
Chapter 10

Information Flow Control:
Beyond TINI

A �-observer might well have a legitimate need or just have the capability to
access the variables in V�� before, after, and during execution of a program S.

• Variables in V�� might be used to model the channels that the �-observer
is using while S executes.

• Malware concurrently executing on the same computer as S might be able
to monitor the state as S executes. If the program that was co-opted by
the malware has label � then the malware is a �-observer.

Therefore, we now consider noninterference policies for settings where the Batch
and Asynchronous assumptions (page 238) adopted for TINI are replaced by:

Interactive. For a program S with variables V , a �-observer can read
variables in V�� initially, during execution of S, and after terminating
executions of S.

Termination Detection. A �-observer can detect the termination of a
program S.

Due to Termination Detection, a �-observer seeing no change to the variables
in V�� can know whether the apparent lack of activity is because the execution
of S has terminated or it is because the execution is continuing but all of the
changes are to variables from V��� and, thus, are not visible to the �-observer.

10.1 Progress Sensitive Noninterference

Progress sensitive noninterference (PSNI) specifies that the initial values of
variables in V��� do not a↵ect whether S terminates and do not a↵ect the values
of variables V�� in any of the intermediate states produced during a terminating
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Figure 10.1: Sequences � and �′ of intermediate states for executions of (10.1)

or a non-terminating execution of S. So PSNI specifies what should not be
revealed about the initial values of variables in V��� to a �-observer that can
detect if S has terminated and that can monitor the values of variables V��
during an execution.1

The following program illustrates how information about the initial values
of variables from V��� might be revealed through the sequence of values assigned
to variables in V��.

`1∶ y ∶=0; `2∶ z ∶=0;
`3∶ if x = 0 then `4∶ y ∶=1; `5∶ z ∶=2

else `6∶ x ∶=4; `7∶ z ∶=2; `8∶ y ∶=1
fi `9∶

(10.1)

The initial value of x determines the order of updates to y and z in the if
statement. So if �(x) = H, �(y) = L, and �(z) = L hold, then the sequence of
values assigned to variables y, z ∈ V�L in the intermediate states of an execution
reveals information about the initial value of variable x ∈ V��L. The final values
of y and z are the same for all initial values of x, though, so program (10.1)
does satisfy TINI.

For formally defining PSNI, we introduce predicate V S��→ps W that holds if
and only if executions of S from initial states that di↵er only in the values of
variables in V produce indistinguishable sequences of updates to the variables in

W . As an example, {x} S��→ps {y, z} does not hold if S is program (10.1), because
di↵erent initial values for x can cause executions where the sequences of values
assigned to variables y and z during one execution can di↵er from the sequences
assigned during another. Figure 10.1 illustrates by depicting two execution

1
Progress insensitive noninterference (PINI) has also been studied. It drops the Termina-

tion Detection assumption. PINI thus requires that the initial values of variables in V��� not
a↵ect the values of variables V�� in any prefix of the sequence of intermediate states produced
by executing S. PINI, however, does allow the initial values of variables in V��� to a↵ect when
or whether S terminates.
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10.1. Progress Sensitive Noninterference 259

traces, each specifying an initial state (including program counter pc), followed
by the intermediate states produced by the execution of program (10.1), where

“?” indicates a value that is unknown or uninitialized. For {x} S��→ps {y, z} to
hold, the sequences of updates to the values for y and z in � and in �′ is required
to be indistinguishable. We check this requirement by constructing ��{y,z} and
�′�{y,z}, where projected execution trace ��V is derived from an execution trace
� by replacing each state s in � with state projection s�V and then eliminating
consecutive, identical states. The resulting projected execution traces are:

��{y,z}∶ �y � ?
z � ?

� �y � 0
z � ?

� �y � 0
z � 0

� �y � 1
z � 0

� �y � 1
z � 2

� (10.2)

�′�{y,z}∶ �y � ?
z � ?

� �y � 0
z � ?

� �y � 0
z � 0

� �y � 0
z � 2

� �y � 1
z � 2

� (10.3)

The fourth states of (10.2) and (10.3) are di↵erent, so {x} S��→ps {y, z} does not
hold—information about the initial value of x would be revealed to an observer
monitoring y and z.

To give a formal definition for V S��→ps W , we generalize predicate s =V s′ on
states s and s′ to handle execution traces � and �′:

� =V �′∶ ��V = �′�V
So � =V �′ holds if and only if projected execution traces ��V and �′�V are the
same length and have identical ith states, for each i.

Only because we collapse runs of identical states when forming a projected
execution trace ��V , do we obtain a sequence of states that models what an
observer would see by monitoring the variables in V, since state transitions are
detectable by such an observer only if there is a change to the value of some
variable being monitored. Notice, a projected execution trace ��V might have
finite length even though � has infinite length—this case arises with a non-
terminating loop in which all assignment statements in the loop body update
variables that are not visibile to the observer.

The formal definition for V S��→ps W employs a function [[S]]tr(s) that, for
a deterministic program S, maps an initial state s to an execution trace that
begins with s and is followed by the (possibly infinite length) sequence of inter-
mediate states that would be produced by executing S. For formally defining

V S��→ps W , we are concerned with comparing pairs of projected execution traces
that start in initial states s and s′ satisfying s =V s′.

V S��→ps W ∶ (∀s, s′ ∈ InitS ∶ s =V s′ ⇒ [[S]]tr(s) =W [[S]]tr(s′)) (10.4)

So V S��→ps W holds if di↵erent initial values for variables in V result in indistin-
guishable projected execution sequences for variables in W .
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260 Chapter 10. Information Flow Control: Beyond TINI

We illustrate the use of definition (10.4), by checking whether {x} S��→ps {y, z}
holds when S is program (10.1). V is {y, z} (since V is {x}), and W is {y, z},
resulting in:

(∀s, s′ ∈ InitS ∶ s ={y,z} s′ ⇒ [[S]]tr(s) ={y,z} [[S]]tr(s′)) (10.5)

The earlier claim that {x} S��→ps {y, z} does not hold would be confirmed by
showing that (10.5) does not hold. The initial states of � and �′ in Figure 10.1
do satisfy antecedent s ={y,z} s′, but consequent [[S]]tr(s) ={y,z} [[S]]tr(s′) of
(10.5) does not hold, since (10.2) and (10.3) are di↵erent. As expected, we have

shown formally that {x} S��→ps {y, z} does not hold.
We now have the building blocks needed for specifying that the values of

variables V��� in initial states are not allowed to a↵ect the termination of a
program S or a↵ect the values of variables that a �-observer can monitor in
intermediate states.

