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There are lots of integration problems in rendering, most of which are high-dimensional and have 
integrands that can’t easily be written down in analytic form, let alone integrated in closed form.  
The most popular approach to evaluating these is to write the definite integral you want to com-
pute as the expected value of something, then use random computational experiments to estimate 
that expected value.  This approach is known as Monte Carlo integration.

Monte Carlo integration proceeds from the definition of expected value of a random variable.  
Suppose we have a random variable  on a domain , which is distributed according to the prob-
ability density function (pdf) ; for this I write

.

Then if I evaluate some function  on values of the random variable, the expected value is

The high level idea of MC integration is simple.  I have some definite integral to compute:

so I define an estimator  as follows:

and lo and behold, the expected value of  is

so evaluating  for a random  that is sampled from  (that is, is distributed according to ) 
will give me a result that, on average, has the value .  Of course it has random variation to it, but 
if the random variation is too much I can just average the results of several independent trials of 
this Monte Carlo experiment to get a better estimate of .

This leads to a really simple master algorithm that describes the basic form of many renderers:
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result = 0
for i = 1 to N

select 

result += 

The core operations here are (1) choosing ; (2) evaluating ; and (3) evaluating .  The 
main design choices in setting up the algorithm are how to formulate the problem as an integral 
and what distribution  to use.

1. Choosing random values

The basic tool for choosing random values is a random number generator (RNG) that generates 
independent, identically distributed numbers in the range .  I will typically call these num-
bers , and you can assume in these notes that any variable called  is uniformly distributed on 
the unit interval.  These standard uniform random numbers have a probability density of 1.  It’s 
pretty obvious how to scale such numbers to generate random values in some other interval, or 
how to use multiple random numbers to get points in an axis aligned rectangle, but we will want 
to generate random points in all kinds of weird domains that follow all kinds of weird distribu-
tions.

To do this we will invariably write some code that calls the RNG one or more times and then re-
turns something it computed using those numbers.  Mathematically, we compute a function 

 from a unit cube  to some domain .  What is the probability density of the points 
generated by this process?

The probability density, or “pdf,”  of  is the probability of finding  in a small region dx, 
divided by the size of dx.  That is, .  Let’s assume for the moment that 
is a continuous one-to-one mapping—it does not map multiple different  to the same x.  Let dx 
be the image of a small region  around ; then  exactly when , so the probabili-
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ties of these two events are the same and .  Since , we can con-
clude that 

So the density is one over the Jacobian (aka. the determinant of the derivative matrix) of .

OK, that was a bit abstract.  But if we zoom out for a minute, it says that we can analyze any code 
that generates random points by warping random points in the unit n-cube in a one-to-one way by 
looking at its derivative.  If we want to generate points x in D with density , we just need to 
find a mapping from  to D whose Jacobian is p.

Example: an affine map

Suppose  is affine; then its derivative, and hence its Jacobian, is constant, and it produces a uni-
form distribution.  Instantiating this for 2D, suppose we generate points on a rectangle in 3D that 
is defined by a corner p, an orthonormal pair of vectors u and v, and its width w and height h. 

Here the determinant of that matrix is wh, the area of the rectangle, so the probability density is 
constant  which checks out since it integrates to 1 over the rectangle.

Example: one dimensional warps

If  then 

This can be illustrated by looking at the images of two same-size intervals in ; they map to inter-
vals in x of size proportional to , so when  is big, the density is small, and vice versa.

Inverse CDF sampling method

This example gives rise to a very useful method for generating samples in 1D domains.  If we 
know , we can integrate to get a function whose derivative is p:
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P is the cumulative distribution function, and if we use its inverse for the warping function f, we 
will get samples distributed according to .  This is a great tool for sampling 1D distributions 
that are sufficiently cooperative analytically that we can integrate and invert them in closed form.

Sampling 2D domains

This method works in 1D but what about more dimensions?  In graphics we very often are gener-
ating samples in 2D domains, for instance by sampling points on surfaces or directions in the 
hemisphere.

The easy case is when the desired 2D distribution is separable—that is 

.

Then we can simply take a 2D random point and apply the inverse CDF method to each of the 
two coordinates separately.  A 2D picture of this is that a little square  turns into a little rec-
tangular  , so designing  and  separately achieves the de-
sired .  Another way of saying this is that  and  are statistically independent so they can 
be generated separately.
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If  is not separable, we can still rescue this approach by using the marginal and conditional 
distributions of .  Using the notation that  with a single argument is a marginal distribution and 
with arguments separated by a bar is a conditional distribution:

First selecting  with density  (the marginal density) and then selecting  with density 
 (the conditional density of  which depends on the chosen value of ) will produce 

samples distributed according to p.

