
Monte Carlo Integration
for Rendering

Steve Marschner
Cornell University

CS 5630 Spring 2026

There are lots of integration problems in rendering, most of which are high-dimensional and have
integrands that can’t easily be written down in analytic form, let alone integrated in closed form.
The most popular approach to evaluating these is to write the definite integral you want to com-
pute as the expected value of something, then use random computational experiments to estimate
that expected value. This approach is known as Monte Carlo integration.

Monte Carlo integration proceeds from the definition of expected value of a random variable.
Suppose we have a random variable on a domain , which is distributed according to the prob-
ability density function (pdf) ; for this I write

.

Then if I evaluate some function on values of the random variable, the expected value is

The high level idea of MC integration is simple. I have some definite integral to compute:

so I define an estimator as follows:

and lo and behold, the expected value of is

so evaluating for a random that is sampled from (that is, is distributed according to)
will give me a result that, on average, has the value . Of course it has random variation to it, but
if the random variation is too much I can just average the results of several independent trials of
this Monte Carlo experiment to get a better estimate of .

This leads to a really simple master algorithm that describes the basic form of many renderers:

X D
p(x)

X ∼ p(x)

g(x)

E{g(X)} = ∫D
g(x)p(x)d x

I = ∫D
f (x)d x

g(x)

g(x) =
f (x)
p(x)

g

E{g(X)} = ∫D
f (x)d x = I

g x X p(x)
I

I

result = 0
for i = 1 to N

select

result +=

The core operations here are (1) choosing ; (2) evaluating ; and (3) evaluating . The
main design choices in setting up the algorithm are how to formulate the problem as an integral
and what distribution to use.

1. Choosing random values

The basic tool for choosing random values is a random number generator (RNG) that generates
independent, identically distributed numbers in the range . I will typically call these num-
bers , and you can assume in these notes that any variable called is uniformly distributed on
the unit interval. These standard uniform random numbers have a probability density of 1. It’s
pretty obvious how to scale such numbers to generate random values in some other interval, or
how to use multiple random numbers to get points in an axis aligned rectangle, but we will want
to generate random points in all kinds of weird domains that follow all kinds of weird distribu-
tions.

To do this we will invariably write some code that calls the RNG one or more times and then re-
turns something it computed using those numbers. Mathematically, we compute a function

 from a unit cube to some domain . What is the probability density of the points
generated by this process?

The probability density, or “pdf,” of is the probability of finding in a small region dx,
divided by the size of dx. That is, . Let’s assume for the moment that
is a continuous one-to-one mapping—it does not map multiple different to the same x. Let dx
be the image of a small region around ; then exactly when , so the probabili-

x ∼ p(x)
1
N

f (x)
p(x)

x f (x) p(x)

p(x)

[0,1)
ξ ξ

x = f (ξ) [0,1)n D

p(x) x x
Pr{x ∈ d x} = p(x) |d x | f

ξ
dξ ξ x ∈ d x ξ ∈ dξ

ties of these two events are the same and . Since , we can con-
clude that

So the density is one over the Jacobian (aka. the determinant of the derivative matrix) of .

OK, that was a bit abstract. But if we zoom out for a minute, it says that we can analyze any code
that generates random points by warping random points in the unit n-cube in a one-to-one way by
looking at its derivative. If we want to generate points x in D with density , we just need to
find a mapping from to D whose Jacobian is p.

Example: an affine map

Suppose is affine; then its derivative, and hence its Jacobian, is constant, and it produces a uni-
form distribution. Instantiating this for 2D, suppose we generate points on a rectangle in 3D that
is defined by a corner p, an orthonormal pair of vectors u and v, and its width w and height h.

Here the determinant of that matrix is wh, the area of the rectangle, so the probability density is
constant which checks out since it integrates to 1 over the rectangle.

Example: one dimensional warps

If then

This can be illustrated by looking at the images of two same-size intervals in ; they map to inter-
vals in x of size proportional to , so when is big, the density is small, and vice versa.

