
Steve Marschner
CS 5630

Cornell University

Steve Marschner • Cornell CS5630 Spring 2026

Ray Tracing Acceleration

1

• Ray tracing is slow. This is bad!
– Ray tracers spend most of their time in ray-surface

intersection methods

• Ways to improve speed
– Make intersection methods more efficient

• Yes, good idea. But only gets you so far
– Call intersection methods fewer times

• Intersecting every ray with every object is wasteful
• Basic strategy: efficiently find big chunks of geometry that

definitely do not intersect a ray

Steve Marschner • Cornell CS5630 Spring 2026

Ray tracing acceleration

2

• Think of a simple region of space
– should be fast to test containment or overlap

• Strategy 1: space subdivision
– ray (or part of ray) is inside the volume
– object is entirely outside the volume
– so skip the intersection test

• Strategy 2: bounding volumes
– object is entirely inside the volume
– ray is entirely outside
– so skip the intersection test

Steve Marschner • Cornell CS5630 Spring 2026

How to avoid work

3

• Quick way to avoid intersections: bound object with a
simple volume
– Object is fully contained in the volume
– If it doesn’t hit the volume, it doesn’t hit the object
– So test bvol first, then test object if it hits

[G
la

ss
ne

r
89

, F
ig

 4
.5

]

Steve Marschner • Cornell CS5630 Spring 2026

Bounding volumes

4

• Cost: more for hits and near misses, less for far misses
• Worth doing? It depends:

– Cost of bvol intersection test should be small
• Therefore use simple shapes (spheres, boxes, …)

– Cost of object intersect test should be large
• Bvols most useful for complex objects

– Tightness of fit should be good
• Loose fit leads to extra object intersections
• Tradeoff between tightness and bvol intersection cost

Steve Marschner • Cornell CS5630 Spring 2026

Bounding volumes

5

• Bvols around objects may help
• Bvols around groups of objects will help
• Bvols around parts of complex objects will help
• Leads to the idea of using bounding volumes all the way

from the whole scene down to groups of a few objects

Steve Marschner • Cornell CS5630 Spring 2026

If it’s worth doing, it’s worth doing
hierarchically!

6

• A bounding volume hierarchy is a tree of boxes
– each bounding box contains all children
– ray misses parent implies ray misses all children

• Leaf nodes contain surfaces
– again the bounding box contains all geometry in that node
– if ray hits leaf node box, then we finally test the surfaces

• Replace the intersection loop over all objects in the
scene with a partial tree traversal
– test node first; test all children only ray hits parent

• Usually we use binary trees (each non-leaf box has
exactly two contained boxes)

Steve Marschner • Cornell CS5630 Spring 2026

Implementing a bvol hierarchy

7

Steve Marschner • Cornell CS5630 Spring 2026

BVH construction example

8

Steve Marschner • Cornell CS5630 Spring 2026

BVH ray-tracing example

9

• Spheres -- easy to intersect, not always so tight
• Axis-aligned bounding boxes (AABBs) -- easy to

intersect, often tighter (esp. for axis-aligned models)
• Oriented bounding boxes (OBBs) -- easy to intersect

(but cost of transformation), tighter for arbitrary
objects

• Computing the bvols
– For primitives -- generally pretty easy
– For groups -- not so easy for OBBs (to do well)
– For transformed surfaces -- not so easy for spheres

Steve Marschner • Cornell CS5630 Spring 2026

Choice of bounding volumes

10

• Probably easiest to implement
• Computing for (axis-aligned) primitives

– Cube: duh!
– Sphere, cylinder, etc.: pretty obvious
– Triangles: compute min/max of vertex coordinates
– Groups or meshes: min/max of component parts

• How to intersect them
– Treat them as an intersection of slabs (see also textbook)

Steve Marschner • Cornell CS5630 Spring 2026

Axis aligned bounding boxes

11

• Could intersect with 6 faces individually
• Better way: box is the intersection of 3 slabs

Steve Marschner • Cornell CS5630 Spring 2026

Ray-box intersection

12

• 2D example
• 3D is the same!