We don’t see this non-separable marginal–conditional approach being used that much, possibly 
because the required integral is often not friendly or possibly because it tends to produce a lot of 
distortion in the warp (more on this later).

Radially symmetric densities

One frequent application of the separable sampling approach is to densities that are radially sym-
metric—that is, they depend only on distance from the center of the domain.  In this case we can 
use a polar coordinates mapping to get a density over  that depends only on r, making it 
separable (with a uniform distribution as the  pdf).  For instance, suppose we want to generate 
points with a uniform distribution in the unit circle.  The desired pdf is the constant 

.  Because the Jacobian of the mapping from  to  is r, the desired pdf in 
polar coordinates is .  We can write this as a separable product:

Applying the inverse CDF method to both variables separately we get

The same process works for any radially symmetric distribution where the required integral 
works out neatly.  This includes sampling spheres and hemispheres with uniform or cosine-pro-
portional sampling, sampling the subtense of a spherical light source, or sampling radially sym-
metric microfacet distributions for BRDF sampling (these last two needed for the assignment!).

Box-Muller transformation

I want to show you one nifty and maybe surprising application of this idea, proposed by Box and 
Muller in a 1958 paper.  Suppose I have the (quite common) problem of generating samples dis-
tributed according to a standard normal (Gaussian) distribution:
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You might try the inverse CDF method but you will run aground because the CDF doesn’t have a 
closed form.  Though functions to compute it (“erf”) are available in most math libraries, the in-
verse is less universally available and is a bit complicated to compute.

A (the?) nifty feature of the Gaussian distribution is that in multiple dimensions it’s both separa-
ble and radially symmetric.  That is, if I define a 2D distribution by making the two coordinates 
independently Guasssian, I get

Sampling this as a separable distribution in x and y didn’t work out so well but let’s try sampling 
it in polar coordinates.  This leads to

This time the integral worked out just great (with the additional factor of r in there), and it’s sim-
ple to invert leading to the sampling procedure

Computed in this way, x and y are independently and normally distributed.  It’s more traditional to 
replace  with just , which has the same density (this may provide better precision for 
large values of x but does require a special case for ). So at the cost of generating two ran-
dom numbers, I get two Gaussian-distributed values.  I can sample from an n-dimensional Gauss-
ian by doing this ceil(n/2) times.

This is a neat example where making the problem “harder” (sampling a 2D gaussian rather than 
1D) actually made it easier.

Aside: Someone pointed out after class that this provides a way to generate random points on the 
unit n-sphere, by first generating Gaussian-distributed (n+1)-D points and then normalizing them 
to unit length—pretty cool.  For the 2-sphere in 3-space we have easy procedures already that use 
two random numbers (rather than four), but in higher dimensions (e.g. generating random unit 
quaternions) it might be more arduous to work out the parameterizations and this approach is 
simple!
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Discrete distributions

Sometimes a distribution is hard to deal with and we resort to storing tables of precomputed val-
ues; or perhaps data that defines a particular probability distribution is measured or computed and 
arrives in the form of an array of samples (like an image, texture map, or environment map).  In 
these cases we need to be able to sample from distributions defined by discrete collections of val-
ues.

A simple example of this is where we have a 1D distribution that is defined by a list of N proba-
bilities that sum up to 1.  We would like to select an integer in the range [0, N) for which the 
probability of selecting the integer i is equal to the table entry  (using C-style indexing here).

This problem can be solved by the discrete analog of the inverse CDF sampling method above.  
Think of the N probabilities as bars that stack up to fill the unit interval:

then take a uniformly random  and choose the bar that contains .  This amounts to finding i such 
that , where the s are the partial sums

(in particular  and ).  You can think of these partial sums as playing the role of the 
CDF in the continuous case, leading to a picture like this:

You can code this up efficiently by storing the partial sums in an array, then using binary search to 
find i given .
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This has been about choosing an integer with probability , but what if I was really thinking of 
my probability table as expressing a piecewise constant pdf on the interval of real numbers from 0 
to N?  The graph of this density is like this:

The cdf that goes with this pdf is piecewise linear, and applying the inverse-CDF method to it 
gives a two-step algorithm that first selects a linear segment in the same way as above, then does 
linear interpolation to decide where x goes in that segment:

This is an example of a general pattern that shows up in many places.  We are sampling a domain 
that is a union of a bunch of continuous pieces (here they are the intervals between intervals), and 

pi

x = i +
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so we first choose which piece to sample by letting  fall into one of several bins.  Then we use 
the relative position of  within that bin as a random number to choose a point within that bin.