Inverse CDF sampling method

This example gives rise to a very useful method for generating samples in 1D domains. If we
know , we can integrate to get a function whose derivative is p:

p(ξ) |dξ | = p(x) |d x | p(ξ) = 1

p(x) =
|dξ |
|d x |

=
d x
dξ

−1

= ∇f
−1

f

p(x)
[0,1)n

f

f (ξ) = p + ξ1w u + ξ2hv = p + [w u hv] ξ

1/(wh)

f : ℝ → ℝ

p(f (ξ)) =
1

| f ′￼(ξ) |
or p(x) = | (f −1)′￼(x) |

ξ
f ′￼(ξ) f ′￼

p(x)

P is the cumulative distribution function, and if we use its inverse for the warping function f, we
will get samples distributed according to . This is a great tool for sampling 1D distributions
that are sufficiently cooperative analytically that we can integrate and invert them in closed form.

Sampling 2D domains

This method works in 1D but what about more dimensions? In graphics we very often are gener-
ating samples in 2D domains, for instance by sampling points on surfaces or directions in the
hemisphere.

The easy case is when the desired 2D distribution is separable—that is

.

Then we can simply take a 2D random point and apply the inverse CDF method to each of the
two coordinates separately. A 2D picture of this is that a little square turns into a little rec-
tangular , so designing and separately achieves the de-
sired . Another way of saying this is that and are statistically independent so they can
be generated separately.

P(x) = ∫
x

p(x)d x

f (ξ) = P−1(ξ)

p(x)

p(x) = p(x1, x2) = p1(x1)p2(x2)

d ξ
d x = d x1d x2 = | f ′￼1(ξ1) | | f ′￼2(ξ2) |d ξ f1 f2

p(x) x1 x2

If is not separable, we can still rescue this approach by using the marginal and conditional
distributions of . Using the notation that with a single argument is a marginal distribution and
with arguments separated by a bar is a conditional distribution:

First selecting with density (the marginal density) and then selecting with density
 (the conditional density of which depends on the chosen value of) will produce

samples distributed according to p.

We don’t see this non-separable marginal–conditional approach being used that much, possibly
because the required integral is often not friendly or possibly because it tends to produce a lot of
distortion in the warp (more on this later).

Radially symmetric densities

One frequent application of the separable sampling approach is to densities that are radially sym-
metric—that is, they depend only on distance from the center of the domain. In this case we can
use a polar coordinates mapping to get a density over that depends only on r, making it
separable (with a uniform distribution as the pdf). For instance, suppose we want to generate
points with a uniform distribution in the unit circle. The desired pdf is the constant

. Because the Jacobian of the mapping from to is r, the desired pdf in
polar coordinates is . We can write this as a separable product:

Applying the inverse CDF method to both variables separately we get

The same process works for any radially symmetric distribution where the required integral
works out neatly. This includes sampling spheres and hemispheres with uniform or cosine-pro-
portional sampling, sampling the subtense of a spherical light source, or sampling radially sym-
metric microfacet distributions for BRDF sampling (these last two needed for the assignment!).

Box-Muller transformation

I want to show you one nifty and maybe surprising application of this idea, proposed by Box and
Muller in a 1958 paper. Suppose I have the (quite common) problem of generating samples dis-
tributed according to a standard normal (Gaussian) distribution:

p(x)
p p

p(x1) = ∫ p(x1, x2)d x2

p(x2 |x1) = p(x1, x2)/p(x1)

x1 p(x1) x2
p(x2 |x1) x2 x1

(r, θ)
θ

p(x , y) = 1/π (r, θ) (x , y)
p(r, θ) = r /π

p(r, θ) = (1
2π) (2r) = p(θ)p(r)

θ = 2πξ1

r = ξ2

(x , y) = (r cos θ, r sin θ)

http://dx.doi.org/10.1214/aoms/1177706645

You might try the inverse CDF method but you will run aground because the CDF doesn’t have a
closed form. Though functions to compute it (“erf”) are available in most math libraries, the in-
verse is less universally available and is a bit complicated to compute.

A (the?) nifty feature of the Gaussian distribution is that in multiple dimensions it’s both separa-
ble and radially symmetric. That is, if I define a 2D distribution by making the two coordinates
independently Guasssian, I get

Sampling this as a separable distribution in x and y didn’t work out so well but let’s try sampling
it in polar coordinates. This leads to

This time the integral worked out just great (with the additional factor of r in there), and it’s sim-
ple to invert leading to the sampling procedure

Computed in this way, x and y are independently and normally distributed. It’s more traditional to
replace with just , which has the same density (this may provide better precision for
large values of x but does require a special case for). So at the cost of generating two ran-
dom numbers, I get two Gaussian-distributed values. I can sample from an n-dimensional Gauss-
ian by doing this ceil(n/2) times.

