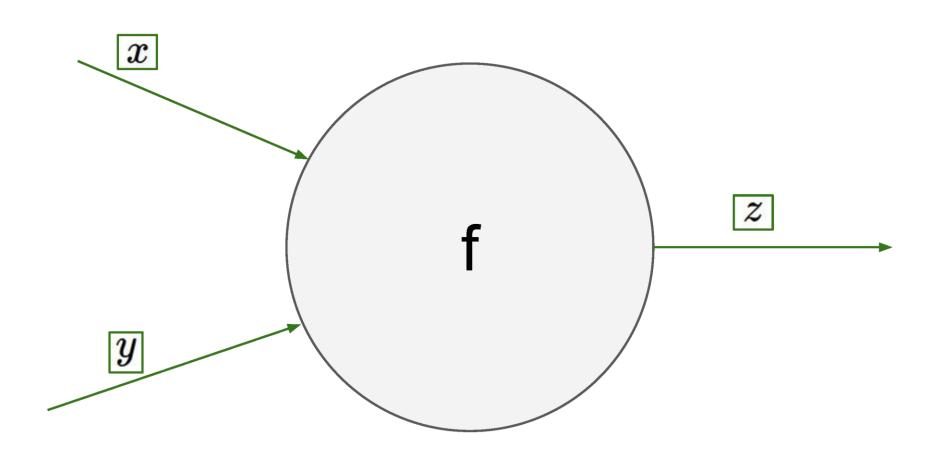
$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

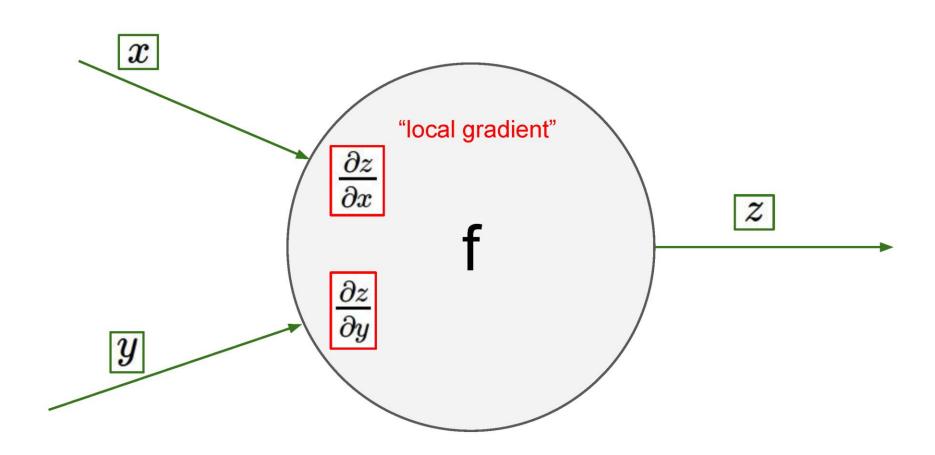
$$f=qz \hspace{1cm} rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$$

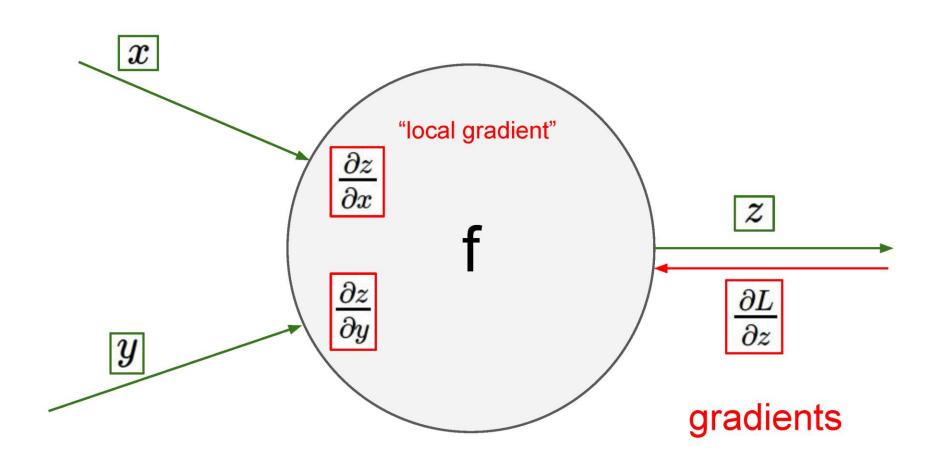
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