Progress Sensitive Noninterference (PSNI). For a deterministic pro-
gram S where the variables have labels from a set ⇤ with a partial order�: (∀� ∈ ⇤∶ V���

S��→ps V��)
10.1.1 PSNI Enforcement

Non-termination of a while statement can cause an implicit flow that violates
PSNI. As an example, whether while statement Ẁ terminates in IMP program

S∶ x ∶=0;
`if ∶ if z = 0 then skip

else Ẁ ∶ while y ≠ 0 do y ∶=y + 1 end
fi

`∶ x ∶=23
(10.6)

depends on which of y > 0 or y ≤ 0 holds initially. Moreover, because final
assignment statement ` is neither in the body of while statement Ẁ nor in
the body of if statement `if , guards z = 0 and y ≠ 0 are not in ⇥S(`). These
guards nevertheless can a↵ect whether assignment statement ` is reached: for
` to be reached, z = 0 must hold initially or y = 0 must hold eventually so that
while statement Ẁ terminates. Thus, there is an implicit flow from variables
z and y in those guards to target x of assignment statement `. If �(z) �� �(x)
or �(y) �� �(x) holds then this implicit flow also is an illicit flow—even though
` complies with ⇥S-Safe Assignment Statements condition (9.24). We conclude
that restrictions beyond those required for enforcing TINI are needed for en-
forcing PSNI.

Generalizing, there will be an implicit flow to variables a↵ected by any state-
ment that could be reached after a while statement terminates. This implicit
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10.1. Progress Sensitive Noninterference 261

flow conveys information about the values of the variables in the while stat-
ment guard as well as the variables in the other guards that a↵ect whether
that while statement is reached. To characterize such an implicit flow, we de-
fine a set �S(`) containing those guards that a↵ect whether statement ` can
be reached in some execution of S. So the elements of �S(`) come from (i)
control-flow statements in S having a body that contains ` (i.e., ⇥S(`)) and (ii)
the subset W` of the while statements in S that, by not terminating, would
prevent ` from being reached, where GW is the guard on a while statement `W :

�S(`) ∶ ⇥S(`) ∪ �
`W ∈W (̀{GW } ∪�S(`W )) (10.7)

Beware that for a statement ` in the body of a while statement, subset W`

used in (10.7) might include while statements appearing as alternatives to ` or
appearing after ` in the program text. We see this for statement `∶ S1 in the
program fragment:

while G1 do if G2 then `∶ S1

else while G3 do S2 end
fi;
while G4 do S3 end

end

Certain choices for guards Gi and statements Si in this program fragment could
result inG3 (a guard appearing in an alternative to `) andG4 (a guard appearing
after `) being members of �S(`). Both cases arise if ` can be executed after
the first iteration of outer-most while statement.

We can avoid the illicit flows that guards a↵ecting while statements cause
if we replace ⇥S(`) with �S(`) in ⇥S-Safe Assignment Statements condition
(9.24).

�S-Safe Assignment Statements. Ensure that

�
��E(expr) �

�
� �
G∈�S(`)

�E(G)��
�
� � �(w) (10.8)

holds for each assignment statement `∶ w ∶= expr that S executes.

�S-Safe Assignment Statements condition (10.8) is potentially more restrictive
than ⇥S-Safe Assignment Statements condition (9.24), since ⇥S(`) ⊆ �S(`)
holds by definition. The additional guards in �S(`) are those that a↵ect
whether ` cannot be reached due to non-termination.

Calculation of �S(`) is undecidable because �S(`) is defined in terms of
statement reachability—specifically, which while statements can prevent ` from
being reached. However, the calculation of �S(`) is straightforward for pro-
grams S that comply with some easily-checked restrictions.
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262 Chapter 10. Information Flow Control: Beyond TINI

Guard Restrictions for PSNI. If for every while statement `W with
guard GW in a program S

(i) �E(GW ) = �⇤ holds, and

(ii) �E(G) = �⇤ holds for every guard G ∈ ⇥S(`W ).
then for every statement ` in S:2 �

G∈�S(`)
�E(G) = �

G∈⇥S(`)
�E(G)

So in programs satisfying restrictions (i) and (ii), �S-Safe Assignment State-
ments condition (10.8) can be discharged by checking ⇥S-Safe Assignment State-
ments condition (9.24), which can be checked with a static analysis of S.

Extending IMP to Relax Guard Restrictions. Guard Restrictions for
PSNI requires that iteration be controlled by variables with label �⇤. Some
relaxation of the restrictions are possible, though, for looping that is guaranteed
to terminate. Only loops that sometimes terminate cause implicit flows.

A static analysis cannot determine whether a while statement will always
terminate, due to the undecidability of the halting problem. However, we can
avoid the need for such an analysis for loops that the programming language
ensures will always terminate. The for-loop statement

for v ∶= expr to expr ′ do T end (10.10)

is such a statement, provided (i) v is an integer variable and considered an as-
signment statement target; (ii) expr and expr ′ are integer-valued expressions;
and (iii) body T does not contain any assignment statements or for-loop state-
ments with v as a target or with any variable in Vars(expr ′) as a target. In
executions of for-loop statement (10.10), body T is executed between zero and
some bounded number of times.

The guard for (10.10) is defined to be expr ≤ v ≤ expr ′ since this is the predi-
cate that holds whenever body T starts executing and iteration terminates when

2Here is that derivation. From definition (10.7) for �S(`) we get:

�
G∈�S(`)

�E(G) = �
G∈⇥S(`)

�E(G) � �
`W ∈W`

G∈(�S(`W )∪{GW })
�E(G) (10.9)

Restrictions (i) and (ii) in Guard Restrictions for PSNI imply that for every subset W of the
while statements in a program S we have:

�
`W ∈W

G∈(�S(`W )∪{GW })
�E(G) = �⇤

So substituting into (10.9) (with W instantiated by W`) we get

�
G∈�S(`)

�E(G) = �
G∈⇥S(`)

�E(G) � �⇤
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10.1. Progress Sensitive Noninterference 263

this predicate becomes false. So for every statement ` in body T of a for-loop
statement appearing in a program S

expr ≤ v ≤ expr ′ ∈ ⇥S(`)
will hold. Moreover, if a program contains for-loop statements but no while
statements then W` = � holds for every statement `. So �S(`) simplifies to
⇥S(`), and �S-Safe Assignment Statements simplifies to ⇥S-Safe Assignment
Statements. Thus, �S-Safe Assignment Statements can be discharged by per-
forming the static analysis that discharges ⇥S-Safe Assignment Statements.

10.1.2 Dynamic Enforcement of PSNI

By monitoring state changes as execution proceeds, a �-observer might be able
to detect that a dynamic enforcement mechanism has blocked an execution. To
account for this possibility, we add

Blocking Detection. A �-observer can detect when execution of a program
becomes blocked by a dynamic enforcement mechanism.

to the Interactive assumption and the Termination Detection assumption (see
page 257) that we have been using to characterize the capabilities of �-observers.

Detecting that an execution has become blocked can result in an illicit im-
plicit flow. This is illustrated in the following IMP program, which implements
the assignment statement xL ∶=xH if 0 ≤ xH ≤ N , �(iL) = L, �(xH) = H, and H �� L
hold.