This is a neat example where making the problem “harder” (sampling a 2D gaussian rather than
1D) actually made it easier.

Aside: Someone pointed out after class that this provides a way to generate random points on the
unit n-sphere, by first generating Gaussian-distributed (n+1)-D points and then normalizing them
to unit length—pretty cool. For the 2-sphere in 3-space we have easy procedures already that use
two random numbers (rather than four), but in higher dimensions (e.g. generating random unit
quaternions) it might be more arduous to work out the parameterizations and this approach is
simple!

p(x) =
1

2π
e−x2/2

p(x , y) =
1

2π
e−x2/2e−y2/2 =

1
2π

e−(x2+y2)/2 =
1

2π
e−r2/2

p(r, θ) =
1

2π
re−r2/2

p(r) = re−r2/2

P(r) = ∫
r

0
p(t)dt = 1 − e−r2/2

θ = 2πξ1

r = −2 ln(1 − ξ2)
x = r cos θ
y = r sin θ

1 − ξ2 ξ2
ξ2 = 0

https://www.jstor.org/stable/2004772

Discrete distributions

Sometimes a distribution is hard to deal with and we resort to storing tables of precomputed val-
ues; or perhaps data that defines a particular probability distribution is measured or computed and
arrives in the form of an array of samples (like an image, texture map, or environment map). In
these cases we need to be able to sample from distributions defined by discrete collections of val-
ues.

A simple example of this is where we have a 1D distribution that is defined by a list of N proba-
bilities that sum up to 1. We would like to select an integer in the range [0, N) for which the
probability of selecting the integer i is equal to the table entry (using C-style indexing here).

This problem can be solved by the discrete analog of the inverse CDF sampling method above.
Think of the N probabilities as bars that stack up to fill the unit interval:

then take a uniformly random and choose the bar that contains . This amounts to finding i such
that , where the s are the partial sums

(in particular and). You can think of these partial sums as playing the role of the
CDF in the continuous case, leading to a picture like this:

You can code this up efficiently by storing the partial sums in an array, then using binary search to
find i given .

p[i]

ξ ξ
si ≤ ξ < si+1

si = ∑
j<i

pj

s0 = 0 sN = 1

ξ

This has been about choosing an integer with probability , but what if I was really thinking of
my probability table as expressing a piecewise constant pdf on the interval of real numbers from 0
to N? The graph of this density is like this:

The cdf that goes with this pdf is piecewise linear, and applying the inverse-CDF method to it
gives a two-step algorithm that first selects a linear segment in the same way as above, then does
linear interpolation to decide where x goes in that segment:

This is an example of a general pattern that shows up in many places. We are sampling a domain
that is a union of a bunch of continuous pieces (here they are the intervals between intervals), and

pi

x = i +
ξ − si

si+1 − si

so we first choose which piece to sample by letting fall into one of several bins. Then we use
the relative position of within that bin as a random number to choose a point within that bin.

This pattern also applies to many other discrete/continuous choices; for example:

• choosing a light source from several sources, then choosing a point on the source

• choosing a component (specular, diffuse, mirror) of a BRDF, then sampling that component

• choosing the length of a path, then constructing a random path with that length

2. Statistical software testing

When writing software we want unit tests. But when testing Monte Carlo software we have the
problem that its outputs are not deterministic. How to decide whether the output is correct when
it is not deterministic?

One good answer is to use the same statistical tests used in experimental science to decide when
the data produced by some experiment supports a hypothesis or could be plausibly explained by
randomness. The difference is that in software testing we are usually rooting for the absence of a
statistically significant effect!

Student’s t-test

This standard test is used to analyze a collection of samples from a presumed normal distribution
and decide whether they come from a distribution whose mean is different from a given value or
not. The “null hypothesis” is that the mean is not different (e.g. participants in my drug trial who
got the treatment had the same outcomes as those who didn’t), and the test produces a number
which is the probability with which the difference of the sample mean from the reference would
be at least as large as it was if the underlying mean was actually the same. A low probability in-
dicates a significant effect (i.e. it’s implausible to explain the results by chance).

