
CS5630 Physically Based 
Realistic Rendering

Steve Marschner 
“Spring” 2026 

04 Monte Carlo Integration



Low discrepancy sampling

We saw that the baseline convergence of MC integration is  
• getting this convergence rate requires very little cooperation from the integrand


For “easy” cases we can do better 
• easy means smooth integrands in low dimensions


Generally the idea is to use samples that are “less clumpy” 
• stratified sampling

• blue noise sampling

• Quasi Monte Carlo (QMC) sampling
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Variance

Variance measures expected variation about the mean 
• we measure squared deviation since we want it to be positive on both sides


• 


Standard deviation is the square root of variance (root-mean-square variation) 

• 


• it is the intuitive measure of “degree of uncertainty” in the units of 


Some handy facts 
• 


• , therefore 

Var{X} = σ2{X} = E {(X − E{X})2}

σ{X} = σ2{X}

X

σ2{X} = E{X2} − E{X}2

σ{aX} = aσ{X} σ2{aX} = a2σ2{X}



Statistical independence

Two r.v.s  and  can be thought as a single pair-valued r.v.  

The distribution of this pair is the joint distribution of  and  
• call its probability density 


 and  are independent iff.  
• that is, the joint pdf is separable into the product of two one-variable pdfs


For independent r.v.s, some handy things are true: 
•  — for ,  independent


•  — for ,  independent

• but always remember these things are not true in general!

X Y (X, Y)

X Y
p(x, y)

X Y p(x, y) = p(x)p(y)

E{XY} = E{X}E{Y} X Y

σ2{X + Y} = σ2{X} + σ2{Y} X Y



Baseline Monte Carlo convergence

Estimator with  independent samples 

Variance of sum is  times the variance of the one-sample estimator 

Variance of  is  times the variance of the sum
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Improving the convergence rate

…requires using non-independent samples 
• to invalidate the proof on the previous slide


One approach: stratified sampling 
• divide domain up into  equal-area parts, place one sample uniformly in each

• for smooth integrands eventually gets better convergence (dimension dependent)


Another approach: blue noise sampling 
• use Fourier spectrum of sample pattern as a design tool

• aim for patterns lacking low frequencies — hence “blue” by analogy to light spectra

• various schemes for generating and storing patterns, or piecing together on the fly


Software engineering goal: drop-in replacement for random() 
• but both these approaches require knowing the number of samples up front
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Stratified point sets and their effects

independent grid stratified



Convergence with stratification

If we’re integrating over a unit volume domain with  
• volume of each stratum is 


• pdf for each sample is 


• estimator for each stratum is 


•
sum of individual estimates is  — so the code looks the same


• key thing: for smooth integrands the variance of  is less than the variance of 


• when things look nice, variance scales as the square of the diameter of the strata


• leads to a hope for  convergence in 1D or  convergence in 2D (nbdemo)
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Blue noise point sets
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Stratification in software

We’d like to be able to just call random() but now there is some bookkeeping 
• the sampler needs to know how many samples will be needed

• the random numbers are not all equivalent any more


- numbers that are used the same way need to form a stratified pattern

- the two coordinates of a point need to be related in a different way

- separate samples from two 1D stratified patterns does not make a 2D stratified pattern


• for each of  samples we need to be able to generate many numbers—a multidimensional point


A commonly used interface has three central methods 
• generate() — asks the sampler to get ready for a new integration

• next() — return the next random number (the next coordinate of the sample)

• advance() — move to the next sample
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Quasi Monte Carlo

The estimation of expected values doesn’t have to depend on randomness 

Alternative property: low discrepancy 
• discrepancy = max difference between volume of a box and the fraction of sample in it

• with bound on discrepancy, Monte Carlo integration works with deterministic samples


One class of methods: Halton sequence 
• suprising idea: write sample integer as a base-  integer, then reverse digits to a base-  fraction


- base 2:  1001010 -> 0.0101001; base 3: 0122102 -> 0.2012210

• use such sequences with relatively prime bases on each axis


- result is an -D low discrepancy sequence


Hammersly, Sobol’ use related ideas
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Quasi Monte Carlo sequences


