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• Ray tracing is slow.  This is bad!
– Ray tracers spend most of their time in ray-surface 

intersection methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea.  But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that 

definitely do not intersect a ray
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Ray tracing acceleration
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• Think of a simple region of space
– should be fast to test containment or overlap

• Strategy 1: space subdivision
– ray (or part of ray) is inside the volume
– object is entirely outside the volume
– so skip the intersection test

• Strategy 2: bounding volumes
– object is entirely inside the volume
– ray is entirely outside
– so skip the intersection test
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How to avoid work
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• Quick way to avoid intersections: bound object with a 
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits
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Bounding volumes
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• Cost: more for hits and near misses, less for far misses
• Worth doing?  It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost
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Bounding volumes

5



• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way 

from the whole scene down to groups of a few objects
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If it’s worth doing, it’s worth doing 
hierarchically!
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• A bounding volume hierarchy is a tree of boxes
– each bounding box contains all children
– ray misses parent implies ray misses all children

• Leaf nodes contain surfaces
– again the bounding box contains all geometry in that node
– if ray hits leaf node box, then we finally test the surfaces

• Replace the intersection loop over all objects in the 
scene with a partial tree traversal
– test node first; test all children only ray hits parent

• Usually we use binary trees (each non-leaf box has 
exactly two contained boxes)
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Implementing a bvol hierarchy
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BVH construction example
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BVH ray-tracing example
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• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to 

intersect, often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect 

(but cost of transformation), tighter for arbitrary 
objects

• Computing the bvols
– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres
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Choice of bounding volumes
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• Probably easiest to implement
• Computing for (axis-aligned) primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Triangles: compute min/max of vertex coordinates
– Groups or meshes: min/max of component parts

• How to intersect them
– Treat them as an intersection of slabs (see also textbook)
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Axis aligned bounding boxes
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• Could intersect with 6 faces individually
• Better way: box is the intersection of 3 slabs
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Ray-box intersection
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• 2D example
• 3D is the same!
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Ray-slab intersection
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txenter = min(txmin, txmax)

txexit = max(txmin, txmax)

tyenter = min(tymin, tymax)

tyexit = max(tymin, tymax)

• Each intersection is an interval
• Want last entry point and 

first exit point
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Intersecting intersections
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• Input: list of triangles
• Output: tree
• Top-down strategy:

– make bbox for the whole list
– if list is short enough:

• return a leaf node with all the triangles in it 
– if list is is too long:

• split list into 2 parts
• recursively build subtree for each part
• return an internal node with those 2 children
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Building a hierarchy

15



• How to partition?
– Ideal: clusters
– Practical: partition along the longest axis

• Center partition
– less expensive, simpler
– unbalanced tree (but may sometimes be better)

• Median partition
– more expensive
– more balanced tree

• Surface area heuristic
– models expected cost of ray intersection
– generally produces best-performing trees
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Building the hierarchy
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• What makes a good split?
– it should be on average cheap to ray trace
– very simple cost model: cost proportional to #objects 

Pr{hit left box} (# left) + Pr{hit right box} (# right) + C
– for random lines in space, the probability of intersecting a 

convex shape is proportional to the surface area

• How to find the best split?
– assume we will divide primitives at some axis-aligned plane
– try a reasonable number of such planes

• for each one compute the bboxes and their SA
• choose smallest SA(left) (# left) + SA(right) (# right)

– this is not perfect but it is a good balance of simple / good
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Surface area heuristic
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• Input: ray and tree (could be subtree)
• Output: smallest , corresponding hit data
• Strategy:

– Ray hits this tree’s bbox? No  miss
– For leaf node: intersect all triangles, return first hit
– For internal node: intersect both children, return first hit
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Using the hierarchy
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• An entirely different approach: uniform grid of cells
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Regular space subdivision
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• Grid divides space, not objects
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Regular grid example
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Traversing a regular grid
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• Within each cell you can also 
organize objects in a grid

• Logical extreme is an octree
– grid is 2x2x2
– every cell contains a 2x2x2 

grid or a small number of 
primitives
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Nested grids
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• k-d Tree
– subdivides space, like grid
– adaptive, like BVH
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Non-regular space subdivision
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• High RT performance is a major engineering task
– most common to rely on external libraries
– Intel Embree: CPU library optimized for Intel processors
– NVIDIA RTX: hardware accelerated ray tracing for recent 

generation GPUs
– ray tracing is moving into graphics APIs

• Fastest current systems:
– CPU: tens to hundreds of megarays / sec
– GPU: several gigarays / sec
– 1 gigaray / 60 frames / 1M pixels ≈ 16 rays/pixel/frame
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Ray tracing acceleration in practice

24