S∶ iL ∶=0;
while iL ≤ N do

if xH = iL then `∶ xL ∶= iL else skip fi
iL ∶= iL + 1
end

(10.11)

Assignment statement ` to xL does not comply with �S-Safe Assignment State-
ments condition (10.8), because ` appears in the body of an if statement with
guard xH = iL where �E(xH = iL) �� �(xL) holds. Moreover, a dynamic enforce-
ment mechanism that blocks execution when assignment statement ` is reached
creates an illicit implicit flow—the last value of iL that the L-observer reads
before detecting that execution became blocked is the initial value of xH.

We conclude that a dynamic enforcement mechanism for PSNI must prevent
illicit detection flows, wherein detecting that an execution became blocked allows
a �-observer to learn information about the initial value of a variable in V���
from having monitored the values of variables in V�� during the execution. An
illicit detection flow occurs whenever (i) a �-observer is able to determine that
execution became blocked upon reaching some statement `, and (ii) �(v) �� �
holds for some variable v ∈ Vars(G) in a guard G ∈�S(`) that was evaluated
prior to execution becoming blocked. For example, program (10.11) exhibits
an illicit detection flow because reaching assignment statement ` is the only

January 10, 2026 Copyright Fred B. Schneider All rights reserved



264 Chapter 10. Information Flow Control: Beyond TINI

reason that execution could become blocked, guard xH = iL is evaluated before
execution becomes blocked, and �(xH) �� L holds.

The following requirements su�ce to ensure that a reference monitor enforces
PSNI without causing illicit detection flows.

(i) To avoid illicit flows from an assignment statement `∶ w ∶= expr , execution
of the monitored program must be blocked before reaching ` if ` does not
satisfy �S-Safe Assignment Statements condition (10.8).

(ii) To avoid illicit flows due to non-termination of a while statement Ẁ

with guard GW , execution of the monitored program must be blocked
before reaching Ẁ if �E(GW ) ≠ �⇤ holds or if �E(G) ≠ �⇤ holds for some
G ∈�S( Ẁ ) that has been evaluated.

(iii) To avoid illicit detection flows, execution must not be blocked upon reach-
ing a statement ` unless �E(G) = �⇤ holds, for all guards G ∈�S(`).

Notice, requirements (i) and (ii) can be satisfied by blocking execution of the
monitored program in anticipation of executing a problematic statement. Even
with this flexibility to block execution early, though, implementing a runtime
mechanism that complies with requirement (iii) presents a challenge. A refer-
ence monitor must operate ignorant of code that has not yet been executed, so
a reference monitor that is invoked when a control-flow statement ` is reached
cannot determine if the body of ` contains a statement that should cause exe-
cution to be blocked in anticipation of the need to satisfy requirements (i) or
(ii).

One solution is to employ a reference monitor RPS that is conservative and,
therefore, proceeds as if the body of every control-flow statement contains a
statement that would require execution to be blocked for complying with re-
quirements (i) and (ii). Such a reference monitor would block any execution
upon reaching a control-flow statement having a guard G where �E(G) ≠ �⇤
holds. Given this (admittedly draconian) restriction, �E(G) = �⇤ holds for all
guards that have been evaluated. Compliance with requirements (ii) and (iii) is
thus guaranteed. Also, because no guard G will be evaluated where �E(G)) ≠ �⇤
holds, all guards will have label �⇤ in composition RPS▷S of the reference mon-
itor RPS and S. So program RPS▷S satisfies Guard Restrictions for PSNI
(page 262) and, therefore �S-Safe Assignment Statements condition (10.8) is
equivalent to �E(expr) � �(w), which discharges requirement (i). The actions
to implement reference monitor RPS are given in Figure 10.2.

Hybrid Enforcement for PSNI. With a hybrid enforcement mechanism,
a reference monitor invokes a static analyzer before and/or during executions
of the monitored program. The static analyzer’s results enable actions by the
reference monitor to account for code that will be executed in the future or is
as an alternative.

Our implementation of a PSNI hybrid enforcement mechanism employs a ref-
erence monitor RHPS that invokes a static analyzer TS(⋅), where TS(T ) returns
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10.1. Progress Sensitive Noninterference 265

upon S reaching ● action to be performed

● w ∶= expr require( �E(expr) � �(w) )
● if G then . . . require(�E(G) = �⇤)
● while G do . . . require(�E(G) = �⇤)

Figure 10.2: Reference monitor RPS for PSNI

true if T contains (i) no while statements and (ii) no assignment statement
that would be blocked by RHPS . Thus, if TS(T ) returns true then fragment T
is guaranteed to terminate.

Figure 10.3 gives the actions of RHPS . Notice that execution of control-flow
statements are blocked by the RHPS actions, as follows.

• A while statement with guard G is blocked if �E(G) ≠ �⇤ holds.

• An if statement with guard G and body T is blocked if �E(G) ≠ �⇤ holds
and the then alternative S′ or the else alternative S′′ contains a while
statement that RHPS would block or contains an assignment statement
that RHPS would block.

This blocking prevents illicit detection flows, because a blocked execution cannot
reveal information about results obtained by evaluating a guard G that satisfies
�E(G) ≠ �⇤.

In addition, the RHPS actions in Figure 10.3 ensure compliance with Guard
Restrictions for PSNI, which allows �S-Safe Assignment Statements condition
(10.8) to be checked for an assignment statement ` by using a stack where top()
satisfies

top(sps) = �
G∈⇥S(`)

�E(G). (10.12)

upon S reaching ● action to be performed

● if G then S′ else S′′ fi require(�E(G) = �⇤ ∨ (TS(S′) ∧ TS(S′′)))
push(sps, top(sps) � �E(G))

. . . fi ● pop(sps)
● while G do S end require(�E(G) = �⇤)
● w ∶= expr require( top(sps) � �E(expr) � �(w) )

Figure 10.3: Hybrid enforcement RHPS for PSNI
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266 Chapter 10. Information Flow Control: Beyond TINI

RHPS implements such a stack by the actions it performs when an if or a fi is
reached. No change to the stack is needed when a while statement is entered
or exited, because the guard label will be �⇤, so (10.12) continues to hold.RHPS and RPS both block the same while statements. Some if statements
that RPS blocks are not blocked by RHPS . Here is an example:

if xH = 0 then xH ∶=xH + 1 else skip fi (10.13)

SoRHPS is more permissive thanRPS . Hybrid enforcement can be as permissive
as any type system or other form of static analysis. To be more permissive than
this, a hybrid enforcement mechanism would have to identify and ignore program
fragments that violate PSNI but cannot be reached during an execution. No
static analyzer can perform such an analysis, since that analysis requires solving
an undecidable problem.

10.1.3 Typing Rules to Enforce PSNI

To use type-correctness for enforcing PSNI, we employ judgements �,� �ps S,
where typing context � gives a label �(v) to each variable v ∈ Vars(S), control
context � is a label, and S is an IMP program. Validity for judgements �,� �ps S
is defined as follows.

