CS 5434 Assignment 4

Due via CMS on Wednesday Nov 18th by 11:59pm

Problem 1

Consider a worm attempting to spread stealthily on an internal class B network via
the following strategy. It makes scanning probes once per hour. 99% of the time, it
picks a random address on the same class C network as the currently infected
machine except that it ignores the network address (.0) and the broadcast address
(.255). 1% of the time, it picks a random address from anywhere in the class B,
except again it ignores the broadcast and network addresses of each of the 256 class
C subnets that the class B is divided into.

Assume that 2% of addresses are vulnerable (all with equal likelihood). Assume
also that there are 256 intrusion prevention systems (IPSs) that control access in
and out of each of the class C subnets and to all the others. The IPSs attempt to
prevent scanning between the subnets. There are no IPSs or other devices
controlling access within each class C subnet.

a) Should the IPS for each class C subnet focus on blocking inbound or
outbound probes?

b) What is the maximum average number of probes per infected IP that the IPSs
can allow through, before blocking, in order that they contain the worm
below the epidemic threshold?

Problem 2

Consider a network intrusion detection system that produces one false positive alert
per million packets, on average. Consider this system deployed on a 10Gbps link,
which is on average 60% utilized. Assume that average packet size is 700 bytes

including all preamble/postamble.

a) How many false positives per week must the security operations team
investigate?

b) Ifit's only permissible for the IDS to produce one false report per day, how
many packets must go past per false report?

[see over]



Problem 3

Consider a DDOS botnet that is controlled in the following manner. Each bot makes
HTTP connections on port 80 to the command and control server (thus likely
evading firewall rules at many sites). The command and control server responds
with a plain text file containing lines of the following form

<pkt-type> <ip>/<net>[:<port>] <rate> <duration>

Here <pkt-type> is one of ‘SYN’, ICMP’, ‘GET’, ‘'DNS’, <ip>/<net> is a specification of
an address range to flood, the destination <port> number is optional, and <rate> is
the number of packets to flood per second to random destinations in the target
range for <duration> seconds. The command language allows for multiple lines per
file, with the bot carrying out all of them simultaneously (infected machine
bandwidth permitting).

Write a snort rule, or set of rules, to identify these commands on the wire. Consider

how to reduce false positives against the terms in this command language occurring
naturally in web documents.

Problem 4

Consider this pcap:
http://www.cs.cornell.edu/courses/cs5434/2014fa/capture.pcap

Analyze the address ranges and ports occurring in it. For example, you could use
tcpdump, cut, grep, sort, and uniq on the Unix/Linux command line, or some other
tools of your choice. Based on your analysis, construct a set of firewall rules that
would allow all the traffic in your sample, while allowing as little other traffic as
practical.

For syntactic definiteness, use the rule syntax of pf as at

http://www.openbsd.org/faq/pf/filter.html

Provide enough detail of your analysis of your traffic that the TA can assess the
correctness of your rules. Compact solutions that display an understanding of the
traffic will receive more credit than very verbose and unrealistic rules that are auto-
generated.

Problem 5



Consider the description of Blackhole v2 at

http://blog.spiderlabs.com/2012 /09 /blackhole-exploit-kit-v2.html with a
particular focus on the initial obfuscated javascript described there. Develop one or
more snort signatures to detect this javascript.

Do you think this is a good strategy to detect Blackhole exploit attempts. Why or
why not?

Problem 6

Take the heapspray code from http://www.thegreycorner.com/2010/01 /heap-
spray-exploit-tutorial-internet.html and get it to work in your browser (eg by
loading an HTML file from disk). Note, not the exploit itself (which is very unlikely to
work in a current browser) just the heapspray with enough initialization code to get
it to run. Now vary the number of iterations in the main for() loop, and measure the
size of the browser as a function of this loop count (eg using ps on a unix/Linux
system) over a wide range of values. Can you determine the increments in which
the browser gets memory from the 0S? How much overhead is there between
successive copies of the nop-sled/payload combination?




