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Radiometry is a system for describing the flow of radiant energy through space.  It is essentially a 
geometric topic—all the subtleties have to do with geometry, not the physics of light at all.

There are a number of assumptions that let us use the model of geometric optics in radiometry:

• visible light (or thereabouts)

• incoherent light

• unpolarized light (random polarization)

• macroscopic scale

Together these assumptions pretty much guarantee that we will not see any effects of the wave 
nature of light—no interference fringes, diffraction, etc.  The restriction to unpolarized light is 
perhaps the least valid, and it’s made mainly for convenience.  Including polarization in every-
thing we do in this course is not hard; it’s just a bunch of extra bookkeeping.

In geometric optics a convenient mental model is to think of light as being literally a flow of par-
ticles, like a bunch of BBs flying around the scene.  Each particle (which we may loosely call a 
photon) is a point that has a direction and a wavelength associated with it.  The particles stream 
through space in all directions, all at the same speed.  Each one carries a small fixed amount of 
energy, and they travel in straight lines until they hit something.  They do not interact with one 
another (they are non-interfering).

You can think of the photodetectors in a CCD camera or in the human eye quite literally as col-
lectors of photons.  So ultimately the quantity we want to simulate is simply a count of particles 
that belong at a particular pixel.

This particle count represents an amount of energy.  What radiometry is about is measuring the 
energy in different regions of space, direction, and time.

Aside: solid angles

One unit of measurement that figures prominently in radiometry is solid angle.  This is a general-
ization of the notion of an angle from 2D to 3D space.  In 2D one can think of directions (unit 
vectors) as being points on the unit circle, and in 3D one can think of directions as being points 
on the unit sphere.  The definition of solid angle is by analogy between these two ideas:

An angle is a section of the unit circle; the magnitude (size) of the angle is its arc length:



A solid angle is a section of the unit sphere; the magnitude of the solid angle is its area:

The idea of an angle as a set of directions may be new.  In 2D the distinction between an angle 
(the set) and the angle’s magnitude (the number) is a fine one, because as long as the set is con-
nected it is just an interval on the circle.  In 3D, the question of the shape of a solid angle is much 
more interesting, because there can be all sorts of areas on the sphere that have a particular area.

In 2D geometry one talks about the angle subtended by something at another point: for example, 
the angle at a vertex of a triangle is the angle subtended by the opposite side of the triangle.  Sim-
ilarly in 3D the solid angle subtended by an object is the set of directions that point toward that 
object.

1. Radiometric units, top down

Energy Q, measured in Joules (J)

• this is what you can actually measure with some detector: how many particles hit it.

Power, or flux: P or Φ, watts (W = J∕s)

• energy per unit time P = dQ∕dt

• synonyms: radiant flux, Φ

In steady state (which we normally assume in graphics) energy and power are basically inter-
changeable, so we are sometimes a bit sloppy in distinguishing them.  When we make a power 
measurement with some real detector, we get energy captured over some time interval (the expo-
sure).  This is an estimate of the instantaneous power: it’s the average power over the exposure.

Power can be thought of as a derivative of energy: dQ∕dt. Power is the rate of increase of energy 
as you sit and let light fall on  your detector.  You often see this written as dQ = P dt, though I try 
to avoid this.

Really, radiant flux is the starting point for radiometry; all other radiometric quantities are densi-
ties of power. 



Flux area density: irradiance E; radiant exitance M (W∕m2)

• flux per unit area E = dΦ∕dA (measured at a point on a surface)

• synonyms: radiosity, B, for radiant exitance 

Irradiance is for light arriving at a surface; radiant exitance is for light leaving a surface.  Radiosi-
ty is radiant exitance but with the connotation of uniform radiance in all directions.  The surface 
can be real or imagined, but one needs a surface to talk about irradiance.

There are a few different flavors of irradiance, which count different energy at a point.  The quan-
tity called just “irradiance” is a one-sided, surface-oriented property: it is the natural idea when 
there is a surface in the problem already.  If we are talking about a point x in a volume, one can 
still discuss the irradiance at that point, by specifying a surface normal n and defining the irradi-
ance E(x, n) as the irradiance that would fall on a small bit of surface oriented facing the direction 
n.  You can think of a little irradiance detector that counts particles that land on one side.

