
 1

CS5430: System Security Programming Project (Spring 2026)

Phase 1: DAC Authorization for Key-Value Store

General Instructions. Work together in a group of 2 or 3 students from the class.

Due Date: 2/27 (Friday) 11:59pm on CMS

With discretionary access control (DAC), the principal that creates an object is the principal that
has authority to delete that object and to define which principals can perform various operations
involving that object. In this phase, you will be implementing DAC for the key-value store.
DAC functionality will enable enforcing restrictions on which users are allowed to perform
various operations on each key.

Access Control Semantics for Key-Value Store. The details of the DAC authorization scheme
that the key-value store should support are sketched below. The principals are all possible users
(existing or not); the objects are all possible keys (existing or not).

In Phase 1, each key k will be associated with the following metadata.

• k.writers: those principals directly authorized to write the value associated with key k.
• k.readers: those principals directly authorized to read the value associated with key k.
• k.indirects: a set of keys that augments k.writers and k.readers as described below.

If a key k has no associated value—because it has not yet been created or because it was
subsequently deleted—then each of these access control sets is empty.

Notice, there are no restrictions on the contents of the access control sets above. So, it is
possible to specify that a principal is authorized to write to a key but not read it. Also, there is no
requirement that the elements of access control sets already be present in the registry that the
REGISTER command populates or in the set of keys that have been created but not deleted.

The 𝑘. 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑠 set allows the authorization for a key 𝑘 to depend on authorizations for other
keys—the keys that are elements of 𝑘. 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑠. In particular, the set 𝑅(𝑘) of principals that
are authorized to read a key 𝑘 is defined as follows:

𝑅(𝑘) ∶= 	𝑘. 𝑟𝑒𝑎𝑑𝑒𝑟𝑠	 ∪ 3 𝑅(𝑘4)
56	∈	5.89:8;<=>?

Authorization for WRITE is determined analogously, but defining the set 𝑊(𝑘).

Supporting DAC authorization means that READ and WRITE commands may terminate with
status = FAIL because the requested operation is not authorized.

 2

New Operations. In this phase, the CREATE operation for a key k should be extended to
include (optional) arguments that will initialize some or all the access control sets. The
additional operand names are readers, writers, and indirects. And an operand value
that is the finite set {a, b, c} is specified by giving the elements separated by whitespace.
So, for example. the input

 op = CREATE; key = ans; val = 23; readers = fbs gs;

would create a new key ans having initial value 23. Associated with this key would be the
access control set readers containing set {fbs, gs} and the other access control sets
associated with this key would be initialized to empty sets. The output for this command
remains to be a single triple giving a value for status.

A new MODACL (“modify ACL”) operation in this phase provides a way for the principal that
created a key to change some, or all, of the access control sets associated with that key. This
command gives new lists of principals for some or all of readers, writers, and
indirects. If an access control set is not included with a MODACL operation request, then no
change should be made to the contents of that access control set; if an access control set is given
as just whitespace then the server should interpret this to mean that the access control set should
be reset to empty. So, for example

 op = MODACL; key = ans; readers = fbs; writers = gs;

would change the readers access control set for key ans to {fbs} (so principal gs was
removed), change the writers access control set to authorize access by gs, and leave
unchanged all the other access control sets. The output for this command should be a single
triple giving a value for status (i.e., OK or FAIL).

A new REVACL (“review ACL”) operation provides a way for the principal that created a key to
review the authorizations that are allowed by the current values of the access control sets for that
given key. Execution of a REVACL operation for a key k

 op = REVCAL; key = k;

should display the contents of all the access control sets associated with key k as well as the
values of 𝑅(𝑘)	𝑎𝑛𝑑	𝑊(𝑘). The output for this command should be a triple giving a value for
status (i.e., OK or FAIL). If status is OK, then five lists should also be printed:

 indirects = ...; readers = ...; rk = ...; wk =...; writers =
...;

where k is replaced by the key.

The Phase 1 Assignment

Download phase1.zip, which is available on CMS. This is version of the system does not
contain a file Server.java in the folder server-module. The version also has an updated

 3

parser that now accepts an opr-value consisting of only whitespace in a triple: “opr-name = opr-
value;”. This opr-value will be parsed as the empty string. You may need to update your Phase
0 server code to accommodate this change. In addition, the revised parser prints output a well-
defined deterministic order.

Implement this DAC access control and submit Server.java code. You may derive this by
modifying and/or combining the Server.java that any of your group members submitted for
Phase 0. Explain any design decisions and choices you made. For example, explain where and
how you store the access control sets and what data structures will you use? Your submission
will be assessed, in part, on how performant your code is in making authorization
decisions.

An example input file and the expected output can be found in phase1.zip, which is available for
download from CMS.

Grading and Submissions

This programming assignment should be implemented in Java version 25, which is available on
the ugclinux computers.

Submit file Server.java, containing the code for an extended version of the server, and
Tests.zip, containing test data (in one or more files) that demonstrate correct operation of
your system, to CMS. The .zip file Tests.zip should incorporate the following.

• testRationale.txt that explains how well your tests exercise the extended
functionality of the system and don’t compromise the initial functionality.

• design.txt which describes the design decisions behind your implementation,
including a discussion of the expected performance of your code.

Grading. Project grades will be based on the following rubric

• 40% -- system operates correctly on tests provided by course staff to exercise
functionality.

• 20% -- the performance/efficiency of the portions of your code.
• 20% -- how well the tests provided in testRationale.txt exercise the functionality

and security of the system.
• 10% -- the quality of the explanations in testRationale.txt.
• 10% -- the quality of the explanations in design.txt.

Automatic deduction of up to 50% if the program does not compile using build.sh or does
not run using run.sh on the ugclinux computers. Be smart: Try your system on the
ugclinux computers before you submit it.

