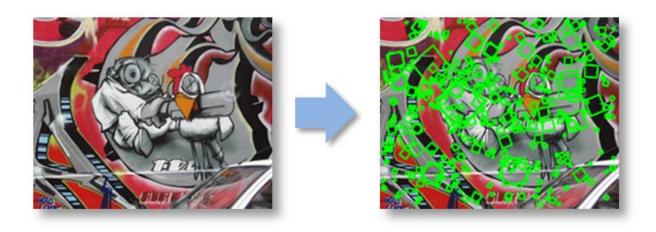
CS5670: Computer Vision Noah Snavely

Lecture 5: Feature descriptors and matching



Reading

• Szeliski: 4.1

Announcements

 Project 1 Artifacts due tomorrow, Friday 2/17, at 11:59pm

Project 2 will be released next week

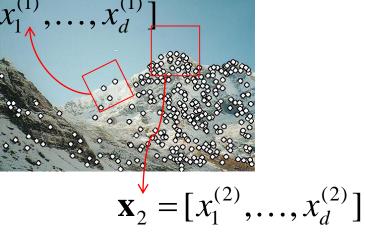
In-class quiz at the beginning of class Thursday

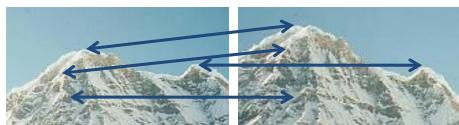
Local features: main components

Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$ each interest point.

Matching: Determine correspondence between descriptors in two views





Harris features (in red)

Image transformations

Geometric

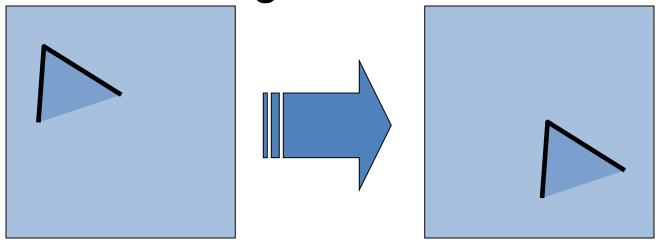
Scale

Photometric
 Intensity change

Invariance and covariance

- We want corner locations to be invariant to photometric transformations and covariant to geometric transformations
 - Invariance: image is transformed and corner locations do not change
 - Covariance: if we have two transformed versions of the same image, features should be detected in corresponding locations

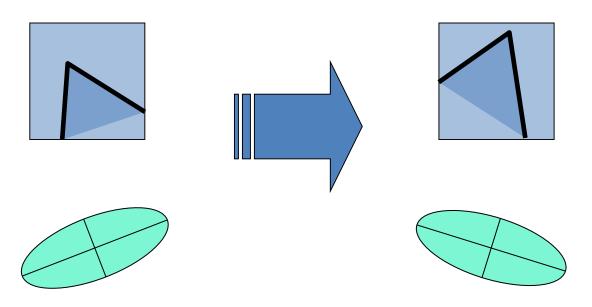
Harris detector: Invariance properties -- Image translation



Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Harris detector: Invariance properties -- Image rotation



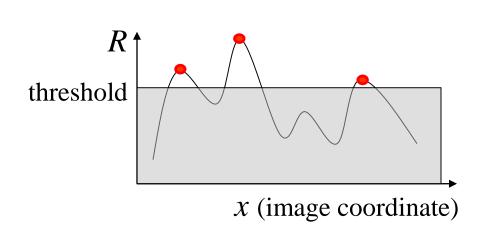
Second moment ellipse rotates but its shape (i.e. eigenvalues) remains the same

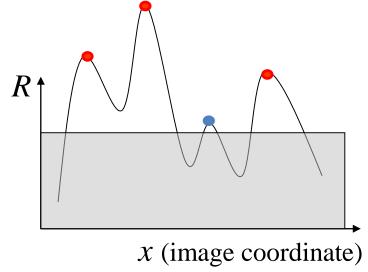
Corner location is covariant w.r.t. rotation