In the software testing context, we could use the same test to check something like whether a par-
ticular pixel has the right value. We would compute the pixel value several times (being careful
to use different random number seeds to ensure independence), and then use Student’s test to de-
cide whether there is a statistically significant difference from the known reference answer. A
significant effect indicates that with high probability you have a bug; lack of significance says
that it’s plausible your code is correct (you can run with more samples to check more stringently).

Chi-squared test

Sometimes, rather than a single random value, I have samples from a distribution and I want to
know if they come from the right distribution. The test is another classic statistical test that
answers a discrete version of this problem: I have a number of samples that fell into a number of
buckets, and I think I know the probabilities of all the buckets (and therefore the expected count
of samples in each one). Of course the counts will not exactly equal the expected counts. The
test can tell me the probability of the difference between the expected counts and the actual
counts being at least as large as was observed. If that probability is low, there is a significant dif-

ξ
ξ

χ2

χ2

ference (i.e. the null hypothesis that the probabilities actually are what I expected is not a plausi-
ble explanation).

In Monte Carlo sampling code this test is useful for verifying the distribution produced by some
sampling procedure: divide the domain up into finite pieces, compute the probability of each
piece by integrating the pdf, generate a bunch of samples and count them up in the bins. Analyze
the counts looking for a statistically significant deviation from the correct probabilities; if there is,
you likely have a bug; otherwise it’s plausible that your code is correct.

3. Low discrepancy sampling

The presentation of Monte Carlo integration in terms of independent random samples is simple
and appealing, and it is very useful to rely on the intuitions that you gain this way. But in practice
we don’t really use independent random samples, particularly for the “easier” parts of the prob-
lem, because more nicely distributed samples can substantially reduce variance.

Monte Carlo integrators average many samples to get an estimate of the expected value of an es-
timator. If the estimator is g, we can think of the output of this process as another estimator (a
macro-estimator?)

Our intuition is that the variance of is less than the variance of g by itself. This is simple to
show, since the samples are independent and therefore their variances add:

The variance of is times the variance of this sum:

The variance is inversely proportional to the number of samples. But a more intuitive error met-
ric, measured on the same scale as g, is the standard deviation, which is the square root of the
variance. The bottom line is

This formula is the big bummer of Monte Carlo integration. To double your precision you need
to quadruple the sample budget (and therefore the CPU or GPU time). To get one more signif-
cant figure of accuracy you need 100 times as much work!

The news is bad, but not always this bad. It turns out that this convergence rate can be improved
in many cases

GN =
1
N

N

∑
i=1

g(xi) where xi ∼ p

GN

σ2 {
N

∑
i=1

g(xi)} =
N

∑
i=1

σ2{g} = Nσ2{g}

GN 1/N 2

σ2{GN} =
σ2{g}

N

σ{GN} =
σ{g}

N

Stratified sampling

If averaging a bunch of samples with equal variance gives us this convergence, maybe we
can find a way to average samples that each have lower variance. One way to do this is with
stratified sampling—rather than estimating the whole integral N times, break the integral into N
pieces called “strata” and estimate each one with one sample. To keep the analysis simple I’ll
work out the case where we are using a uniform sampling density and the strata are all the
same size (and therefore the same probability). We break the domain up into N equal-size pieces
called :

We estimate with one sample , using the probability density p restricted to .

(N is the normalization factor to make normalized over (1/N) of the domain.) Because these
estimators are for the integrals over pieces of the domain, their sum (rather than their average) is
the estimator for the whole integral:

Note that the formula for is the same as for ; this means the code to compute them is the
same; we just use different samples.

There can be a difference in variance, though, if the function is smooth enough that the variance
over each stratum is substantially smaller than the variance over the whole domain. If f is suff-
ciently smooth that it can be approximated as locally linear, then doubling the number of strata
will halve the standard deviation within each stratum:

N−0.5

p(x)

Di

Ii = ∫Di

f ; D =
N

⨆
i=1

Di ; I =
N

∑
i=1

Ii ; |Di | =
|D |
N

Ii xi Di

xi ∼ Np |Di
; gi(xi) =

f (xi)
pi(xi)

=
g(xi)

N
; E{gi(xi)} = Ii

pi

G′￼N =
N

∑
i=1

gi(xi) =
1
N

N

∑
i=1

g(xi) ; E{G′￼N} = E{GN} = I

G′￼N GN

Once we have enough strata that things look locally linear, the distribution of values of g over one
stratum keeps the same shape as the strata shrink, only with the range of values scaled by .
(In this 1D example the distribution of g over a small stratum is uniform.)