Another type of irradiance in a volume is scalar irradiance, also known as fluence.  This is the 
flux per unit area that would land on a small spherical detector placed at a given point.  The flu-
ence φ(x) counts all the particles that pass through a neighborhood of x, without regard to the 
direction they are traveling.

A variant of surface irradiance that is sometimes more natural in volumes is net irradiance.  (This 
is my term; I am not aware of a standard way of referring to it.)  Net irradiance is just like irradi-
ance, except that it counts particles on both sides of the surface, with the particles counted posi-
tively or negatively depending upon which way they pass through.  You can think of a net irradi-
ance probe as being like a little hoop that magically counts up the particles that fly through it.  I 
will use the convention that particles moving in the direction of the surface normal count posi-
tively, and those traveling the other way count negatively.  This means the relationship between 
net irradiance  and the ordinary surface irradiance  is

The final type of irradiance we’ll consider is vector irradiance.  This is simply a 3-vector whose 
three components are the net irradiances along the three coordinate axes:

Flux solid angle density: intensity I (W∕sr)

• flux per unit solid angle I = dΦ∕dω (measured in a direction)

This concept, in itself, is mostly used with point sources—that is, emitting objects so small that 
we don’t care about where on the object light is coming from; just what direction it goes in.  
However, it can also be used to describe light arriving at a small object, when we care only about 
the total amount of light arriving from a given direction, not about where it arrives on the object.
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Ē(x,n) = E(x,�n)�E(x,n).

�!
E (x) =

2

4
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Ē(x,e2)
Ē(x,e3)

3

5



Flux density wrt. solid angle and area: Radiance L (W∕m2sr)

• flux per unit solid angle per unit area L = d2Φ∕(dAdω) (measured in a particular direction at a 
particular point on a surface or in space).

L(x, ω) is a measure of the density of photons passing near x and traveling in directions near ω.  
The details of “near” are the key to the definition—this is a geometric question.  Radiance mea-
sures the radiant flux that would be collected if we look at photons whose directions lie within a 
solid angle dω  around ω and land on an area of surface dA at x that is perpendicular to the direc-
tion ω.

The derivative interpretation: if you enlarge dA or widen dω you will collect more light, and L is 
the constant of proportionality.

Radiance is a second derivative: It is irradiance (or radiant exitance) per unit solid angle, or it is 
intensity per unit area.

Radiance invariance

Radiance is very useful because it is conserved along lines through empty space.  That is, if we 
look at the radiance at two points x1 and x2, in the direction ω that points from one to the other, 
we will measure the same radiance at both points: L(x1, ω) = L(x2, ω).  To see why this is, we can 
measure radiance at each point.  We can make this measurement using whatever solid angles and 
areas we want, so let’s choose two areas dA1 and dA2 that are perpendicular to ω:



Think of the set of lines connecting these two patches—that is, the set of lines that pass through 
both rectangles.  Along these lines travel all the photons that pass first through dA1 and then 
through dA2.  To measure radiance at each end, we need to choose solid angles.  The trick is to 
choose the solid angle that exactly corresponds to all directions that pass through the other sur-
face.  We define dω1 as the solid angle subtended by dA2 from dA1, and likewise dω2 is the solid 
angle subtended by dA1 from dA2. (You may notice that these solid angles are different for differ-
ent points on the surfaces.  This is OK because in the limit of small areas the solid angles become 
the same.)  The sizes of these solid angles are

Now let d2Φ be the flux between the surfaces—that is, the energy carried by all the particles that 
pass first through dA1 and then through dA2.  Because of how we arranged the solid angles for 

measuring radiance, d2Φ is the power to be used for measuring radiance on both ends:

If we then substitute in the expressions for the sizes of the two solid angles, we end up with

This conservation of radiance means that, in the absence of anything that gets in the way, radiance 
is really more a property of lines in space than a property of (point, direction) pairs.  Finding that 

 is really just saying that solid angle times area is a well-defined measure 
on the space of lines: we can measure the same set of lines in two different places and get the 
same answer (see camera example at end).

Projected area and projected solid angle

Our definitions of radiance are for surface areas perpendicular to the direction in question.  What 
about when we need to work with some other surface, one that’s not perpendicular?