This pattern also applies to many other discrete/continuous choices; for example:

• choosing a light source from several sources, then choosing a point on the source

• choosing a component (specular, diffuse, mirror) of a BRDF, then sampling that component

• choosing the length of a path, then constructing a random path with that length

2. Statistical software testing

When writing software we want unit tests.  But when testing Monte Carlo software we have the 
problem that its outputs are not deterministic.  How to decide whether the output is correct when 
it is not deterministic?

One good answer is to use the same statistical tests used in experimental science to decide when 
the data produced by some experiment supports a hypothesis or could be plausibly explained by 
randomness.  The difference is that in software testing we are usually rooting for the absence of a 
statistically significant effect!

Student’s t-test

This standard test is used to analyze a collection of samples from a presumed normal distribution 
and decide whether they come from a distribution whose mean is different from a given value or 
not.  The “null hypothesis” is that the mean is not different (e.g. participants in my drug trial who 
got the treatment had the same outcomes as those who didn’t), and the test produces a number 
which is the probability with which the difference of the sample mean from the reference would 
be at least as large as it was if the underlying mean was actually the same.  A low probability in-
dicates a significant effect (i.e. it’s implausible to explain the results by chance).

In the software testing context, we could use the same test to check something like whether a par-
ticular pixel has the right value.  We would compute the pixel value several times (being careful 
to use different random number seeds to ensure independence), and then use Student’s test to de-
cide whether there is a statistically significant difference from the known reference answer.  A 
significant effect indicates that with high probability you have a bug; lack of significance says 
that it’s plausible your code is correct (you can run with more samples to check more stringently).

Chi-squared test

Sometimes, rather than a single random value, I have samples from a distribution and I want to 
know if they come from the right distribution.  The  test is another classic statistical test that 
answers a discrete version of this problem: I have a number of samples that fell into a number of 
buckets, and I think I know the probabilities of all the buckets (and therefore the expected count 
of samples in each one).  Of course the counts will not exactly equal the expected counts.  The  
test can tell me the probability of the difference between the expected counts and the actual 
counts being at least as large as was observed.  If that probability is low, there is a significant dif-
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ference (i.e. the null hypothesis that the probabilities actually are what I expected is not a plausi-
ble explanation).

In Monte Carlo sampling code this test is useful for verifying the distribution produced by some 
sampling procedure: divide the domain up into finite pieces, compute the probability of each 
piece by integrating the pdf, generate a bunch of samples and count them up in the bins.  Analyze 
the counts looking for a statistically significant deviation from the correct probabilities; if there is, 
you likely have a bug; otherwise it’s plausible that your code is correct.

3. Low discrepancy sampling

The presentation of Monte Carlo integration in terms of independent random samples is simple 
and appealing, and it is very useful to rely on the intuitions that you gain this way.  But in practice 
we don’t really use independent random samples, particularly for the “easier” parts of the prob-
lem, because more nicely distributed samples can substantially reduce variance.

Monte Carlo integrators average many samples to get an estimate of the expected value of an es-
timator.  If the estimator is g, we can think of the output of this process as another estimator (a 
macro-estimator?)

Our intuition is that the variance of  is less than the variance of g by itself.  This is simple to 
show, since the samples are independent and therefore their variances add:

The variance of  is  times the variance of this sum:

The variance is inversely proportional to the number of samples.  But a more intuitive error met-
ric, measured on the same scale as g, is the standard deviation, which is the square root of the 
variance.  The bottom line is

This formula is the big bummer of Monte Carlo integration.  To double your precision you need 
to quadruple the sample budget (and therefore the CPU or GPU time).  To get one more signif-
cant figure of accuracy you need 100 times as much work!

The news is bad, but not always this bad.  It turns out that this convergence rate can be improved 
in many cases
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Stratified sampling

If averaging a bunch of samples with equal variance gives us this  convergence, maybe we 
can find a way to average samples that each have lower variance.  One way to do this is with 
stratified sampling—rather than estimating the whole integral N times, break the integral into N 
pieces called “strata” and estimate each one with one sample.  To keep the analysis simple I’ll 
work out the case where we are using a uniform sampling density  and the strata are all the 
same size (and therefore the same probability).  We break the domain up into N equal-size pieces 
called :

We estimate  with one sample , using the probability density p restricted to .