Harris detector: Invariance properties – Affine intensity change

$$I \rightarrow a I + b$$

- Only derivatives are used => invariance to intensity shift $I \rightarrow I + b$
- Intensity scaling: $I \rightarrow a I$

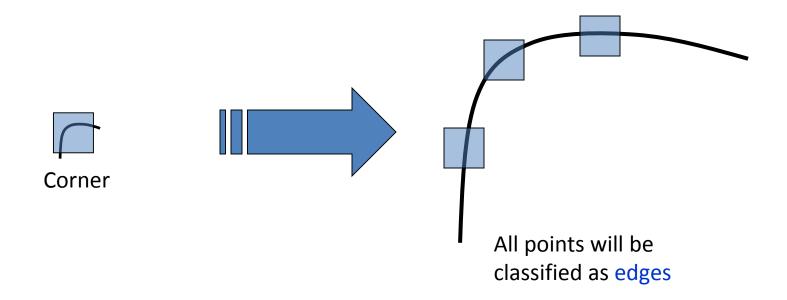




Partially invariant to affine intensity change

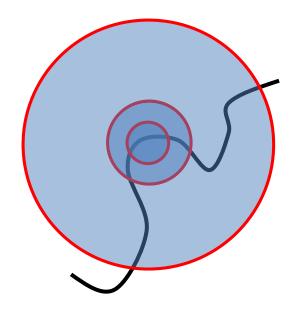
Harris Detector: Invariance Properties

Scaling



Scale invariant detection

Suppose you're looking for corners



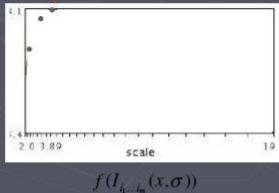
Key idea: find scale that gives local maximum of f

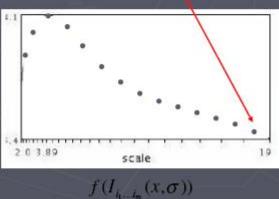
- in both position and scale
- One definition of f: the Harris operator

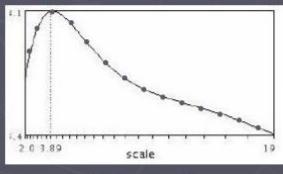
Lindeberg et al., 1996

 $f(I_{i_1\dots i_m}(x,\sigma))$

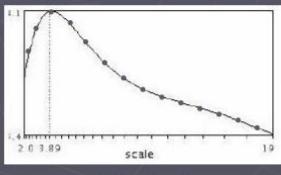
Slide from Tinne Tuytelaars

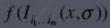


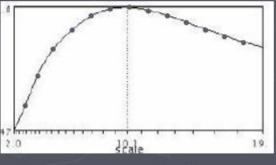




 $f(I_{i_1\dots i_m}(x,\sigma))$







$$f(I_{i_1...i_m}(x',\sigma'))$$

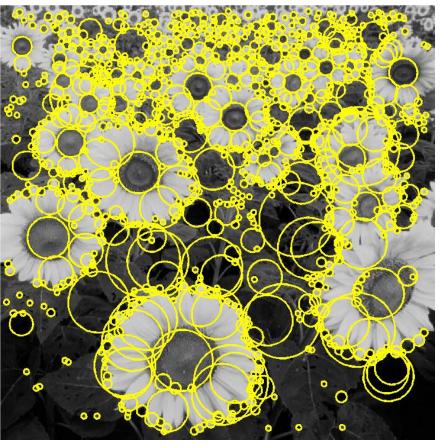
Normalize: rescale to fixed size

Implementation

 Instead of computing f for larger and larger windows, we can implement using a fixed window size with a Gaussian pyramid

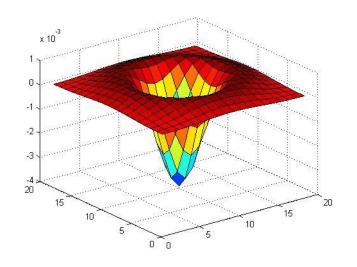
(sometimes need to create inbetween levels, e.g. a ¾-size image)