Steve Marschner • Cornell CS5630 Spring 2026

Ray-slab intersection

13

xmin xmax

ymax

ymin

xmin xmax

ymax

ymin

txmin

txmax

(px, py)

(dx, dy)

tymin

tymax

(xmin, ymin)

(xmax, ymax)

xmin xmax

txmin

txmax

(px, py)

(dx, dy)

txenter = min(txmin, txmax)

txexit = max(txmin, txmax)

tyenter = min(tymin, tymax)

tyexit = max(tymin, tymax)

• Each intersection is an interval
• Want last entry point and

first exit point

Steve Marschner • Cornell CS5630 Spring 2026

Intersecting intersections

14

xmin xmax

txenter

txexit

ymax

ymintyexit

tyenter

xmin xmax

ymax

ymin

txenter

txexittyexit

tyenter

tenter = max(txenter, tyenter)

texit = min(txexit, tyexit)

• Input: list of triangles
• Output: tree
• Top-down strategy:

– make bbox for the whole list
– if list is short enough:

• return a leaf node with all the triangles in it
– if list is is too long:

• split list into 2 parts
• recursively build subtree for each part
• return an internal node with those 2 children

Steve Marschner • Cornell CS5630 Spring 2026

Building a hierarchy

15

• How to partition?
– Ideal: clusters
– Practical: partition along the longest axis

• Center partition
– less expensive, simpler
– unbalanced tree (but may sometimes be better)

• Median partition
– more expensive
– more balanced tree

• Surface area heuristic
– models expected cost of ray intersection
– generally produces best-performing trees

Steve Marschner • Cornell CS5630 Spring 2026

Building the hierarchy

16

• What makes a good split?
– it should be on average cheap to ray trace
– very simple cost model: cost proportional to #objects

Pr{hit left box} (# left) + Pr{hit right box} (# right) + C
– for random lines in space, the probability of intersecting a

convex shape is proportional to the surface area

• How to find the best split?
– assume we will divide primitives at some axis-aligned plane
– try a reasonable number of such planes

• for each one compute the bboxes and their SA
• choose smallest SA(left) (# left) + SA(right) (# right)

– this is not perfect but it is a good balance of simple / good
Steve Marschner • Cornell CS5630 Spring 2026

Surface area heuristic

17

• Input: ray and tree (could be subtree)
• Output: smallest , corresponding hit data
• Strategy:

– Ray hits this tree’s bbox? No miss
– For leaf node: intersect all triangles, return first hit
– For internal node: intersect both children, return first hit

t

⟹

Steve Marschner • Cornell CS5630 Spring 2026

Using the hierarchy

18

• An entirely different approach: uniform grid of cells

Steve Marschner • Cornell CS5630 Spring 2026

Regular space subdivision

19

• Grid divides space, not objects

Steve Marschner • Cornell CS5630 Spring 2026

Regular grid example

20

Steve Marschner • Cornell CS5630 Spring 2026

Traversing a regular grid

21

• Within each cell you can also
organize objects in a grid

• Logical extreme is an octree
– grid is 2x2x2
– every cell contains a 2x2x2

grid or a small number of
primitives

Steve Marschner • Cornell CS5630 Spring 2026

Nested grids

22

C
G

AL
 u

se
r m

an
ua

l

an octree for a  
triangle mesh

• k-d Tree
– subdivides space, like grid
– adaptive, like BVH

Steve Marschner • Cornell CS5630 Spring 2026

Non-regular space subdivision

23

• High RT performance is a major engineering task
– most common to rely on external libraries
– Intel Embree: CPU library optimized for Intel processors
– NVIDIA RTX: hardware accelerated ray tracing for recent

generation GPUs
– ray tracing is moving into graphics APIs

• Fastest current systems:
– CPU: tens to hundreds of megarays / sec
– GPU: several gigarays / sec
– 1 gigaray / 60 frames / 1M pixels ≈ 16 rays/pixel/frame

Steve Marschner • Cornell CS5630 Spring 2026

Ray tracing acceleration in practice

24

