CS5630 Physically Based
—Realistic Rendering

Steve Marschner
‘Spring” 2026
04 Monte Carlo Integration

| ow discrepancy sampling

1
We saw that the baseline convergence of MC integration is N2

- getting this convergence rate requires very little cooperation from the integrand

For “easy” cases we can do better

+ easy means smooth integrands in low dimensions

Generally the idea is to use samples that are “less clumpy”

- stratified sampling
- blue noise sampling

- Quasi Monte Carlo (QMC) sampling

\Variance

Variance measures expected variation about the mean

+ We measure squared deviation since we want it to be positive on both sides

. Var{X} = 6*{X} = E{(X — E{X})*}

Standard deviation is the square root of variance (root-mean-square variation)

. ol X} = \/GZ{X}

- it is the intuitive measure of “degree of uncertainty” in the units of X

Some handy facts
. 02{X)} = E{X?} — E{X}?
. o{aX} = ac{X}, therefore 6°{aX} = a’c?*{X)

Statistical iIndependence

Two r.v.s X and Y can be thought as a single pair-valued r.v. (X, Y)

The distribution of this pair is the joint distribution of X and Y
- call its probability density p(x, y)

X and Y are independent iff. p(x,y) = p(x)p(y)

- that is, the joint pdf is separable into the product of two one-variable pdfs

For independent r.v.s, some handy things are true:
- E{XY} = E{X}E{Y} — for X, Y independent
- 0 {X+Y) =06*{X)} + 6%{Y} — for X, Y independent

- but always remember these things are not true in general!

Baseline Monte Carlo convergence

Estimator with /NV independent samples

1 &
Gy = N ,=21 g(x;) where x; ~p

Variance of sum is /V times the variance of the one-sample estimator
N Y
o’ { D g(xi)} =) o*{g} = No*{g)
=1 =

Variance of G is N ~2 times the variance of the sum

c*{g) o{g}

v VA

GZ{GN} —

mproving the convergence rate

...requires using non-independent samples

- to invalidate the proof on the previous slide

One approach: stratified sampling

- divide domain up into NV equal-area parts, place one sample uniformly in each

- for smooth integrands eventually gets better convergence (dimension dependent)

Another approach: blue noise sampling

- use Fourier spectrum of sample pattern as a design tool
- aim for patterns lacking low frequencies — hence “blue” by analogy to light spectra

+ various schemes for generating and storing patterns, or piecing together on the fly

Software engineering goal: drop-in replacement for random()

- but both these approaches require knowing the number of samples up front

Strati

- sets and thelr e

ed poin

iINndependent

grid stratified

Convergence with stratification

If we’re integrating over a unit volume domain with p(x) = 1

. volume of each stratum is 1/N

- pdf for each sample is p(x) = N
Jx) 8x)
pi(x;) N

. estimator for each stratum is g.(x;) =

N N
|
~ sum of individual estimates is Gy, = Z g:(x;) = N 2 g(x;,) — so the code looks the same

- key thing: for smooth integrands the variance of g; is less than the variance of g

- when things look nice, variance scales as the square of the diameter of the strata

. leads to a hope for N~ convergence in 1D or N~! convergence in 2D (nbdemo)

Blue Noise point sets

L
-

. .

. »
MR ®
.

.«
. .

-
P T Y

-
-

.« *a
-
-
.

.o..“‘..
N
..oo-ou..

MR

Dong-Ming Yan et al. 2015

Stratification in software

We’d like to be able to just call random() but now there is some bookkeeping

+ the sampler needs to know how many samples will be needed

- the random numbers are not all equivalent any more
- humbers that are used the same way need to form a stratified pattern
- the two coordinates of a point need to be related in a different way
- separate samples from two 1D stratified patterns does not make a 2D stratified pattern

- for each of N samples we need to be able to generate many numbers—a multidimensional point

A commonly used interface has three central methods

- generate() — asks the sampler to get ready for a new integration
- next() — return the next random number (the next coordinate of the sample)

- advance() — move to the next sample

Quasi Monte Carlo

The estimation of expected values doesn’t have to depend on randomness

Alternative property: low discrepancy

- discrepancy = max difference between volume of a box and the fraction of sample in it

- with bound on discrepancy, Monte Carlo integration works with deterministic samples

One class of methods: Halton sequence

+ suprising idea: write sample integer as a base-p integer, then reverse digits to a base-p fraction
- base 2: 1001010 -> 0.0101001; base 3: 0122102 -> 0.2012210

* use such sequences with relatively prime bases on each axis

- result Is an n-D low discrepancy sequence

Hammersly, Sobol’ use related ideas

Quasi Monte Carlo sequences

Figure 7.25: The First Points of Two Low-Discrepancy Sequences in 2D. (a) Halton (218 points),
(b) Hammersley (256 points).

