
12 Final Projects

Steve Marschner
CS5625 Spring 2016

Final project ground rules

Group size: 2 to 5 students
• choose your own groups

• expected scope is larger with more people

Charter: make a simple game with cool graphics
• game play should be simple—not the emphasis here

• graphics has to tackle significant challenges

• generally must be 3D (but talk to me if you have cool 2D ideas)

Deliverables
• project proposal, around A7

• milestone presentation, near end of classes

• final project presentation, during final exam time

What makes for interesting graphics?

Rendering
• fancy materials

• translucency

• procedural textures

• environment illumination

Animation
• skinning + morph targets

• collision detection

• particle system smoke, fire, explosions

• procedurally animated water, wind, etc.

What makes for interesting graphics?

Modeling
• subdivision surfaces

• voxelized terrain

• procedural models (plants, terrain, cities, …)

Imaging
• bloom, lens flare (camera or eye)

• HDR tone mapping

Complexity management
• frustum culling, occlusion culling

• level-of-detail management

Overlap with other projects

In general, it’s OK with me to build on your own earlier or concurrent work
• but you need to talk to me about it!

You have to disclose overlaps
• work that comes from projects you did for other courses (e.g. in 4620)

• work that comes from personal projects you did before this course

• work shared with concurrent projects for other courses (e.g. co-projects with 4152 or 5643)

- in this case need to talk with both instructors!

• submitting overlapping work without saying anything is dishonest

Final Project Proposal

2-page description of game
• the “story board” equivalent

• say what constitutes the technical “meat”

• tentative schedule with allocation of team-members to tasks

Major areas of focus
• one primary, one secondary; larger groups: 2 primary, 2 secondary

• e.g. primary rendering, secondary animation or modeling

Project requirements

Must go significantly beyond PAs
• combine multiple techniques in interesting ways

• implement significant new techniques not in PAs

Quality product expected:
• nicely polished imagery

• principled methods

• correct implementations (with test results to prove it!)

• how you achieve results is as important as the results themselves

Code Base

Pick whatever code base you want
• Build on codebase from 5625 or 4620 (recommended)

• Start from scratch (probably bad idea)

• C++ (if you are confident)

• Pyglet, WebGL, … (for the indepenent-minded)

• no game engines (talk to me about the line between graphics library and game engine)

Resources

Get models off the web
• do not spend all your time trying to model 1 person or 1 object.

GPU Gems 1, 2, 3 for ideas
• these are on NVidia developer pages

Articles referenced in lecture

Akenine-Möller et al.

NVidia and AMD demos and examples

Modeling

Procedural terrain renderer
• Blend textures based on height and normal

• Create grassy, rocky, snowy/rocky, and snowy/ice regions

Terrain view-dependent Level-of-Detail

Nice outdoor rendering
• build on sun-sky model in PAs

• achieve nice lighting and shadows for trees, ground, water, etc.

Subdivision surfaces (PA5)
• View-dependent level-of-detail

Performance based optimizations require good evaluation

slide courtesy of Kavita Bala, Cornell University

High-Level Game Ideas

• Adventure Game
– Maze-like setting
– Might require collision detection

• Pinball

• 2D game behavior with 3D graphics is OK

slide adapted from Kavita Bala, Cornell University

High-Level Game Ideas
• Terrain games

– Requires real-time terrain mesh that supports
deformations

– Projectile/explosion animation

• Role-playing Game
– An action-oriented RPG might be interesting.
– Visually interesting scenery, spells, etc.

• Space Flight Simulator
– May require some view-culling
– Ample opportunities to use particle systems

slide adapted from Kavita Bala, Cornell University

High-Level Game Ideas
• First Person Shooter

– Some spatial hierarchy (BSP), collision
detection…

• Other feature ideas
– Feel free to implement wild and crazy effects, as

long as you can explain to us why the effect on
screen is the intended result and not a bug!

Game Mechanics (Slides by Walker White)

Actions

• What the player does
• Examples:
§ Move
§ Jump
§ Shoot

• Should NOT be your focus

Interactions

• What the state of the world is
• Examples:
§ Collisions
§ Restitution/Destruction
§ Visibility

• Should be your focus

Goal: Take a principle from computer graphics and
implement a single interesting game mechanic

Other Game Design Concepts
(Slides by Walker White)

Objectives

• What the player wants to do
• Examples:
§ Reach an exit door
§ Kill/tag an enemy
§ Outrace/outlast an enemy

• Keep this simple!
§ Reach an exit
§ Tag a (dumb) opponent

Challenges

• Makes the objective difficult
• Examples:
§ Maze environments
§ Enemy speed
§ Enemy AI

• Also keep this simple!
§ Keep AI to simple visibility
§ Well designed mazes with a timer

can be fun

Game Ideas
(Slides by Walker White)

• Stealth games
§ Simple visibility
§ Shadows (“visibility” = speed * shadows)

• Maze games
§ Reflection to swap between worlds
§ Shadows and lighting change geometry
§ Particle systems as moving hazards
§ Finite element modeling for destructible terrain

• Tag/Chase games are maze+enemy