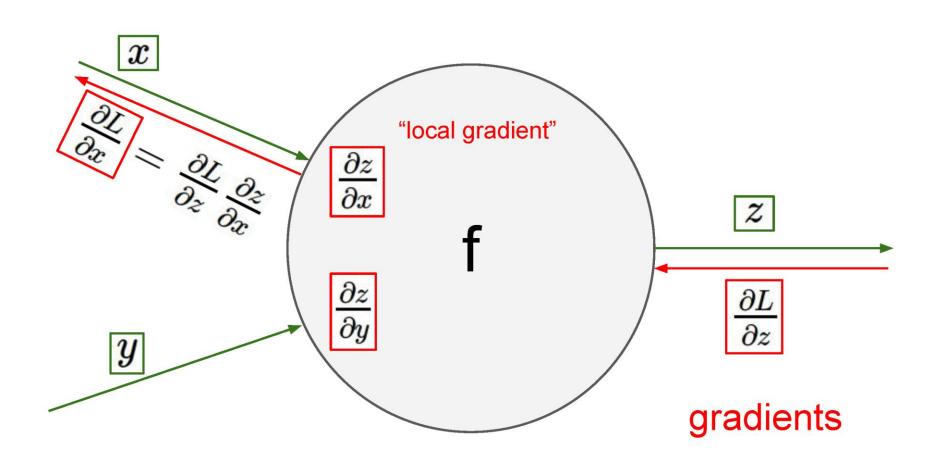


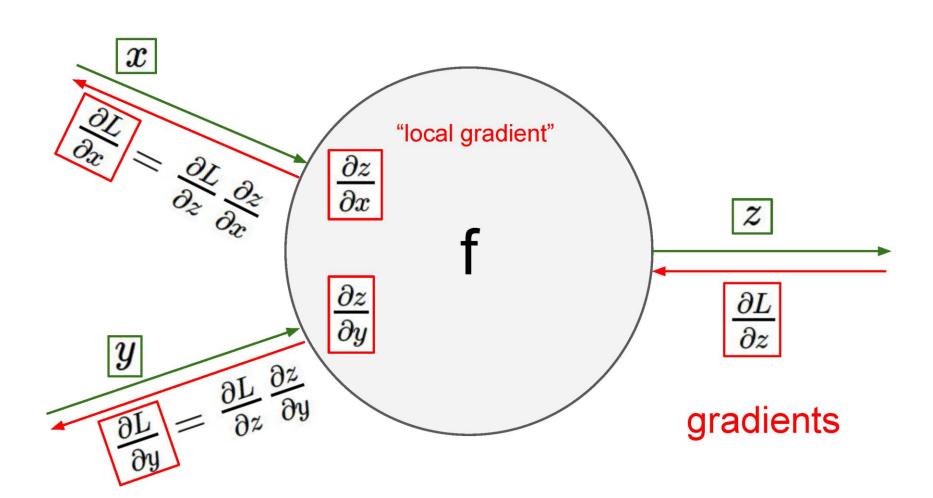


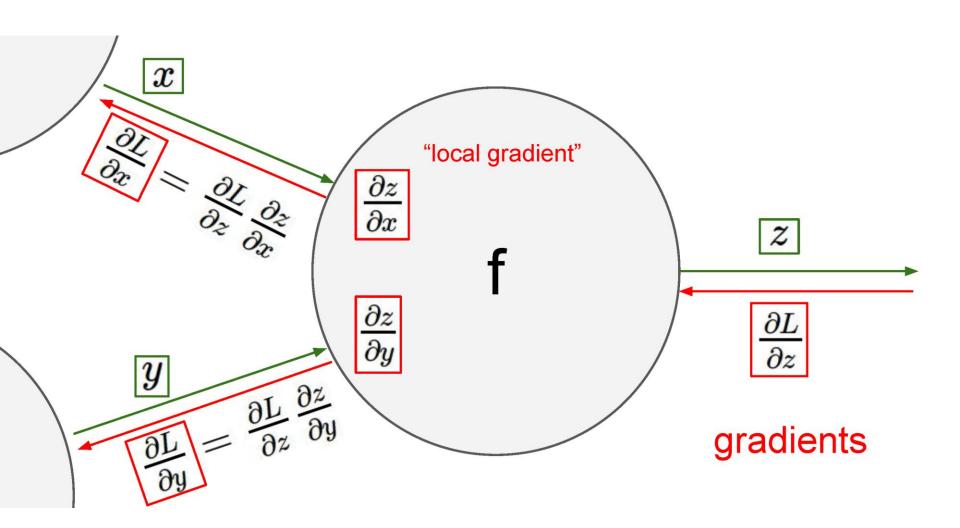












Best practices for training networks

- Preprocess the data (subtract mean, sub-crops)
- Initialize weights carefully
- Use Dropout
- Use SGD + Momentum
- Fine-tune from ImageNet
- Babysit the network as it trains

Transfer learning

Takeaway for your projects and beyond:

Have some dataset of interest but it has < ~1M images?

- Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models

PyTorch: https://github.com/pytorch/vision

Questions?

Good luck!