Valid Judgements for PSNI. Judgement �,� �ps S for a deterministic
program S is valid if and only if

(i) (∀� ∈ ⇤∶ V���
S��→ps V��).

(ii) � � �(w) holds for target w of every assignment statement in S.

A program S is defined to be type-correct if judgement �,�⇤ �ps S can be derived
using the typing rules in Figure 10.4.3 Each of theses typing rules derives a valid
judgement whenever all of the rule’s hypotheses are valid. So if a program S
is type-correct then �,�⇤ �ps S is a valid judgement and, due to (i) in Valid
Judgements for PSNI, the program will satisfy PSNI.

The typing rules in Figure 10.4 resemble the TINI typing rules in Figure 9.7,
but with rule while modified to ensure that every while statement in a type-
correct program complies with the requirements of Guard Restrictions for PSNI
(page 262): compliance with condition (i) follows from the first hypothesis of

3Here is a typing rule to handle for-loop statements, where tgts(S) denotes the set of
variables that are the targets of assignment statements in S.

for:

v ∉ tgts(S), tgts(S) ∩Vars(expr ′) = �,
�E(expr) = �, �E(expr′) = �′, �(v) = �′′,
� � � � �′ � �′′, �,� � � � �′ � �′′ �ps S
�,� �ps for v ∶= expr to expr ′ do S end

Observe that the hypotheses of rule for imply that (i) v ∶= expr and v ∶= v+1 used to implement
the for-loop statement each complies with �S-Safe Assignment Statements condition (10.8)
and (ii) the iterations eventually end because variable w and variables in upper bound expr

′
are not updated in body S of the for-loop statement.
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10.2. Flow-Sensitive Noninterference 267

skip:

�,� �ps skip assign:

� � �E(expr) � �(v)
�,� �ps v ∶= expr

if:

�E(expr) = �, �,� � � �ps S, �,� � � �ps S′
�,� �ps if expr then S else S′ fi

while:

�E(expr) = �⇤, �,�⇤ �ps S
�,�⇤ �ps while expr do S end

seq:

�,� �ps S, �,� �ps S′
�,� �ps S; S′

Figure 10.4: Typing rules for PSNI compliance

rulewhile and compliance with condition (ii) follows because having the control
context be �⇤ in the hypothesis and conclusion of rule while forces �E(G) = �⇤
to hold for all G ∈ ⇥S(`W ). Since Guard Restrictions for PSNI is satisfied for
every while statement, rule assign, which ensures that ⇥S-Safe Assignment
Statements condition (9.24) holds for an assignment statement, then also ensures
that �S-Safe Assignment Statements condition (10.8) holds for that assignment
statement.

10.2 Flow-Sensitive Noninterference

We now consider programs having variables with labels that vary. A fixed vari-
able has the same label throughout all executions; a flexible variable, which we
give tilde-topped names (e.g., ỹ), has a label that the program can change dur-
ing an execution. Label changes allow a flexible variable to be used for di↵erent
purposes during execution.

To specify label assignments for both fixed and flexible variables, we imple-
ment the label assignment using a new variable that is an array �̃[⋅] of labels,
indexed by variable names.4 Writing s.v to denote the value that a program
state s gives to a variable v, the label that a program state s gives to a fixed
or flexible variable v is s.�̃[v], and the label that s gives to an expression E is
defined by:

s.�̃E(E)∶
���������������

�⇤ if E is a constant c

s.�̃[v] if E is a fixed or flexibile variable v

�
1≤i≤ns.�̃E(Ei) if E is f(E1,E2, . . . ,En)

4IMP statement execution does not depend on the labels of variables, but an enforcement
mechanism could require this information. So whether �̃[⋅] is actually stored in memory when
an IMP program executes will depend on the enforcement mechanism.
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We omit the state and just write �̃[v] or �̃E(E) when the state is clear from the
context or if v is a fixed variable (since fixed variables are given the same label
in all states).

Flow-sensitive PSNI (F-PSNI) generalizes progress sensitive noninterference

(PSNI). PSNI is defined in terms of V S��→ps W , which has a formal definition
(10.4) that employs state projections s�W for comparing values of a given setW of (fixed) variables in corresponding program states produced during certain
pairs of executions. With F-PSNI, which variables are compared depends on
their label assignments in the states being compared. We formalize that by using
state projections s�F (⋅), where F (⋅) is a function from states to sets of variables,
and F (s) is the set of variables used for constructing the state projection from
state s. The value of a fixed or flexible variable v in a state projection s�F (⋅) is
thus defined by:

s�F (⋅).v∶ � s.v if v ∈ F (s)
? otherwise

And the formal definition of F-PSNI uses functions

Ṽ��(s)∶ {v ∈ Vars(S) � s.�̃[v] � �} Ṽ���(s)∶ {v ∈ Vars(S) � s.�̃[v] �� �}
instead of V�� and V��� in the formal definition of PSNI, resulting in:

Flow-Sensitive PSNI (F-PSNI). For a deterministic program S having
states that assign values to fixed variables, to flexible variables, and to
array �̃[⋅] mapping variable names to labels in ⇤ with a partial order �:

(∀� ∈ ⇤∶ Ṽ���(⋅) S��→ps Ṽ��(⋅))
10.2.1 Flexible Variables and Enforcement

To prevent an update to a flexible variable from violating F-PSNI we must
prevent that update from violating �S-Safe Assignment Statements condition
(10.8). But a change to the label of the flexible variables su�ces.

Flexible Variable Label Update. Label �̃[ỹ] is changed as follows

�̃[ỹ] ∶= �̃E(expr) � �
G∈�S(`)̃

�E(G)
just before executing an assignment statement `∶ ỹ ∶= expr having a flexible
variable ỹ as its target.

With this new label for its target ỹ, assignment statement ` trivially satisfies
�S-Safe Assignment Statements condition (10.8).

These changes to labels, however, can cause F-PSNI violations. We illustrate
with IMP program (10.14) below, where the set of labels is ⇤LH and fixed
variable xH has label H. The e↵ect of performing Flexible Variable Label Update
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is shown by depicting (in boxes) the new values for �̃[ỹ] during two executions.
In one execution, xH = 0 holds initially; in the other execution, it doesn’t.

xH = 0∶ �̃[ỹ] = L �̃[ỹ] = H

↓ ↓
ỹ ∶=0 if xH = 0 then ỹ ∶=0 else skip fi↑

xH ≠ 0∶ �̃[ỹ] = L

(10.14)

Letting s and s′ denote the final states of these executions, the di↵erent
final labels for ỹ cause state projections s�Ṽ�L(⋅) and s′�Ṽ�L(⋅) to be di↵erent—

even though s and s′ give the same value (viz. 0) to flexible variable ỹ. One
state projection maps ỹ to 0; the other state projection maps ỹ to “?”. So, by
definition, F-PSNI does not hold. And it shouldn’t hold—an L-observer would
read di↵erent values for ỹ in the final states of executions having initial states
that di↵er only in the value of xH = 0. Program (10.14) leaks xH = 0. However,
if executing the else alternative also were to change label �̃[ỹ] to the label
of guard xH = 0 then the L-observer would not read di↵erent values for ỹ, and
F-PSNI would hold.