(N is the normalization factor to make  normalized over (1/N) of the domain.)  Because these 
estimators are for the integrals over pieces of the domain, their sum (rather than their average) is 
the estimator for the whole integral:

Note that the formula for  is the same as for ; this means the code to compute them is the 
same; we just use different samples.

There can be a difference in variance, though, if the function is smooth enough that the variance 
over each stratum is substantially smaller than the variance over the whole domain.  If f is suff-
ciently smooth that it can be approximated as locally linear, then doubling the number of strata 
will halve the standard deviation within each stratum:
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Once we have enough strata that things look locally linear, the distribution of values of g over one 
stratum keeps the same shape as the strata shrink, only with the range of values scaled by .  
(In this 1D example the distribution of g over a small stratum is uniform.)

Now the variance of each  decreases as  so the variance of the sum of N samples looks 
like

Note that this is only expected to hold once the strata are small enough that the smooth integrand 
can be approximated as locally linear, and the constant K depends on the properties of the inte-
grand.  (For example, if the integrand was linear, K would be  since the linear approxima-
tion would hold right from the beginning.)

Then the variance and standard deviation of  (remember dividing by N decreases the variance 
by ) are:

This is a really nice improvement in convergence rate!  We can easily confirm it on a 1D example 
(see notebook).  But before we get too excited about this let’s remember it is a best-case result for 
very smooth integrands, and the variance reduction is less in higher dimensions.  Again using the 
locally-linear idea, the variance scales as the square of the diameter of the strata, which is   
in 2D rather than  (and generally  in d dimensions).  Working this through to the final 
convergence rate, we get that stratified sampling can give us

in the best case of a very smooth integrand.  This still makes a big difference in 2D, and the same 
analysis also applies for higher dimensional integrands when most of the variation of a particular 
integrand is aligned with a 2D subspace, which is a common case.

For these reasons most rendering systems include some mechanism to improve the distribution of 
samples across 2D domains of interest, such as the hemisphere, a light source, the image plane, 
the camera aperture, etc.  Since we already generate samples by warping random points generated 
in a unit cube, stratification is easy to add, at least in principle: you just start with a stratified pat-
tern of samples, and feed them to the warping functions.  The warps and all the code that uses the 
samples can remain blissfully unaware that someone is helping them converge faster by fiddling 
with the samples.

Blue noise sampling

One way of thinking about the benefits of stratification is that it produces points that are spread 
out more nicely over the domain.  Statistically independent samples are surprisingly “clumpy” 
and stratification improves this.  There is also a signal processing viewpoint on Monte Carlo inte-
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gration in which the goal of designing random sampling patterns is expressed in terms of their 
Fourier spectra: we want sampling patterns that have their frequency content at high spatial fre-
quencies, and not low ones, so that when we average over the domain the random noise is at high 
spatial frequencies that are effectively removed by averaging.  This view is particularly salient for 
the problem of antialiasing, or averaging over pixel areas: a good sampling pattern pushes the 
noise to high frequencies in the image plane which are effectively filtered out by the antialiasing 
filter.

This view leads to a whole subfield of “blue noise” sampling, which looks for efficient ways to 
generate patterns of samples that are uniformly distributed spatially (or have some specified dis-
tribution) and have little frequency content at low spatial frequencies.  The name “blue” just 
comes from the analogy to light: blue colors contain mainly high frequency (short wavelength) 
radiation, so we call patterns that contain mainly high frequencies “blue.”  Poisson disk patterns 
are an example of this type of pattern, but there are very many methods for generating blue-noise 
patterns.

Quasi Monte Carlo

Yet another way to think about “nice” distribution of samples is discrepancy: the maximum dif-
ference between the volume of a box that is a subset of  and the fraction of samples it con-
tains.  Low discrepancy patterns show similar benefits to stratified patterns.  But patterns don’t 
need to be random to exhibit low discrepancy.  This gives rise to the field of Quasi Monte Carlo 
sampling, which seeks efficient algorithms to generate deterministic point sets that have low dis-
crepancy (which generally means they will also tend to look random and blue-noise in the sense 
that they don’t exhibit obvious spatial structure).

