
Automatic Differentiation of Moving Least Squares

Tim Langlois

In one of our projects, we compressed the mode shapes used for modal sound synthesis by fitting moving least
squares approximations to them. Basically, instead of storing the mode values at each vertex of the mesh, we stored
a small set of control points, and used MLS to interpolate between them. Part of the compression process involved
non-linear optimization, which required the jacobian of the error function. This would have been very complicated to
write out analytically, but was easy to do automatically.

The optimization problem was as follows. We were given a mesh where each vertex i had a position p̃i and a value
f̃i (in reality these values were vectors, but for simplicity just assume they are scalars). We also had a set of control
points. Each control point j had a position p j and a value f j. We use MLS to interpolate the values at vertices. We’ll
use vi to refer to the interpolated value at position i. Specifically, at a vertex i, we find a polynomial approximation
which minimizes ∑

j

||vi − fi||2 ∗ θ(p j − p̃i)

Theta is a weighting function which gives more weight to control points that are closer to vertex i, i.e., we want the
approximation to be more accurate near vertex i. Then we can evaluate the polynomial at position p̃i to get vi.

The polynomial can be found by solving a linear system. For example, suppose we are using quadratic polynomi-
als. That means they will be of the form

a0x2 + a1y
2 + a2z2 + a3xy + a4yz + a5xz + a6x + a7y + a8z + a9

We want to solve for the coefficients ai. Assume that we have n control points. We build the system


θ(p0 − p̃i) 0 . . .

0
. . . 0

...
0 . . . θ(pn − p̃i)





x2
0 y2

0 z2
0 x0y0 y0z0 x0z0 x0 y0 z0 1

x2
1 y2

1 z2
1 x1y1 y1z1 x1z1 x1 y1 z1 1

...

x2
n y2

n z2
n xnyn ynzn xnzn xn yn zn 1





a0
a1
a2
a3
a4
a5
a6
a7
a8
a9



=



f0
f1
f2
f3
f4
f5
f6
f7
f8
f9


We use a QR solver to solve for the unknown a vector. Then we can evaluate this polynomial with the ai coefficients

at position p̃i to get the approximation vi.
Remember that all of this was just for getting one vi value. We need to optimize all the values. We want to minimize

the error
err =

∑
i

||vi − f̃i||2

i.e., we want the approximation the match the original values as well as possible. This is a non-linear least squares
problem, which can be solved with the Levenberg-Marquardt algorithm. However, the LM algorithm requires the
jacobian of the error function (the derivative of the error with respect to each control point’s position and value). This
would be complicated: we would need to take the derivative of a matrix inverse. But automatic differentiation does it
automatically for us.

1