This kind of leak is possible with any control-flow statement ` having a guard
G and a body containing an assignment statement to some flexible variable ỹ
where5

�̃E(G) � �
G∈�S(`)̃

�E(G) �� �̃[ỹ] (10.15)

holds when ` is reached. Here are some examples.

• An if statement ` with only one alternative that executes an assignment
statement to ỹ. So Flexible Variable Update changes �̃[ỹ] if that alterna-
tive is selected but not if the other alternative is selected.

• A while statement ` with a body that contains an assignment statement to
ỹ. So Flexible Variable Update might change �̃[ỹ] if the body is executed
because G was true. But �̃[ỹ] would not have been changed if G was false
causing the body not to be executed.

In both cases, di↵erent labels for ỹ at the exit control point for the control-flow
statement cause a �-observer to read di↵erent values for ỹ, potentially leaking G
and the guards in �S(`), since all of those guards a↵ect whether the assignment
statement to ỹ is reached.

Such F-PSNI violations can be avoided if all executions of a control-flow
statement ` update the label �̃[ỹ] of any flexible variable ỹ that could be updated
during an execution of `—even if an assignment statement to ỹ is not executed
during that execution of `.

5Recall from definition (10.7) on page 261 that �S(`) is the set of guards that determine
whether an execution reaches `.
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Untaken Trajectory Label Compensation. For every flexible variable
ỹ that is the target of an assignment statement in a control-flow statement
` that has guard G, label �̃[ỹ] is changed as follows

�̃[ỹ] ∶= �̃[ỹ] � �̃E(G) � �
G∈�S(`)̃

�E(G)
just before executing `.

Studying an example is a good way to build an informal understanding of why
Untaken Trajectory Label Compensation prevents guards from leaking; a sketch
of the proof that it works can be found below.6

Consider a program having a set ⇤LMH = {L,M,H} of labels, where L �M � H
holds. Fixed variables xM and xH satisfy �̃[xM] =M and �̃[xH] = H:

`1∶ ỹ ∶=0; if xM = 0 then `2∶ ỹ ∶=xH else skip fi

So Flexible Variable Label Update (FVLU) changes label �̃[ỹ] just before exe-
cuting assignment statement `1 and just before executing assignment statement
`2. And Untaken Trajectory Label Compensation (UTLC) changes �̃[ỹ] just
before the if statement, because the body of that if statement contains an as-
signment statement to flexible variable ỹ. The new values for �̃[ỹ] are depicted
below in boxes.

�̃[ỹ] = L (due to FVLU) `1∶ ỹ ∶= 0;

�̃[ỹ] =M due to (UTLC)

if xM = 0 then �̃[ỹ] = H (due to FVLU) `2∶ ỹ ∶= xH

else skip

fi

(10.16)

The changes to �̃[ỹ] ensure that (i) all assignment statements to flexible vari-
ables satisfy �S-Safe Assignment Statements condition (10.8) and (ii) all execu-
tions of (10.16) terminate in states satisfying �E(xM = 0) � �̃[ỹ]. Label �̃[ỹ] in

6Consider a �-observer that reads ỹ upon reaching a given control point and gets “?” in
one execution but not in another. Thus, there is an execution where the �-observer reads ỹ
and �̃[ỹ] � � holds at that point. We show that:

If G∗ a↵ects label �̃[ỹ] then �̃E(G∗) � �̃[ỹ] holds. (†)
If (†) holds then, by transitivity, �̃E(G∗) � � holds, which means that a �-observer learning
G∗ by reading ỹ is not a leak.

The argument that (†) holds for an execution proceeds by induction over that execution.
Untaken Trajectory Label Compensation ensures that the labels on flexible variables ỹ that
are targets of assignment statements in a control-flow statement ` with guard G satisfy
�̃E(G∗) � �̃[ỹ] for guards G∗ in �S(`) ∪ {G}. By definition, the set of guards that a↵ect
�̃[ỹ] at control point ` is �S(`) ∪ {G}, so (†) holds when execution first reaches `. As exe-
cution proceeds in the body of `, assignment statements `′ to ỹ may be encountered, causing
Flexible Variable Label Update to change label �̃[ỹ]. However, �S(`) ⊆ �S(`′) holds, by
defintion. Therefore, the updated label does not invalidate �̃E(G∗) � �̃[ỹ] for any guard G∗
that a↵ects whether the update is reached and, thus, (†) continues to hold.
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the final state, however, di↵ers depending on whether the initial state satisfies
xM = 0, which raises the question: Could the di↵erences in label �̃[ỹ] at that
final state leak guard xM = 0 to a �-observer?

can �-observer
state �̃[ỹ] read ỹ for � = ?
at if at fi L M H

xM = 0 H no no yes
xM ≠ 0 M no yes yes

Whether a �-observer can read ỹ
in the final state is determined by �
and by label �̃[ỹ] in that final state.
The table to the right gives a case
analysis. The “no” in every entry of
column L indicates that an L-observer
cannot read ỹ no matter what value
guard xM = 0 has in the initial state. So an L-observer monitoring the state
can learn nothing about the value of guard xM = 0—the guard does not leak
to L-observers. An M-observer, by attempting to read ỹ in the final state, can
detect whether xM = 0 evaluated to true when the if started executing. This is
because the M-observer reads 0 or “?” depending on whether the initial state
satisfies xM = 0. However, xM = 0 is not being leaked to the M-observer, since
�̃E(xM = 0) �M holds. Finally, an H-observer is able to read ỹ whether the then
or the else alternative was executed, and the H-observer is also allowed to learn
the value of guard xM = 0 because �̃E(xM = 0) � H holds so, again, there is no
leak.

10.2.2 Dynamic Enforcement of F-PSNI

To implement a dynamic enforcement mechanism for F-PSNI, a runtime envi-
ronment would maintain array �̃[⋅]. But Untaken Trajectory Label Compensa-
tion requires knowledge of assignment statements that could be executed in the
future, and a reference monitor cannot have access to that information. So we
must employ some form of hybrid enforcement.

Since F-PSNI is based on PSNI and RHPS enforces PSNI, we obtain a dy-
namic enforcement mechanism RFHPS for F-PSNI by starting with the actions
(see Figure 10.3) that implement RHPS . Recall the following about the RHPS

actions:

• Programs must satisfy Guard Restrictions for PSNI (page 262). So the
label for a while statement guard must be �⇤, and a while statement
may only be nested within control-flow statements that have guards with
label �⇤.

