
 1

CS5430: System Security Programming Project (Spring 2026)

Phase 0: Extending a key-value store

General Instructions. Each student should work on this assignment individually.

Due Date. 2/6/2026 at 11:59 pm (in CMS)

This semester, students will be extending a key-value store server and client. The project
involves multiple phases. In each phase, you will add code that provides new security
functionality and/or that defends against a different class of vulnerabilities.

The system is intended to be compiled using Java 25. Phase 0 will familiarize you with the
codebase for an insecure client/server key-value store system. You will be working alone to
ensure that each student is well prepared to participate in subsequent phases. In the remaining
phases, students will work in a group of 2 or 3.

The architecture of the system is straightforward. We use Java’s module system to separate each
component of the system into a module.1 Here is a high-level view: The system consists of a
module called app.module that contains a single class App that gets input from the standard
input (a keyboard or a file) and invokes the Parser class, located in the parser.module, to
parse the input request string into a map that is passed to the client. The Client, located in the
module called client.module, invokes the Parser class to serialize the map into a byte
array that is then passed to the network. The network is simulated by the Network class,
located in the network.module. The network delivers the request to the Server class,
located in server.module, where the request is processed and a response is produced.
Responses are returned to the network, which returns them to the client, which in turn returns
them to App. Finally, App invokes parser to write the response to the standard output. Notice,
that the network only accepts and returns byte arrays.

The Software Distribution. The Phase 0 system is found in a collection of folders and files.
These are distributed in phase0.zip, which is available for download from CMS. It contains
the following:

• build.sh: This bash script compiles the entire system. Do not modify this file. That
means you cannot use functionality that is not provided in the standard Java library.

• clean.sh: This bash script deletes all files and folders produced by build.sh.

• run.sh: This bash script runs the compiled system produced by build.sh.

1 An official guide for Java modules can be found here: https://dev.java/learn/modules/. A useful unofficial guide
can be found here: https://www.baeldung.com/java-modularity.

 2

• src/app-module/: Defines the app-module module. File app/App.java
contains the code for reading from the standard input and writing to the standard output.
This code relays request to the client on behalf of users and prints responses the client
receives. In Phase 0, you are not allowed to modify any file in this folder or add new
files to this folder.

• src/client-module/: Defines the client-module module. File
client/Client.java contains the code for the client. This code makes requests to
the server on behalf of users. In Phase 0, you are not allowed to modify any file in this
folder or add new files to this folder.

• src/network-module/: Defines the network-module module. File
network/Network.java contains the code for the network. This code simulates a
network that connects the client to the server. In Phase 0, you are not allowed to modify
any file in this folder or add new files to this folder.

• src/parser-module/: Defines the parser-module module. File
parser/Parser.java contains the code for the parser. This code performs parsing
operations by converting String to Map<String, String[]>, and vice versa.
Serialization is provided; it converts the Map<String, String[]> datatype to the
byte[] datatype, and vice versa. You should never modify the contents of this module
or add new files to this folder.

• src/server-module/: Defines the server-module module. File
server/Server.java contains code for the server. This code processes requests sent
by the client, takes appropriate action based on the request, and reports the result back to
the client. In Phase 0, you will be modifying this file.

• baseline.tests: A collection of test cases that can be used to exercise the system
before any of the Phase 0 extensions have been made.

• baseline.tests.out: The expected output from running the system with the input
baseline.tests.

• phase0.tests: A (non-exhaustive!) collection of test cases that can be used to
exercise the system with the Phase 0 extensions in place.

• phase0.tests.out: The expected output from running the system with the input
phase0.tests.

System Operation. Familiarize yourself with the semantics of the operations that are
implemented by reading the source code and by observing the effects of running the sample
input file that we have provided. The syntax for starting the system and running it with that
input file is:

 3

./run.sh < baseline.tests

Another way to gain familiarity with how the system operates is by experimenting with inputs
that you provide.