QMC sequences are popular in rendering partly because they solve an annoying problem that is 
shared by stratified and most blue noise patterns: you have to know how many samples you will 
need up front.  Randomizing the order of the samples makes it safe to use only a prefix of the 
whole list of samples, in the sense that you will still get the right mean, but the variance benefits 
of stratification are quickly destroyed by leaving out even just a few samples.  This requirement is 
fine in simple cases, but as things get more complex it is often awkward to ensure that the number 
of samples that will be needed is always known up front.  In this case QMC is very appealing, 
because any subsequence of a QMC sequence has the same low-discrepancy properties.  For this 
reason QMC is often the default choice for “random” sample generation in Monte Carlo render-
ers.

Preserving sample patterns

The benefits of stratified samples depend on having compact strata where the integrand can be 
expected to exhibit less variance, and similarly the properties of blue noise or low discrepancy 
patterns are defined in terms of “nice shaped” regions in the unit cube.  When the samples are 
mapped into other domains with warping functions to achieve particular densities, the strata are 
distorted from their original shape, and if the distortion is extreme, the benefits of stratification 
can be eroded.

This leads to an additional design goal for warping functions: not only should they have the right 
Jacobian (to achieve the correct probability density) but they should have low distortion.  This 
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low distortion goal is in the background of many design choices for warping functions, for in-
stance:

• Polar coordinates warps are convenient but do tend to produce a lot of distortion around the 
pole.  There is a popular alternative “concentric” warp proposed by Shirley and Chiu, which is a 
little more code but produces a lower distortion map that does tend to make sampling patterns 
perform better.

• In sampling environment maps, some obvious methods fail to preserve stratification much at all.  
For instance, you could think of the map as a collection of pixels, use the first random number 
to choose a pixel, then scale that first one and use it and the second number to choose a point 
within the pixel.  This will pretty much completely destroy the structure of your sample pattern 
since the strata will be shredded across scan lines of the environment map.  Two better ap-
proaches are described by Matt Pharr in this post: one is to apply the marginal-conditional ap-
proach to the two dimensions of the environment map; the other is the hierarchical sample 
warping scheme from the optional component of our assignment.  Both preserve stratification 
better, though neither is perfect (and indeed perfection is not a useful concept here!).

Software for samplers

The strategy of generating samples by warping from the unit cube is reflected in the software ar-
chitecture of renderers.

If we only wanted to use independent random numbers all the time, all we would need is a ran-
dom number generator that could be called from anywhere in the code where a random number is 
needed.  The mappings from the unit cube to our various integration domains would exist just on 
paper to derive the expressions we type into the code.  There are two things to think about in this 
strategy (which continue to be relevant below).  One is seeds and determinism: generally speak-
ing it is very helpful to be able to re-run a rendering with the same random numbers, particularly 
for debugging.  Bugs that happen randomly are hard to catch, but once you observe one if you can 
then fix the random number seed in the future you will be able study the particular execution path 
that led to the bug.  On the other hand it’s very important that the random number seeds be differ-
ent for different pixels so that we don’t get correlated noise that becomes visible in the image.  
It’s also important for seeds to be different if you are hoping to run your program multiple times 
in parallel and average the results to reduce noise; and you probably want seeds to be different 
across animation frames so you don’t get a distracting combination of noise that is the same be-
tween frames and noise that is different depending on what has changed in the scenes.

Renderers are multithreaded programs, and to achieve determinism it’s not sufficient to set a sin-
gle seed, since things may not get computed in the same order from one run to the next, and in 
any case it’s generally not safe to call a single RNG in multiple threads.  For this reason you nor-
mally want a separate RNG for each thread, and you want to seed them in a way that depends 
deterministically on which part of the image the thread is computing.  For instance you might set 
the seed for each pixel by using a hash of the x and y pixel indices with a global seed.

All the types of variance-reducing sample patterns that I’ve talked about can be abstracted as dif-
ferent algorithms for generating points in the unit cube.  The need to preserve structured sample 
patterns leads to the need to expose this unit cube idea in the code: when you use a random num-
ber it matters which dimension of the cube it belongs to.  Typically there is an object that is re-

https://web.archive.org/web/20190223095317id_/http://pdfs.semanticscholar.org/4322/6a3916a85025acbb3a58c17f6dc0756b35ac.pdf


sponsible for keeping track of the sample patterns being generated; Nori’s Sampler class, which is 
a simplified version of the corresponding class in PBRT, is a typical example (see header file).
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