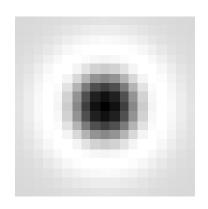
Feature extraction: Corners and blobs



Another common definition of *f*

• The Laplacian of Gaussian (LoG)



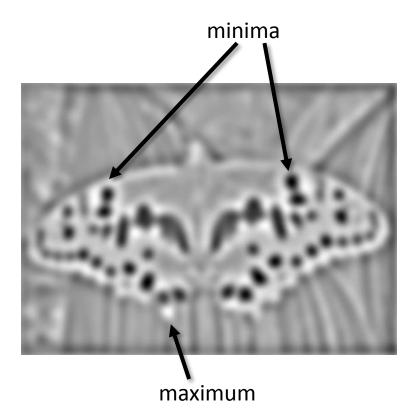


$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

(very similar to a Difference of Gaussians (DoG) – i.e. a Gaussian minus a slightly smaller Gaussian)

Laplacian of Gaussian

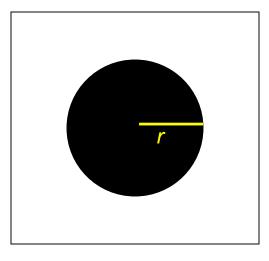
"Blob" detector

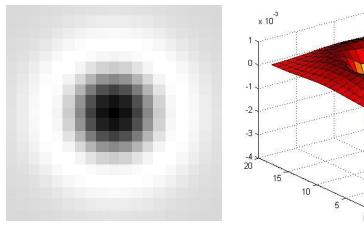


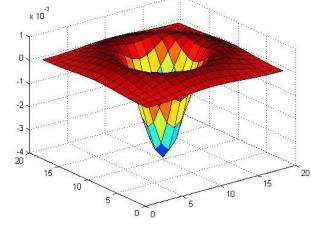
Find maxima and minima of LoG operator in space and scale

Scale selection

 At what scale does the Laplacian achieve a maximum response for a binary circle of radius r?