• TS(⋅) is a static analyzer. An invocation TS(T ) returns true if fragment
T of program S is guaranteed to terminate because T contains (i) no
while statements and (ii) no assignment statement that would be blocked
because �S-Safe Assignment Statements (page 261 is not satisfied.

• While executing the body of the most recently entered control-flow state-
ment `, the RHPS stack sps satisfies

top(sps) = �
G∈�S(`)

�E(G).
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upon S reaching ● action to be performed

● `∶ if G then S′ else S′′ fi
require(�̃E(G) = �⇤ ∨ (TS(S′) ∧ TS(S′′)))
push(sps, top(sps) � �̃E(G))
forall x̃ ∈ F -tgts(`)∶ �̃[x̃] ∶= �̃[x̃] � top(sps)

. . . fi ● pop(sps)
● `∶ while G do S end

require(�̃E(G) = �⇤)
forall x̃ ∈ F -tgts(`)∶ �̃[x̃] ∶= �̃[x̃] � top(sps)

● w̃ ∶= expr �̃[w̃] ∶= �̃E(expr) � top(sps)
● w ∶= expr require( top(sps) � �E(expr) � �(w) )

Figure 10.5: Hybrid enforcement RHPS for F-PSNI

because �
G∈�S(`)

�E(G) = �
G∈⇥S(`)

�E(G) holds due to Guard Restrictions for PSNI.

Figure 10.5 gives the actions that implement RFHPS . They augment the ac-
tions RHPS invokes when execution reaches a control-flow statement, and they
include a new action to be invoked when execution reaches an assignment state-
ment to a flexible variable. In particular, the actions for the start of control-flow
statements assume that F -tgts(`) returns the set of flexible variables that are
targets of assignment statements in the control-flow statement with label `. This
static analysis thus identifies the flexible variables needed to implement Untaken
Trajectory Label Compensation in the action for assignment statements to flex-
ible variables.

10.2.3 Typing Rules to Enforce F-PSNI

The typing rules to enforce F-PSNI are based on the typing rules to enforce PSNI
given in Figure 10.4. To enforce �S-Safe Assignment Statements for updates
to flexible variables, the F-PSNI typing rules require labels that comply with
Flexible Variable Label Update. But instead of employing Untaken Trajectory
Label Compensation and allowing di↵erences in the labels that a flexible variable
can have when execution reaches a given control point, the F-PSNI typing rules
associate a single label assignment with each control point. For programs that
satisfy this stronger restriction, the label for a flexible variable may still be
changed from one control point to the another during an execution—but only
in limited ways. Moreover, there will be programs that comply with F-PSNI
but are not type correct, because the label given to a flexible variable at a given
control point depends on earlier execution.

A label annotated program gives the text for a program S along with a single
label assignment for each control point in S. One way that we will represent a
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label annotated program is with the notation S � �̃∗ where S is a program and
�̃∗ maps each control point ` in S to an array �̃̀ [⋅] of labels indexed by variable
names. So upon reaching control point ` during an execution, �̃∗(`) gives a
value for array �̃[⋅] in the current state.

Another representation for a label annotated program is to insert a label
annotation at each control point in the text of the program. The label anno-
tation {�̃̀ } appearing at a control point ` in the program text indicates that
array �̃[⋅] in the current state equals �̃̀ [⋅] whenever control point ` is reached
during an execution. IMP programs have a control point before and after each
statement, so a label annotated IMP program can be represented by inserting
a label annotation before and after each statement in the program text. Here is
an example of a label annotated IMP program, assuming that the Si are skip
or assignment statements and the �̃i are label assignments.7

{�̃1} `1∶ S1 {�̃2}
`2∶ if G then {�̃3} `3∶ S2;{�̃4}

else {�̃5} `4∶ S3 {�̃6}
fi {�̃7}

It will be helpful to combine the two di↵erent representations for label annotated
programs, writing

{�̃′} S � �̃∗ {�̃′′}
to indicate that label assignment �̃′ is associated with the entry control point
for S, label assignment �̃′′ is associated with the exit control point for S, and
the label assignments given by �̃∗ are used for all other control points in S.
Omission of the initial label annotation {�̃′} or the final label annotation {�̃′′}
means that �̃∗ is providing those label assignments.

Judgements and Typing Rules for F-PSNI. To use type-checking for
enforcing F-PSNI, we employ typing rules that derive judgements � �p̃s S � �̃∗
for label annotated programs S � �̃∗. Validity of these judgements is defined as
follows.

7The placement of label annotation {�̃2} immediately after S1 and before if statement
`2 illustrates that IMP sequential compositions S;S′ have a single control point serving both
as the exit control point of S and as the entry control point of S′. Also notice that the exit
control point for an IMP if statement is distinct from the exit control points for its then
alternative and its else alternative. Therefore, the exit control point for an if statement
always will have two direct predecessor control points.
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skip:

� �p̃s {�̃} skip {�̃} seq:

� �p̃s S1 � �̃∗1 {�̃}, � �p̃s {�̃} S2 � �̃∗2
� �p̃s S1 � �̃∗1;{�̃} S2 � �̃∗2

a-assign:

� � �̃E(expr) � �̃[w]
� �p̃s {�̃} x ∶= expr {�̃} f-assign:

� �p̃s {�̃} ṽ ∶= expr { �̃[ṽ �� � �̃E(expr)] }

if:

�̃E(expr) = �, � � � �p̃s {�̃} S1 � �̃∗1 {�̃′}, � � � �p̃s {�̃} S2 � �̃∗2 {�̃′}
� �p̃s {�̃} if expr then {�̃} S1 � �̃∗1 {�̃′} else {�̃} S2 � �̃∗2 {�̃′} fi {�̃′}

while:

�̃E(expr) = �⇤, �⇤ �p̃s {�̃}S � �̃∗ {�̃}
�⇤ �p̃s {�̃} while expr do {�̃} S � �̃∗ {�̃} end {�̃}

relab:

�′ � �, �̃′1 � �̃1, �̃2 � �̃′2, � �p̃s {�̃1}S � �̃∗ {�̃2}
�′ �p̃s {�̃′1} S � �̃∗ {�̃′2}

Notation:

�̃[x̃ ��E(expr)]∶ �̃, except that �̃[x̃] equals label �̃E(expr)
�̃ � �̃′∶ (∀v, ṽ ∈ Vars(S)∶ �̃[v] = �̃′[v] ∧ �̃[ṽ] � �̃′(ṽ))

Figure 10.6: Typing rules for F-PSNI compliance

Valid Judgements for FSNI. Judgement � �p̃s S � �̃∗, where S is a
deterministic program, is valid if and only if

(i) (∀� ∈ ⇤∶ Ṽ���(⋅) S��→ps Ṽ��(⋅)).
(ii) � � �̃̀ [w] holds for the target w and the exit control point ` of each

assignment statement that appears in S.8

A label annotated program S � �̃∗ is considered type-correct if the typing rules
in Figure 10.6 can derive the judgement �⇤ �p̃s S � �̃∗. By design, these typing
rules only derive valid judgements from valid hypotheses. So a type-correct label
annotated program S � �̃∗ will satisfy F-PSNI, due to (i) in the above definition
of validity for �⇤ �p̃s S � �̃∗.