Now the variance of each decreases as so the variance of the sum of N samples looks
like

Note that this is only expected to hold once the strata are small enough that the smooth integrand
can be approximated as locally linear, and the constant K depends on the properties of the inte-
grand. (For example, if the integrand was linear, K would be since the linear approxima-
tion would hold right from the beginning.)

Then the variance and standard deviation of (remember dividing by N decreases the variance
by) are:

This is a really nice improvement in convergence rate! We can easily confirm it on a 1D example
(see notebook). But before we get too excited about this let’s remember it is a best-case result for
very smooth integrands, and the variance reduction is less in higher dimensions. Again using the
locally-linear idea, the variance scales as the square of the diameter of the strata, which is
in 2D rather than (and generally in d dimensions). Working this through to the final
convergence rate, we get that stratified sampling can give us

in the best case of a very smooth integrand. This still makes a big difference in 2D, and the same
analysis also applies for higher dimensional integrands when most of the variation of a particular
integrand is aligned with a 2D subspace, which is a common case.

For these reasons most rendering systems include some mechanism to improve the distribution of
samples across 2D domains of interest, such as the hemisphere, a light source, the image plane,
the camera aperture, etc. Since we already generate samples by warping random points generated
in a unit cube, stratification is easy to add, at least in principle: you just start with a stratified pat-
tern of samples, and feed them to the warping functions. The warps and all the code that uses the
samples can remain blissfully unaware that someone is helping them converge faster by fiddling
with the samples.

Blue noise sampling

One way of thinking about the benefits of stratification is that it produces points that are spread
out more nicely over the domain. Statistically independent samples are surprisingly “clumpy”
and stratification improves this. There is also a signal processing viewpoint on Monte Carlo inte-

1/N

g(xi) 1/N 2

σ2 {
N

∑
i=1

g(xi)} ≈
K
N

σ2{g}

G′￼N
N 2

σ2{GN} ≈
K
N 3

; σ{GN} ≈
K

N1.5

1/ N
1/N 1/ d N

in 2D: σ{GN} ≈
K
N

in d dims: σ{GN} ≈
K

N1/2+1/d

gration in which the goal of designing random sampling patterns is expressed in terms of their
Fourier spectra: we want sampling patterns that have their frequency content at high spatial fre-
quencies, and not low ones, so that when we average over the domain the random noise is at high
spatial frequencies that are effectively removed by averaging. This view is particularly salient for
the problem of antialiasing, or averaging over pixel areas: a good sampling pattern pushes the
noise to high frequencies in the image plane which are effectively filtered out by the antialiasing
filter.

This view leads to a whole subfield of “blue noise” sampling, which looks for efficient ways to
generate patterns of samples that are uniformly distributed spatially (or have some specified dis-
tribution) and have little frequency content at low spatial frequencies. The name “blue” just
comes from the analogy to light: blue colors contain mainly high frequency (short wavelength)
radiation, so we call patterns that contain mainly high frequencies “blue.” Poisson disk patterns
are an example of this type of pattern, but there are very many methods for generating blue-noise
patterns.

Quasi Monte Carlo

Yet another way to think about “nice” distribution of samples is discrepancy: the maximum dif-
ference between the volume of a box that is a subset of and the fraction of samples it con-
tains. Low discrepancy patterns show similar benefits to stratified patterns. But patterns don’t
need to be random to exhibit low discrepancy. This gives rise to the field of Quasi Monte Carlo
sampling, which seeks efficient algorithms to generate deterministic point sets that have low dis-
crepancy (which generally means they will also tend to look random and blue-noise in the sense
that they don’t exhibit obvious spatial structure).

QMC sequences are popular in rendering partly because they solve an annoying problem that is
shared by stratified and most blue noise patterns: you have to know how many samples you will
need up front. Randomizing the order of the samples makes it safe to use only a prefix of the
whole list of samples, in the sense that you will still get the right mean, but the variance benefits
of stratification are quickly destroyed by leaving out even just a few samples. This requirement is
fine in simple cases, but as things get more complex it is often awkward to ensure that the number
of samples that will be needed is always known up front. In this case QMC is very appealing,
because any subsequence of a QMC sequence has the same low-discrepancy properties. For this
reason QMC is often the default choice for “random” sample generation in Monte Carlo render-
ers.