The simple answer: a surface that’s inclined at an angle θ to ω has the same particles passing 
through it in the direction ω as a perpendicular surface whose area is smaller by a factor of cos θ.
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If we call the inclined surface area dA′ and continue to call the perpendicular surface area dA, 
then dA = dA′ cos θ.  So the radiance can be written

The presence of the cosine is quite an inconvenience, and hiding it inside a unit of measure is ap-
pealing.  The two ways of doing this are to group (dA′ cos θ) and call it the “projected area” of 
dA′ in the direction ω or to group (dω cos θ) and call it the “projected solid angle.”

I find projected solid angle to be a very handy notational tool, and I will use it heavily as we go 
on in the course. Plain old solid angle is a measure for regions of the sphere which assigns mea-
sure by area; projected solid angle is the same only it counts areas near the equator less, and areas 
near the poles more. Or see the Nusselt analog below. One often hears radiance defined as “flux 
per unit solid angle per unit projected area” (or with the “projected” in front of “solid angle”), but 
really, this “projected” business is just saying that the area for radiance is measured on a surface 
perpendicular to the direction of propagation.

2. Radiometric units, bottom up

One can also define all these quantities by starting with radiance as the basic concept (Preisendor-
fer calls this “phase space density”) and thinking of everything else as integrals of radiance.  
From its definition it is clear that we can find power from radiance by integrating over an area and 
a solid angle.  For instance, to find the total power exiting from a surface S:

The term  is the cosine factor to allow for surfaces that are not perpendicular to ω.  The 
notation dσ(ω) means that the integration variable is ω and the measure we are using is σ, my 
name for the solid angle measure on the direction sphere.  Similarly dA(x) means that x is the in-
tegration variable and area is the measure.  The integration domain Ω is the hemisphere of direc-
tions that have positive dot product with the surface normal n, and we integrate radiance in the ω 
direction because we’re interested in radiance leaving the surface.  Integrating L(x,–ω) would 
give the total power falling on the surface.

If the surface S is not flat, then n is a function of x, and so is the hemisphere Ω.
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The notation of this integral can be simplified by using projected solid angle.  I define a new mea-
sure μ, called “projected solid angle measure,” by giving its relationship to σ for infinitesimal 
sets:

There is a nifty geometric way of thinking about this, known as the “Nusselt analog”: for any set 
D in a hemisphere, μD is the area of the shadow of D on the hemisphere’s base plane:

Using projected solid angle measure we can write

or even just

Doing only the solid angle integral gives irradiance (with –ω) or radiant exitance (with +ω):

Net irradiance is easy to compute: simply integrate over the whole sphere, and let the dot product 
supply the minus sign for the radiance going “backwards:”

And finally, vector irradiance works out to have a very simple expression in this framework:
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Here ωi is the ith component of ω, and integrating a vector quantity results in a vector containing 
the result of integrating each of the three components separately.

Scalar irradiance is even simpler than irradiance:

Doing only the area integral gives intensity:

We could invent a “projected area” measure in which to hide the cosine factor, but since this 
computation is not nearly so common as irradiance, I won’t bother.

3. Examples

Detectors for various quantities

For some of these quantities it is helpful to think of a detector.  For flux, think of a large-area de-
tector (like a photodiode) that just collects all the photons that land on it:

For irradiance, think of a piece of photographic film.  At each point it records a signal that has to 
do with the density of photons landing near that point, but it does not care about where they come 
from:

Digital image sensors achieve the same sort of measurement with an array of very small flux me-
ters.

For radiance, the canonical example is a camera or the eye.  If we look at a little area in the image 
(a pixel, say), that collects light arriving at the lens from some solid angle.  The aperture of the 
camera defines a small area.  So the pixel value is an estimate of flux per unit solid angle (in the 
pixel’s ray direction) per unit area (at the aperture’s position):
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Reflection from perfect diffuser

A perfect diffusing reflector, known as a Lambertian surface, is a surface that reflects a fraction 0 
<= R < 1 of the incoming irradiance (that is, the radiant exitance Mr is R times the irradiance Ei), 
with uniform radiance Lr in all directions:

What is the radiance?  We know it’s related to the radiant exitance M:

Since radiance is constant this is just  (use Nusselt analog to see that 

.  This means that

This relationship between reflected radiance and incident irradiance will come up again later 
when we discuss the BRDF.

