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Ray tracing acceleration

* Ray tracing is slow. This is bad!

— Ray tracers spend most of their time in ray-surface
intersection methods

* Ways to improve speed
— Make intersection methods more efficient
* Yes, good idea. But only gets you so far
— Call intersection methods fewer times
* Intersecting every ray with every object is wasteful

* Basic strategy: efficiently find big chunks of geometry that
definitely do not intersect a ray
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How to avoid work

* Think of a simple region of space

— should be fast to test containment or overlap
* Strategy |:space subdivision

— ray (or part of ray) is inside the volume

— object is entirely outside the volume

— so skip the intersection test
* Strategy 2: bounding volumes

— object is entirely inside the volume

— ray is entirely outside

— so skip the intersection test
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Bounding volumes

* Quick way to avoid intersections: bound object with a
simple volume
— Obiject is fully contained in the volume
— If it doesn’t hit the volume, it doesn’t hit the object
— So test bvol first, then test object if it hits

[Glassner 89, Fig 4.5]
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Bounding volumes

e Cost: more for hits and near misses, less for far misses
* Worth doing! It depends:

— Cost of bvol intersection test should be small
* Therefore use simple shapes (spheres, boxes, ...)
— Cost of object intersect test should be large
* Bvols most useful for complex objects
— Tightness of fit should be good
* Loose fit leads to extra object intersections
* Tradeoff between tightness and bvol intersection cost

Cornell CS5630 Spring 2026 Steve Marschner * 5



If it’s worth doing, it’s worth doing
hierarchically!

* Bvols around objects may help
* Bvols around groups of objects will help

* Bvols around parts of complex objects will help

* Leads to the idea of using bounding volumes all the way
from the whole scene down to groups of a few objects
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Implementing a bvol hierarchy

A bounding volume hierarchy is a tree of boxes

— each bounding box contains all children

— ray misses parent implies ray misses all children

* Leaf nodes contain surfaces

— again the bounding box contains all geometry in that node

— if ray hits leaf node box, then we finally test the surfaces

* Replace the intersection loop over all objects in the
scene with a partial tree traversal

— test node first; test all children only ray hits parent

* Usually we use binary trees (each non-leaf box has
exactly two contained boxes)
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BVH construction example
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BVH ray-tracing example
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Choice of bounding volumes

* Spheres -- easy to intersect, not always so tight

* Axis-alighed bounding boxes (AABBs) -- easy to
intersect, often tighter (esp. for axis-alighed models)

* Oriented bounding boxes (OBBs) -- easy to intersect
(but cost of transformation), tighter for arbitrary
objects

* Computing the bvols
— For primitives -- generally pretty easy
— For groups -- not so easy for OBBs (to do well)

— For transformed surfaces -- not so easy for spheres

Cornell CS5630 Spring 2026 Steve Marschner « 10



AXxis alighed bounding boxes

* Probably easiest to implement
* Computing for (axis-aligned) primitives
— Cube: duh!
— Sphere, cylinder, etc.: pretty obvious
— Triangles: compute min/max of vertex coordinates
— Groups or meshes: min/max of component parts

* How to intersect them

— Treat them as an intersection of slabs (see also textbook)
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Ray-box intersection

* Could intersect with 6 faces individually
* Better way: box is the intersection of 3 slabs
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Ray-slab intersection

* 2D example
e 3D is the same!

Pz + Lemin G = Tmin
lgmin = (-'I"min - px)/d‘:c

Py + tymin dy = Ymin

tymin = (Ymin — Py)/dy

Xmin Xmax
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Intersecting intersections

e Each intersection is an interval

* Want last entry point and
first exit point

ta:enter
t:cexit
tyenter
tyexit
tenter

texit

— min(txmina ta:max)

= maxX(tymin, trmax)

Ymax

— min(tymin7 tymax) Ymin
= max(tymin, tymax)
— maX(tmentera tyentel“)

— mln(t:cexity tyexit) Xmin Xmax
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Building a hierarchy

* Input: list of triangles
e Output: tree

* Top-down strategy:
— make bbox for the whole list
— if list is short enough:
* return a leaf node with all the triangles in it
— if list is is too long;
* split list into 2 parts
* recursively build subtree for each part
* return an internal node with those 2 children
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Building the hierarchy

* How to partition!?
— ldeal: clusters
— Practical: partition along the longest axis
* Center partition
— less expensive, simpler
— unbalanced tree (but may sometimes be better)
* Median partition
— more expensive
— more balanced tree
* Surface area heuristic
— models expected cost of ray intersection
— generally produces best-performing trees
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Surface area heuristic

* What makes a good split?
— it should be on average cheap to ray trace

— very simple cost model: cost proportional to #objects
Pr{hit left box} (# left) + Pr{hit right box} (# right) + C

— for random lines in space, the probability of intersecting a
convex shape is proportional to the surface area

* How to find the best split?
— assume we will divide primitives at some axis-aligned plane
— try a reasonable number of such planes
* for each one compute the bboxes and their SA
* choose smallest SA(left) (# left) + SA(right) (# right)

— this is not perfect but it is a good balance of simple / good
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Using the hierarchy

* Input: ray and tree (could be subtree)
e Output: smallest ¢, corresponding hit data

* Strategy:
— Ray hits this tree’s bbox! No = miss
— For leaf node: intersect all triangles, return first hit
— For internal node: intersect both children, return first hit
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Regular space subdivision

* An entirely different approach: uniform grid of cells
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Regular grid example

* Grid divides space, not objects
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Traversing a regular grid
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Nested grids

* Within each cell you can also
organize objects in a grid

* Logical extreme is an octree
— grid is 2x2x2 ';I

— every cell contains a 2x2x2 Dt i
grid or a small number of R s
primitives it

CGAL user manual

an octree fora
triangle mesh
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Non-regular space subdivision

e k-dTree

— subdivides space, like grid

— adaptive, like BVH
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Ray tracing acceleration in practice

* High RT performance is a major engineering task
— most common to rely on external libraries
— Intel Embree: CPU library optimized for Intel processors

— NVIDIA RTX: hardware accelerated ray tracing for recent
generation GPUs

— ray tracing is moving into graphics APIs

e Fastest current systems:
— CPU: tens to hundreds of megarays / sec
— GPU: several gigarays / sec

— | gigaray / 60 frames / I M pixels = |6 rays/pixel/frame
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