You should have already noticed that input lines and output lines are lists of triples having the
form

opr-name = opr-value;

where opr-name is a predefined keyword consisting of only lower-case letters, opr-value is a
string of characters (that may include arbitrary whitespace). There may be arbitrary whitespace
surrounding the = sign, and the triple must end with a semicolon. All strings are case-sensitive
and the non-whitespace characters are restricted to alphanumeric characters.

Any input line should specify the name of an operation by including the triple

… op = cmdName; …

The triples that precede or follow should specify values for the operands expected by operation
cmdName. Files baseline.tests and phase0.tests specify operands in a particular
order, but by consulting the source code you will see that this order does not need to be followed.
However, each input line should describe a single operation—descriptions of operations may not
span multiple lines.

An output line specifies the results of an operation by giving the triple

… status = statusName; …

possibly preceded or followed by other triples. Those other triples would specify other values, as
appropriate for the operation that was requested. For now, the only values for statusName are
OK or FAIL. Files baseline.tests.out and phase0.tests.out specify triples in a
particular order, but by consulting the source code you will see that this order is not determined.
Each output line, however, will describe the results of a single operation.

Notice, that in processing each input line, the line is listed, followed by some form of output.
This output of a command invocation could be

• the input line repeated, which means there is either a syntax error in the input line or
some sort of failure regarding serialization/deserialization, or

• output based on the state of the client and the server.

 4

The Phase 0 Assignment

The system we are providing does not distinguish between different users. You will now remedy
that shortcoming with your Phase 0 extensions. We assume that each system user will be
identified by a String, which we refer to as that user’s user-id.

• The server should be extended to implement and maintain a registry that holds the user-id
for each user that is authorized to access the system.

• The server should be extended to keep track of an active-user that equals the user-id for
the user that is currently submitting inputs to the client.

The intended semantics for the registry and active-user are supported by the commands
REGISTER, LOGIN, and LOGOUT you will be adding to the system. The expected syntax and
operation of these new commands are as follows.

The REGISTER command

op = REGISTER; uid = user-id;

adds user-id to the registry (independent of whether there currently is an active-user). If user-id
is already in the registry then the command should fail. The output for this command should be
a single triple giving a value for status.

The LOGIN command

op = LOGIN; uid = user-id;

changes the active-user to user-id provided user-id is present in the registry. If user-id is not in
the registry or if there is already an active-user, then the command should fail. The output for
this command should be a single triple giving a value for status.

The LOGOUT command

op = LOGOUT;

changes the active-user to no-user, signifying that there is no active user. If there was no active
user when the command was invoked, then the command should fail. The output for this
command should be a single triple giving a value for status.

There are also changes to the semantics of the CREATE and DELETE commands in order to
implement a form of ownership of keys. The operation of all other commands is unchanged,
though.

The owner of a key is the user-id of a user that is authorized to do certain things that other users
are not.

The CREATE command

 5

op = CREATE; key = k; val = v;

is extended to also set the owner of key k to be the active-user. The command should fail if it is
invoked when there is no active user. The output for this command continues to be a single
triple giving a value for status.

Finally, the DELETE command

op = DELETE; key = k

is extended so that it only succeeds if the key k exists in the system and the owner of key k is the
active-user.

Grading and Submissions

Use Java 25, which is available on the ugclinux computers. Submit file Server.java and
zip file tests.zip to CMS for grading. We will use your implementation of Server.java
to compile a system with the other files that we originally provided to you.

Grading. Project grades will be based on the following rubric

• 50% -- system operates correctly on our test cases

• 50% -- file tests.zip containing test data (in one or more files) that demonstrate
correct operation of your system, along with file testRationale.txt that explains
how well your tests exercise the extended functionality of the system and don’t
compromise the initial functionality.

o 30% -- how well your tests exercise the extended functionality of the system and
don’t compromise the initial functionality.

o 20% -- the quality of the explanations in testRationale.txt.

Submissions will receive an automatic deduction of up to 50% if the program does not compile
using build.sh or does not run either in interactive or file mode on the ugclinux computers.

Be smart: Try your system on the ugclinux computers before you submit it.