To enforce F-PSNI, the typing rules reject programs that would allow �-
observers to distinguish executions starting from initial values that di↵er only

8For assignments to fixed variables, the value of �̃[w] is the same at all control points. So
requirement (ii) is equivalent to what is required by Valid Judgements for PSNI (page 266).
With assignments to flexible variables, however, it is the value of �̃[w] after the assignment
statement executes that determines whether w can be read by a �-observer.
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in the values of fixed or flexible variables v satisfying �̃[v] �� �. The PSNI typing
rules in Figure 10.4 achieve this for programs that only have fixed variables. The
F-PSNI typing rules in Figure 10.6 can be seen as generalizing these PSNI typing
rules in order to accomodate flexible variables. Specifically, judgements in the
F-PSNI typing rules have label annotated programs in place of the programs
appearing in the judgements of the PSNI typing rules, the F-PSNI typing rules
ensure that a single label assignment is associated with each control point, and
rule f-assign ensures that an assignment statement to a flexibile variable does
not violate �S-Safe Assignment Statements because the rule generates a label
assignment as if Flexible Variable Label Update had been performed.

Figure 10.7 illustrates a use of the F-PSNI typing rules, giving a derivation
that shows program (10.14) is type-correct and, therefore, satisfies F-PSNI.9

Steps 4 and 5 derive judgements for the then and else alternatives. These
judgements have exit control points giving di↵erent labels for flexible variable
ỹ, necessitating step 7 to change label �̃[ỹ] at the exit control point of the else
alternative (step 5) to match the label assignment for ỹ at the exit control point
of the then alternative (step 4). The hypotheses for rule if then is discharged
using the judgements in steps 4 and 7.

10.3 *Other Noninterference Policies

Noninterference policies for a program S all have the same general form

(∀s, s′ ∈ InitS ∶ s ∼ s′ ⇒ [[S]]⌘(s) ≈ [[S]]⌘(s′)) (10.17)

where InitS is the set of initial states for S, predicate s ∼ s′ is satisfied by any
pair of states s and s′ that are indistinguishable to attackers, function [[S]]⌘(s)
evaluates to a description of the e↵ects when S begins execution in state s, and
predicate ⇠ ≈ ⇠′ is satisfied if ⇠ and ⇠′ are descriptions of execution e↵ects that
would be indistinguishable to attackers. Di↵erent choices for the predicates and
the function result in the di↵erent noninterference policies discussed in this book
and elsewhere.

The descriptions of the execution e↵ects that are surfaced by function [[S]]⌘(⋅)
reflect any assumptions we are making about programs, about the runtime envi-
ronment, and about what an attacker can monitor and detect. We have assumed
thus far that programs are deterministic. For TINI in §9.3, we assumed that
attackers only can monitor the final states of terminating executions, so for[[S]]⌘(⋅) we used function [[S]](⋅) from an initial state to a final state; for PSNI
in §10.1, we assumed that an attacker can monitor intermediate states of all
executions, so for [[S]]⌘(⋅) we used function [[S]]tr(⋅) from an initial state to an
execution trace.

Nondeterministic programs and concurrent programs can be handled by in-
stantiating [[S]]⌘(⋅) with a function that evaluates to a set.

9The set of labels used by this program is ⇤LH = {L,H}. Therefore �⇤LH
is L, so type-

correctness requires derivation of judgement L �p̃s S � �̃∗.
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1. L �p̃s {�̃} ỹ ∶=0; {�̃[ỹ �L]}
... instance of rule f-assign.

2. L � �̃E(xH = 0) �p̃s {�̃[ỹ �L ]}
ỹ ∶=0{(�̃[ỹ �L ])[ỹ �L � �̃E(xH = 0) � L]}

... instance of rule f-assign.

3. (�̃[ỹ �L ])[ỹ �L � �̃E(xH = 0) � L]) = �̃[ỹ �H]
... substitution and simplifcation.

4. L � �̃E(xH = 0) �p̃s {�̃[ỹ �L]} ỹ ∶=0 {(�̃[ỹ �H])}
... instance of rule relab with 2, 3.

5. L � �̃E(xH = 0) �p̃s {�̃[ỹ �L]} skip {�̃[ỹ �L]}
... instance of rule skip.

6. �̃[ỹ �L] � �̃[ỹ �H]
... definition of �.

7. L � �̃E(xH = 0) �p̃s {�̃[ỹ �L]} skip {�̃[ỹ �H]}
... instance of rule relab with 5, 6.

8. L �p̃s {�̃[ỹ �L]}
if xH = 0 then {�̃[ỹ �L]} ỹ ∶=0 {�̃[ỹ �H]}

else {�̃[ỹ �L]} skip {�̃[ỹ �H]}
fi{�̃[ỹ �H]}

... instance of rule if with 4, 7.

9. L �p̃s {�̃} ỹ ∶=0; {�̃[ỹ �L]}
if xH = 0 then {�̃[ỹ �L]} ỹ ∶=0 {�̃[ỹ �H]}

else {�̃[ỹ �L]} skip {�̃[ỹ �H]}
fi{�̃[ỹ �H]}

... instance of rule seq with 1, 8.

Figure 10.7: Example F-PSNI derivation
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• With a nondeterministic program S, each element in the set [[S]]⌘(s)
would describe the execution e↵ects resulting from one of the possible
sequences of outcomes for the nondeterministic choices made during an
execution that starts in initial state s.

• With a concurrent program S, each element in the set [[S]]⌘(s) would
describe the execution e↵ects produced by one of the possible interleavings
of atomic actions by the processes that comprise S, starting from initial
state s. Which interleavings are considered possible would depend on
the scheduler, capacity bounds on resources, and the semantics of any
synchronization mechanisms that processes use.

For cases where function [[S]]⌘(⋅) evaluates to sets, a straightforward defini-
tion for predicate X ≈X ′ is X = X ′. This definition is inadequate, however, for
attackers that learn by monitoring execution of the system. First, any single
execution might be in the sets [[S]]⌘(s) for multiple initial states s. Second, even
if an attacker could instigate executions from a given initial state s, there is no
guarantee that attacker would be able to generate the full contents of [[S]]⌘(s),
because nondeterministic choices, by definition, reflect aspects of the runtime
environment that attackers cannot control.

If executions are a↵ected by nondeterministic choices that an attacker cannot
control, then we might want to ascertain whether an attacker who observes
executions from some initial state s can rule out having witnessed an execution
from a di↵erent initial state s′. That noninterference policy can be formalized
by using the following weaker definition for X ≈X ′:

X ≈X ′∶ (∀⇠ ∈ X ∶ (∃⇠′ ∈ X ′∶ ⇠ ≈ ⇠′))
Noninterference policies where ≈ involves an existential quantifier are known as
possibilistic noninterference.