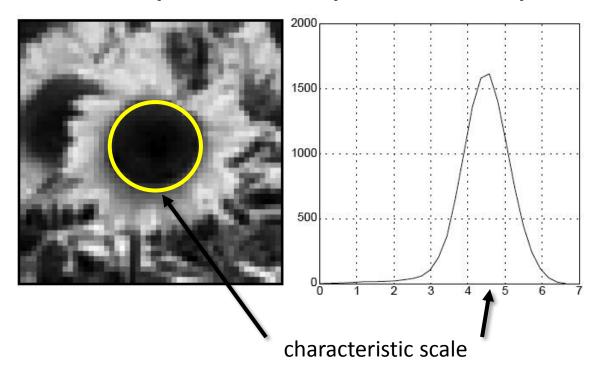


image

Laplacian

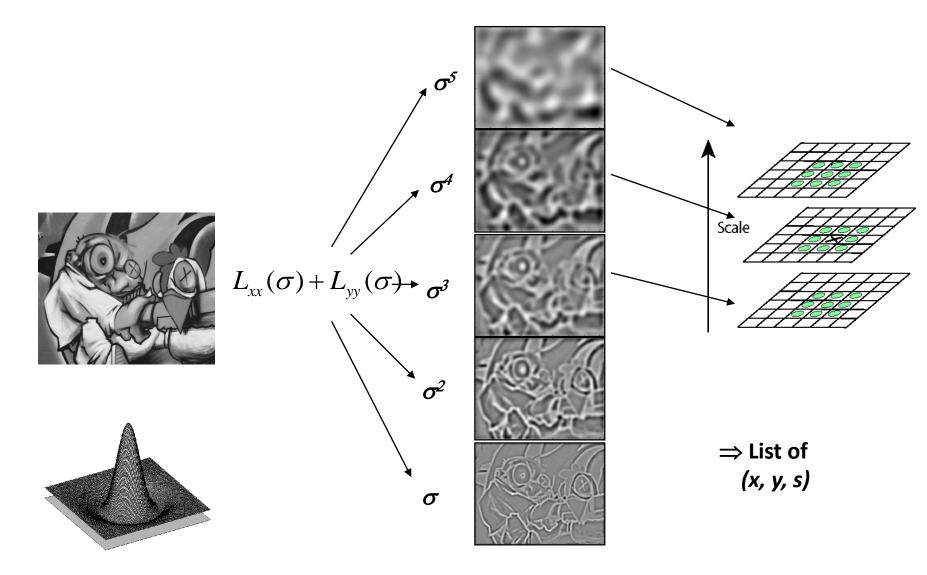
Characteristic scale

 We define the characteristic scale as the scale that produces peak of Laplacian response



T. Lindeberg (1998). <u>"Feature detection with automatic scale selection."</u> *International Journal of Computer Vision* **30** (2): pp 77--116.

Find local maxima in position-scale space

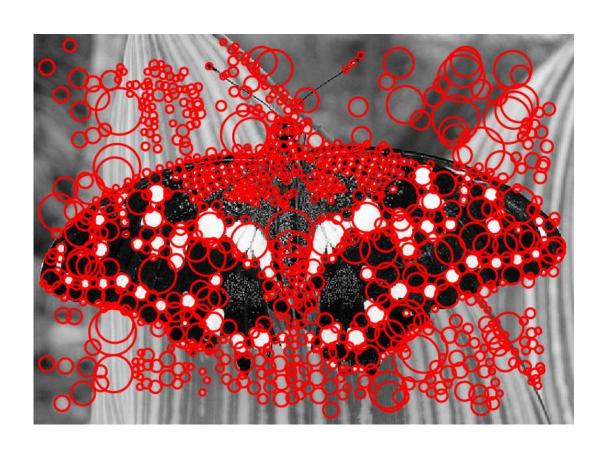


Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector: Example



Scale Invariant Detection

• Functions for determining scale f = Kernel * Image

$$f = Kernel * Image$$

Kernels:

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

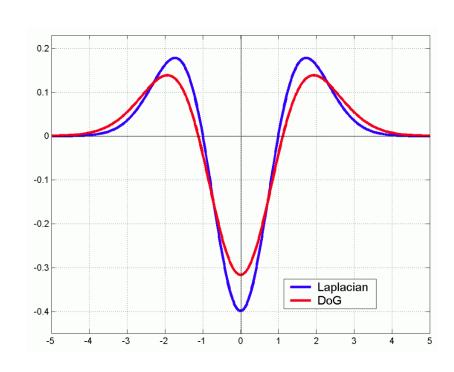
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

(Difference of Gaussians)

where Gaussian

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

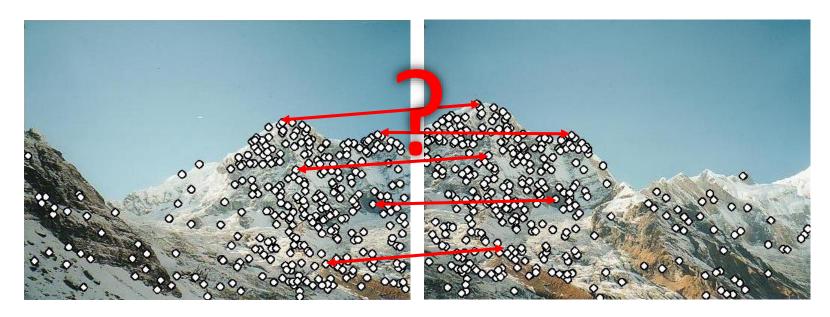


Note: both kernels are invariant to scale and rotation

Questions?

