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03 Monte Carlo Integration



Computing definite integrals

Rendering is full of integration problems 
• add up all the light that falls on this surface

• add up all the light that enters the camera’s lens

• add up all the ways light can get to the camera


Problem defined by 
• a domain

• a function

• a measure


Definite because we 
want a numerical answer 
rather than a formula

I = ∫D
f(x) dA(x)

I = ∫D
f(x) dx

— integrate f over D with respect to area

— integrate f over D in the “obvioius” way



Monte Carlo integration

A simple and flexible way to approximate integrals 

Core mathematical ideas 
• expectation and integration are closely related

• we can define a random variable whose expectation is the value of the integral

• we can estimate the expectation using means of samples

• this produces an approximation to the integral with random error


Probability ideas to review 
• discrete and continuous random variables

• probability and probability density

• expectation as a probability weighted sum or probability density weighted integral

• sample mean as an estimate of expectation



Random variables

Intuitively, a random variable  is a variable with an uncertain value 
• its value will be different each time you re-run the experiment that generates it

• it may be more likely to take on some values than others


Formally,  is a function defined on a probability space 
• probability space  = “set of things  that could happen” together with their probabilities


•  is the value  takes on when  happens


•  is another random variable which takes on the value  when  happens


Examples 
•  is the set of faces of a die, and  is the number on the face that comes up


•  is the set of possible combinations for two dice, and  is the sum of the face values
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Random variables

A r.v. may be able to take on a continuous range of values 
• e.g.  with uniform probability (i.e. the output of random(), traditionally called )


•  takes on values from 0 to 6


•  takes on values from 0 to 12, and is more likely to be near 6 than near 0


Random variables have proability distributions 
• for a discrete r.v. ,  


-  is the probability that  is  ;  ; 


• for a continuous r.v. ,  


-  is the probability density for  to be near  ;  ; 

Ω = [0,1) ξ

X = 6ξ

X = 6ξ1 + 6ξ2

X ∼ p Pr{X = a} = p(a)
p X a 0 ≤ p ≤ 1 ∑a p(a) = 1

X ∼ p Pr{a ≤ X < a + dx} = p(a) dx
p X a 0 ≤ p < ∞ ∫ p(a) da = 1



Expectation

 is the value we expect  to have on average 

For discrete  it is a sum 
• 


For continuous  it is an integral 
• 


For a r.v. defined as a function of X is the most often used form 
•

E{X} X

X
X ∼ p ⟹ E{X} = ∑a ap(a)

X
X ∼ p ⟹ E{X} = ∫ ap(a) da

X ∼ p ⟹ E{f(X)} = ∫ f(a)p(a) da



Expectation

Expectation is linear 
•  for non-random scalars  and 


Averaging multiple trials preserves the sample mean 

•
suppose  are identically distributed and 


• then 


So the sample mean is an estimate of the expected value

E{aX + bY} = aE{X} + bE{Y} a b

X1, …, XN X̄ =
1
N

N

∑
i=1

Xi

E{X̄} = E{Xi}



Monte Carlo integration construction

Suppose I want to compute a definite integral  




…and I am able to generate values  and their probability densities 
• that is, samples from a random variable 


Then I can define an estimator for  




I

I = ∫D
f(x) dx

xi ∼ p
X ∼ p

I

g(X) =
f(X)
p(X)

E{g(X)} = I



Monte Carlo integration algorithm

Sample many values  from  

Evaluate the estimator for each sample 

Compute the sample mean 




Then  
• and the error goes down as  increases (more precision soon)

xi X

GN =
1
N

N

∑
i=1

g(xi)

GN ≈ I
N



Convergence rate

We can get a better estimate of the expected value of g by generating several 
values and averaging them. 

As n increases, the variance of Gn decreases 

…but it doesn’t decrease that fast (“order  convergence”)N1/2

GN =
1
N

N

∑
i=1

g(xi) where xi ∼ p

σ2 {
N

∑
i=1

g(xi)} =
N

∑
i=1

σ2{g} = Nσ2{g}

σ{GN} =
σ{g}

N



Importance sampling

Monte Carlo integration has few requirements on  
•  cannot be zero where  is not zero


• practical requirement: you have to know  for the samples you generate


…but some pdfs produce better estimates than others 

Rule of thumb: make  resemble  

Ideal case is when  

• then the estimator is 


• it’s a constant — perfection in one sample!  Of course this means we already know the answer.

p
p f

p

p f

p(x) =
f(x)
C

g(x) =
f(x)
p(x)

= C



Generating samples

With the default RNG it is easy to sample uniform distributions 

How to sample nonuniform ones? 
• well, somehow we write a program that calls the RNG and does something with the output


Suppose we have the cumulative distribution function for  
• .  It is a monotonically increasing function.


Further suppose that, given  from the RNG we can compute   
so that  
• then for any ,  exactly when , which happens with probability 

X
P(a) = Pr{X < a}

ξ x
P(x) = ξ

a x < a ξ < P(a) P(a)



Blue noise point sets
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Quasi Monte Carlo sequences