Area and solid angle in a camera

Here is an example of radiance invariance.  Suppose I have a camera pointed at a wall 1 meter 
away, and the camera’s aperture has an area A1 = 1 cm2.  Let’s say a single pixel maps to an area 

A2 = 1 mm2 on the wall.  From the camera’s point of view the pixel’s solid angle is 10–6 sr (re-
member area over squared distance).  From the wall, the camera’s aperture subtends a solid angle 
of 10–4 sr.  If the wall’s radiance is L, the power from A2 that hits the camera’s aperture is Φ = L 

× 10–6 m2 × 10–4 sr.  Interpreting this as a radiance measurement at the camera, we get Φ ∕ 10–4 
m2 ∕ 10–6 sr which is L again.
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If we point the camera out the window at a mountainside 1 km away, the pixel maps to an area of 
1 m2 but the solid angle of the camera from the mountain is only 10–10 sr and if the mountain has 
the same radiance as the wall we’ll end up with the same power coming into the camera.

Radiance falloff in a pinhole camera

Suppose I make a box with a small hole in one face and a piece of film on the opposite face.  This 
is a pinhole camera.  If we point this camera at a uniform radiance L (say, the overcast sky), what 
is the irradiance on the film?

By thinking of a very flat box (say a shirt box with the pinhole in the center of the top) it’s obvi-
ous that the irradiance is not uniform: it’s bright near the pinhole and dimmer farther away. Fur-
thermore it has to be radially symmetric, so the irradiance is a function of the angle at which the 
light strikes the film; call that α.  Call the distance from the pinhole to the film d and the area of 
the aperture dAa.

If we stand on the film, we see uniform radiance coming from the solid angle subtended by the 
aperture.  This solid angle is

s(dw f ) =
dAa cosa

r2 =
dAa cos3 a

d2



The irradiance is L times μ(dωf), which is 

So the irradiance is proportional to the square of the aperture (no surprise there), drops off with 
the square of the pinhole distance (no surprise there), and also drops off toward the corners of the 
image as the fourth power of cos α.  This turns out also to be true of a camera made with an ideal 
lens.

Resolved and unresolved objects in images

When we point a camera at an object, we think of the camera as recording that object’s radiance.  
This means that if we move the camera closer to or farther from the object the pixel value stays 
the same.  This is only true if the radiance is constant over the pixel—that is, if the object is big 
enough to be resolved by the pixel grid:

If the object is small and/or far away (a droplet of water, a star, etc.) so that it falls entirely within 
one pixel, then it behaves a bit differently.  It’s no longer possible to tell the radiance from the 
pixel value, and the pixel value doesn’t stay the same with distance.  Instead, the value is related 
to the intensity of the object, not the radiance, and it falls off with distance squared:

Solid angle of a spherical cap

Consider a spherical cap of angular radius α.

E f =
LdAa cos4 a

d2



What is its solid angle?  This is an easy integration problem in spherical coordinates if we align 
the pole with the center of the cap:

Here I am using the conventional spherical coordinates for graphics: θ counts up from zero at the 
pole; φ counts up counterclockwise around the equator.

It’s interesting to note that 1 – cos α is the length of the projection of the cap onto the vertical axis 
in the drawing.  The same thing works for any band α < θ < β on the sphere.

What is the projected solid angle of the spherical cap?  You can do this by integrating (sin θ cos θ 
dθ dφ), which is not hard.

Or you can do it in your head with the Nusselt analog.  The projection of the spherical cap onto 
the equatorial plane is a circle of radius sin θ.  The area of that circle is π sin2 θ, which is the pro-
jected solid angle of the spherical cap.

Irradiance of a disc-shaped source

Suppose we have a disc-shaped light source, of radius R and constant radiance L.  What is the 
irradiance due to that source on a surface facing the source at a distance r?

The answer is the integral of the source’s radiance over its subtense on the directional hemisphere 
at x, with respect to projected solid angle.  Since the radiance is constant, this is L times the pro-
jected solid angle of the spherical cap subtended by the source.  Using the result of the previous 
example, the irradiance is
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