Feature descriptors

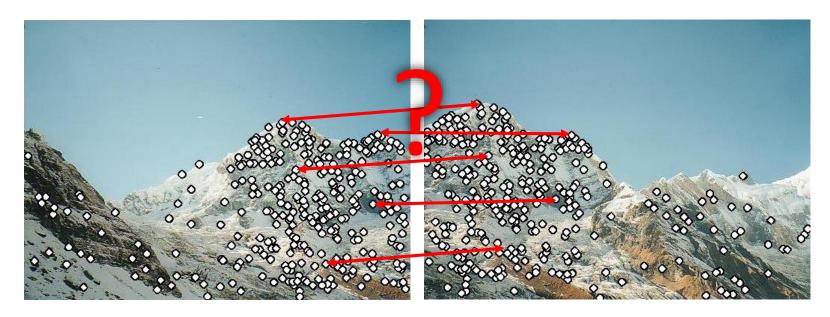
We know how to detect good points Next question: How to match them?



Answer: Come up with a *descriptor* for each point, find similar descriptors between the two images

Feature descriptors

We know how to detect good points Next question: How to match them?



Lots of possibilities (this is a popular research area)

- Simple option: match square windows around the point
- State of the art approach: SIFT
 - David Lowe, UBC http://www.cs.ubc.ca/~lowe/keypoints/

Invariance vs. discriminability

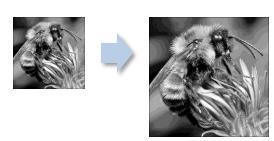
- Invariance:
 - Descriptor shouldn't change even if image is transformed

- Discriminability:
 - Descriptor should be highly unique for each point

Image transformations

Geometric

Scale



Photometric
 Intensity change

Invariance

- Most feature descriptors are designed to be invariant to
 - Translation, 2D rotation, scale

- They can usually also handle
 - Limited 3D rotations (SIFT works up to about 60 degrees)
 - Limited affine transformations (some are fully affine invariant)
 - Limited illumination/contrast changes

How to achieve invariance

Need both of the following:

- 1. Make sure your detector is invariant
- 2. Design an invariant feature descriptor
 - Simplest descriptor: a single 0
 - What's this invariant to?
 - Next simplest descriptor: a square window of pixels
 - What's this invariant to?
 - Let's look at some better approaches...

Rotation invariance for feature descriptors

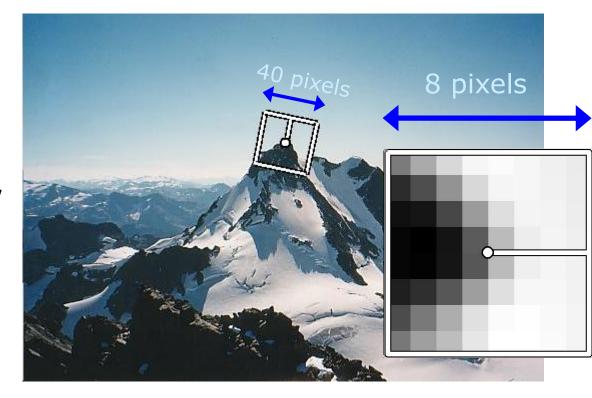
- Find dominant orientation of the image patch
 - This is given by \mathbf{x}_{max} , the eigenvector of \mathbf{H} corresponding to λ_{max} (the larger eigenvalue)
 - Rotate the patch according to this angle

Figure by Matthew Brown

Multiscale Oriented PatcheS descriptor

Take 40x40 square window around detected feature

- Scale to 1/5 size (using prefiltering)
- Rotate to horizontal
- Sample 8x8 square window centered at feature
- Intensity normalize the window by subtracting the mean, dividing by the standard deviation in the window