Preserving sample patterns

The benefits of stratified samples depend on having compact strata where the integrand can be
expected to exhibit less variance, and similarly the properties of blue noise or low discrepancy
patterns are defined in terms of “nice shaped” regions in the unit cube. When the samples are
mapped into other domains with warping functions to achieve particular densities, the strata are
distorted from their original shape, and if the distortion is extreme, the benefits of stratification
can be eroded.

This leads to an additional design goal for warping functions: not only should they have the right
Jacobian (to achieve the correct probability density) but they should have low distortion. This

[0,1]d

low distortion goal is in the background of many design choices for warping functions, for in-
stance:

• Polar coordinates warps are convenient but do tend to produce a lot of distortion around the
pole. There is a popular alternative “concentric” warp proposed by Shirley and Chiu, which is a
little more code but produces a lower distortion map that does tend to make sampling patterns
perform better.

• In sampling environment maps, some obvious methods fail to preserve stratification much at all.
For instance, you could think of the map as a collection of pixels, use the first random number
to choose a pixel, then scale that first one and use it and the second number to choose a point
within the pixel. This will pretty much completely destroy the structure of your sample pattern
since the strata will be shredded across scan lines of the environment map. Two better ap-
proaches are described by Matt Pharr in this post: one is to apply the marginal-conditional ap-
proach to the two dimensions of the environment map; the other is the hierarchical sample
warping scheme from the optional component of our assignment. Both preserve stratification
better, though neither is perfect (and indeed perfection is not a useful concept here!).

Software for samplers

The strategy of generating samples by warping from the unit cube is reflected in the software ar-
chitecture of renderers.

If we only wanted to use independent random numbers all the time, all we would need is a ran-
dom number generator that could be called from anywhere in the code where a random number is
needed. The mappings from the unit cube to our various integration domains would exist just on
paper to derive the expressions we type into the code. There are two things to think about in this
strategy (which continue to be relevant below). One is seeds and determinism: generally speak-
ing it is very helpful to be able to re-run a rendering with the same random numbers, particularly
for debugging. Bugs that happen randomly are hard to catch, but once you observe one if you can
then fix the random number seed in the future you will be able study the particular execution path
that led to the bug. On the other hand it’s very important that the random number seeds be differ-
ent for different pixels so that we don’t get correlated noise that becomes visible in the image.
It’s also important for seeds to be different if you are hoping to run your program multiple times
in parallel and average the results to reduce noise; and you probably want seeds to be different
across animation frames so you don’t get a distracting combination of noise that is the same be-
tween frames and noise that is different depending on what has changed in the scenes.

Renderers are multithreaded programs, and to achieve determinism it’s not sufficient to set a sin-
gle seed, since things may not get computed in the same order from one run to the next, and in
any case it’s generally not safe to call a single RNG in multiple threads. For this reason you nor-
mally want a separate RNG for each thread, and you want to seed them in a way that depends
deterministically on which part of the image the thread is computing. For instance you might set
the seed for each pixel by using a hash of the x and y pixel indices with a global seed.

All the types of variance-reducing sample patterns that I’ve talked about can be abstracted as dif-
ferent algorithms for generating points in the unit cube. The need to preserve structured sample
patterns leads to the need to expose this unit cube idea in the code: when you use a random num-
ber it matters which dimension of the cube it belongs to. Typically there is an object that is re-

https://web.archive.org/web/20190223095317id_/http://pdfs.semanticscholar.org/4322/6a3916a85025acbb3a58c17f6dc0756b35ac.pdf

sponsible for keeping track of the sample patterns being generated; Nori’s Sampler class, which is
a simplified version of the corresponding class in PBRT, is a typical example (see header file).

	Monte Carlo Integration for Rendering
	1. Choosing random values
	Example: an affine map
	Example: one dimensional warps
	Inverse CDF sampling method
	Sampling 2D domains
	Radially symmetric densities
	Box-Muller transformation
	Discrete distributions

	2. Statistical software testing
	Student’s t-test
	Chi-squared test

	3. Low discrepancy sampling
	Stratified sampling
	Blue noise sampling
	Quasi Monte Carlo
	Preserving sample patterns
	Software for samplers