With nondeterministic and with concurrent programs, we might also want to
impose limits on what an observer might learn from observing a set of executions.
The set could allow an attacker to approximate the likelihood of an initial state
given how often various executions are observed. As an example, consider the
nondeterministic program

S∶ if xH > 0 then [xL ∶=1 .99 xL ∶=2]
else [xL ∶=1 .5 xL ∶=2]

fi

where [S p S
′] is the syntax for a statement that executes S or S′, choosing S

with probability p and choosing S′ with probablilty 1 − p. An L-observer who
instigates multiple executions of S should be able to predict whether xH > 0
holds based on the distribution of the final values observed for xL in those
executions—if xL = 1 holds often then xH > 0 holds with high probability. We
would want to use a version of noninterference where [[S]]⌘(⋅) produces a prob-
ability distribution for possible executions and where [[S]]⌘(s) ≈ [[S]]⌘(s′) holds
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if the probability distributions [[S]]⌘(s) and [[S]]⌘(s′) are indistinguishable to
attackers.

Changes to the value of a program variable are not the only observable
e↵ects of execution, though. For example, the elapsed time between changes to a
variable while a given program executes can reveal information about the values
of other variables. One reason is that the time required for performing certain
operations can depend on the values of the operands. Another reason is that
access to a variable may depend on whether that variable was recently accessed
and, therefore, resides in a cache. So from information about execution timing,
an attacker sometimes can make inferences about the values of variables that
the attacker cannot read directly. A noninterference policy could be formulated
that prohibits such leaks, but its states would have to provide information about
execution times, cache contents, and any other hardware or operating system
resources that a↵ect execution timings.

Finally, we should acknowledge that attackers monitor system interfaces to
learn about executions. The noninterference policies we have been discussing
concern states. So we would have to model the interfaces—what is visible and
what can be changed—using states. The domain and range for states then would
embody assumptions about the interfaces that attackers access. For example,
the assumption that attackers have access to an interface could then be imple-
mented by identifying certain variables with the interface state and choosing
labels for those variables so access by attackers is allowed.

Notes and Reading for Chapter 10

Success with enforcing TINI in sequential programs prompted researchers to
investigate defending against more-capable attackers, developing enforcement
mechanisms that would be more permissive, and supporting programning lan-
guages that had nondeterminacy and concurrency.

New typing rules in Volpano and Smith [18] for enforcing (what later be-
came known as) termination-sensitive noninterference (TSNI) were the first step.
With TSNI, attackers are assumed able to distinguish between terminating and
nontermination executions. TSNI, therefore, defends against more-capable at-
tackers than TINI, since TINI ignores nonterminating executions.

Another significant step towards a more realistic characterization of attack-
ers was the advent of an interactive model of computation in Askarov et al. [2]
to replace the batch model used for TINI and TSNI. In this interactive model,
attackers could observe outputs and/or intermediate states during an execu-
tion. The additional leaks that became possible were captured by new variants
of noninterference, later named by Askarov and Myers [3] progress insensitive
noninterference (PINI) and progress sensitive noninterference (PSNI). Askarov
et al. [2] also shows that that the certification conditions in Denning [5] to enforce
TINI in the batch model of computing su�ce for enforcing PINI in this inter-
active model of computing, which explains why the typing rules in Figure 10.4
resemble the typing rules in Figure 9.7. Finally, Askarov et al. [2] debunks
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a widely-held belief that only a single secret bit could be leaked if observers
can detect that an execution has been terminated by a dynamic enforcement
mechanism.

The design of more-permissive enforcement mechanisms has also attracted
considerable attention from researchers. Most type systems had employed flow-
insensitive analyses. Hunt and Sands [7] gives typing rules that implement a
flow-sensitive analysis.10 Those typing rules (the basis for the typing rules in
Figure 10.6) associate a label assignment with each control point, where labels
assigned to variables are allowed to change as execution proceeds, a flexibility
Denning [5] allows but the subsequent type system formalization in Volpano,
Smith, and Irvine [17] does not. Moreover, Hunt and Sands [7] observes that the
label assignments generated by their typing rules is an abstract characterization
of dependencies, leading to a surprising result: if assignments statements to fresh
variables can be added then a flow-sensitive analysis of a program having flexible
variables can be replaced by a flow-insensitive analysis of an equivalent program
where all variables have a fixed label assignment.

Dynamic enforcement mechanisms—reference monitors and hybrid enforce-
ment mechanisms—were also seen by researchers as a promising avenue for
achieving increased permissiveness. Hedin and Sabelfeld [6, §4.3] surveys dy-
namic enforcement mechanisms found in the literature prior to 2012. These
mechanisms di↵er in the information flow policy they enforce, the events they in-
tercept, the actions they take to prevent policy violations, the analyses they use,
and whether they deliver increased permissiveness over a type system. Space
does not permit a detailed enumeration here of those results.

We might expect that a dynamic enforcement mechanism would have to
analyze the code that will not be executed, since implicit flows can be caused
by assignment statements in the untaken alternative of an if statement or in
an unexecuted body of a while statement. However, Sabelfeld and Russo [14]
shows that a reference monitor like RTI can enforce TINI without analyzing
assignment statements that are not being executed. The relationship between
the permissiveness of type systems (which typically analyze all statements in
a program) and reference monitors (which only analyze the statements that
execute) is subtle. For flow-sensitive labels and programs that produce output,
Russo and Sabelfeld [12] shows that a reference monitor to enforce PINI will not
accept all executions of programs that are considered type-correct by the Hunt
and Sands [7] flow-sensitive type system. So neither enforcement mechanism is
more permissive. However, Russo and Sabelfeld [12] also shows that a hybrid
enforcement mechanism can be more permissive than the typing rules in Hunt
and Sands [7].

To learn more about information flow control, good starting points are (i)
the Sabelfeld and Myers survey [13] of language-based approaches and (ii) the

10Hunt and Sands [7] is not the first flow-sensitive analysis for checking noninterference. It
is preceded by Amtoft and Banerjee [1], which gives a Hoare-style logic that implements a
flow-sensitive analysis for verifying that certain variables are independent. The first Hoare-
style logic for reasoning about information flow policies of sequential and concurrent programs
appears in Reitman and Andrews [11], but that analysis was not flow-sensitive.
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Hedin and Sabelfeld tutorial [6] on how various forms of noninterference can
be enforced. See Kozyri et al. [8] for an in-depth exploration of the various
kinds of information flow policies. Sabelfeld and Sands [15] is considered the
authoritative treatment of declassification. Also, consider experimenting with
a programming language that uses types to enforce information flow control.
Jif [9, 10] extends Java and has been used to build non-trivial applications. One
such application that is well documented is the Civitas [4] coercion-resistant,
voter verifiable electronic voting system. Flow Caml [16] is a prototype that
extends the Caml language.
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