Detections at multiple scales

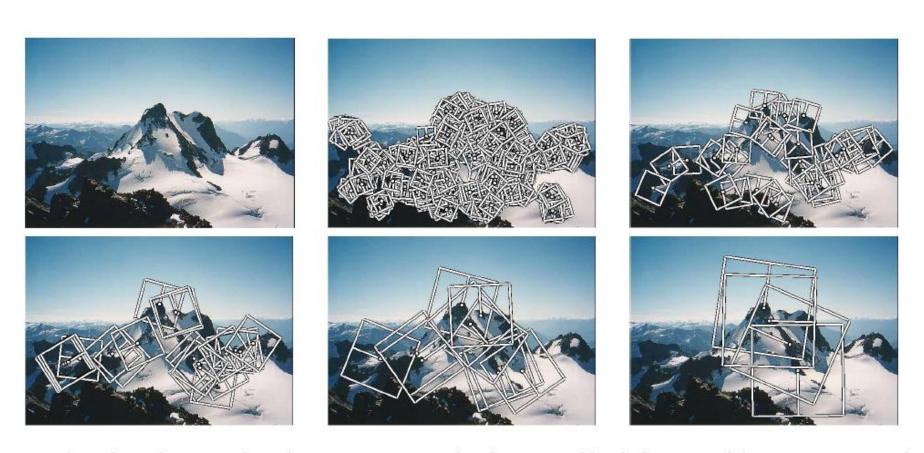
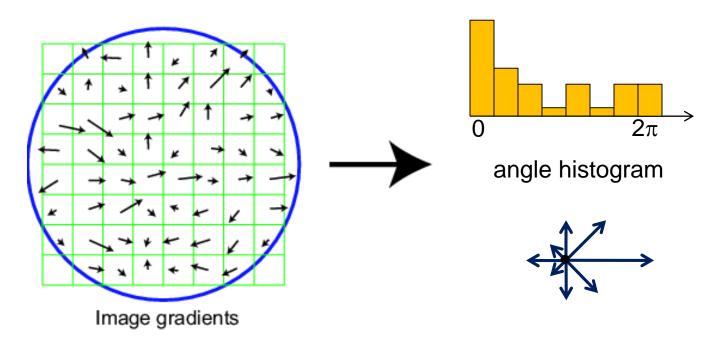


Figure 1. Multi-scale Oriented Patches (MOPS) extracted at five pyramid levels from one of the Matier images. The boxes show the feature orientation and the region from which the descriptor vector is sampled.

Scale Invariant Feature Transform

Basic idea:

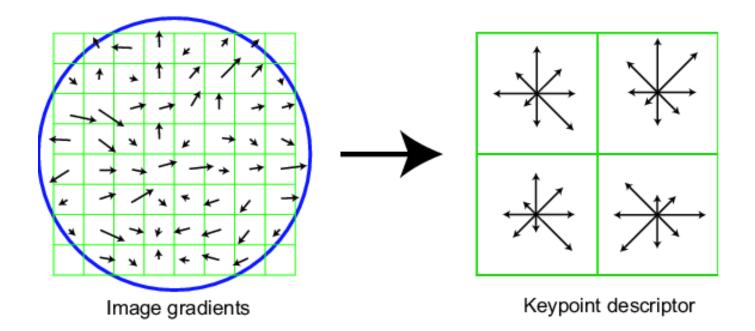
- Take 16x16 square window around detected feature
- Compute edge orientation (angle of the gradient 90°) for each pixel
- Throw out weak edges (threshold gradient magnitude)
- Create histogram of surviving edge orientations



SIFT descriptor

Full version

- Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)
- Compute an orientation histogram for each cell
- 16 cells * 8 orientations = 128 dimensional descriptor



Properties of SIFT

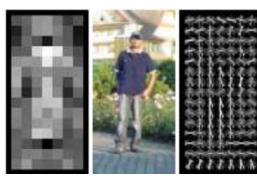
Extraordinarily robust matching technique

- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available
 - http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Other descriptors

- HOG: Histogram of Gradients (HOG)
 - Dalal/Triggs
 - Sliding window, pedestrian detection

- FREAK: Fast Retina Keypoint
 - Perceptually motivated



- LIFT: Learned Invariant Feature Transform
 - Learned via deep learning

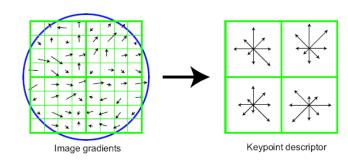
https://arxiv.org/abs/1603.09114

Summary

- Keypoint detection: repeatable and distinctive
 - Corners, blobs, stable regions
 - Harris, DoG



- Descriptors: robust and selective
 - spatial histograms of orientation
 - SIFT and variants are typically good for stitching and recognition
 - But, need not stick to one



Questions?