
Chapter 9

Information Flow Control:
TINI

This chapter and the next discuss the specification and enforcement of informa-
tion flow policies. Such policies specify whether the initial values of variables in
certain classes may directly or indirectly a↵ect the values of variables in other
classes and/or may a↵ect program termination. The variables in an information
flow policy might correspond to regions of memory, communications channels,
or files. For enforcing confidentiality, an information flow policy would specify
that the values of a variable not be a↵ected by secrets; for enforcing integrity,
it would specify that these values not be a↵ected by values derived from un-
trusted sources. Information flow policies are said to be end-to-end because
they restrict what an initial value (or input) may a↵ect and, therefore, these
policies limit all uses of derived values. In contrast, the authorization policies
discussed elsewhere in this book just restrict access to containers, independent
of contents.

9.1 Labels Specifying Information Flow Policies

An information flow policy for a program (i) gives a label assignment �(⋅) that
associates a label �(v) with each program variable v and (ii) gives a partial
order1 � on the set ⇤ of possible labels, where ⇤ contains a minimal element �⇤
satisfying �⇤ � � for all � ∈ ⇤. We write �� to indicate the complement of �, and

1A relation ⇢ on a set Vals is a subset of {�a, b� � a, b ∈ Vals}. Its complement �⇢ is the
set {�a, b� � a, b ∈ Vals} − ⇢. A partial order ⇢ on Vals is a relation on Vals that satisfies the
following properties, where (as is conventional) infix notation a⇢ b is used for �a, b� ∈ ⇢.

Reflexive: a ⇢ a for all a ∈ Vals.
Transitive: a ⇢ b and b ⇢ c implies a ⇢ c for all a, b, c ∈ Vals.
Antisymmetric: a ⇢ b and b ⇢ a implies a = b for all a, b ∈ Vals.

Note that a partial order ⇢ does not have to relate all pairs of elements a, b ∈ Vals, so if a �⇢ b
holds it is possible that neither a ⇢ b nor b ⇢ a holds.

233

January 10, 2026 Copyright Fred B. Schneider All rights reserved

234 Chapter 9. Information Flow Control: TINI

we write � � �′ as an abbreviation for � � �′ ∧ � ≠ �′. Relation � specifies the
allowed and prohibited information flows during program executions.

• �(v) � �(w) specifies that the value of variable v is allowed to a↵ect the
value of variable w.

• �(v) �� �(w) specifies that the value of variable v is not allowed to a↵ect
the value of variable w.

So each label � ∈ ⇤ divides the set Vars(S) of variables in a program S into two
subsets according to partial order �:

V��∶ {v ∈ Vars(S) � �(v) � �} V���∶ {v ∈ Vars(S) � �(v) �� �}
And in executions that comply with �, the value of no variable from V��� is
allowed to a↵ect the value of any variable from V��. This is useful for prohibiting
leaks. Ordinary access control cannot prevent a program from copying x to y
if that program is both authorized to read a secret variable x and to write a
public variable y. An information flow policy can prevent such leaks if R(�) is
the set of subjects that are authorized to read a variable with label � and the
following holds.

(∀�,�′ ∈ ⇤∶ � � �′ ⇒ R(�′) ⊆ R(�)). (9.1)

This is because �(x) � �(y) must hold for a subject to write y after reading
x, so from (9.1) we conclude that R(�(y)) ⊆ R(�(x)) must hold if a subject is
copying x to y. Therefore, subjects authorized to read y must also be authorized
to read x. If x stores a secret then R(�(x)) includes only those subjects that are
allowed to read that secret. Since R(�(y)) does not allow additional subjects
to read y, we conclude that y cannot be public.

9.1.1 Labels for Expressions

�(⋅) gives labels to variables, but not to expressions. The label �E(E) that
we associate with an expression E (i) will specify the variables and expressions
that E is allowed to a↵ect and (ii) will specify the variables and expressions
that are allowed to a↵ect E. Since uniary operators and infix binary operators
can be viewed as syntactic sugar for function applications, no generality is lost
if we limit consideration here to expressions that are constants, variables, and
function applications f(E1,E2, . . . ,En) having arguments Ei that are them-
selves expressions. For simplicity, assume that evaluating an expression always
produces some value.

Labels for Constants. The label �E(c) that we associate with a constant c
should not preclude an assignment statement from storing c into any variable.
Therefore, we require that �E(c) � �(v) hold for any constant c and for any
variable v. That requirement leads to the definition:

�E(c)∶ �⇤ for any constant c (9.2)

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.1. Labels Specifying Information Flow Policies 235

Labels for Variables. The label �E(v) we associate with an expression that
is a variable v should have the same restrictions as �(v):

�E(v)∶ �(v) for any variable v. (9.3)

Labels for Function Applications. Whether the value of f(E1,E2, . . . ,En)
is a↵ected by the value of its argument Ei depends on f . The conservative choice
for label �E(f(E1,E2, . . .En)) would be a label that works for any function f .
Such a label would allow (but not require) each argument Ei to a↵ect the value
of f(E1,E2, . . .En):

�E(Ei) � �E(f(E1,E2, . . .En)) for 1 ≤ i ≤ n. (9.4)

So satisfying (9.4) is one goal for our definition of �E(f(E1,E2, . . .En)).
A value that is at least as large as any member of a set is called an upper

bound for that set; a least upper bound is an upper bound that is not larger
than any other upper bound. One way to satisfy (9.4) is by defining label
�E(f(E1,E2, . . .En)) to be an upper bound of set {�E(E1),�(E2), . . . ,�E(En)}
of labels. Among the upper bounds, the least upper bound is the best choice
for label �E(f(E1,E2, . . .En)) because it allows the value of f(E1,E2, . . .En)
to a↵ect more variables.

Least upper bounds for finite subsets {�1,�2, . . . ,�n} ⊆ ⇤ having partial
orders � typically are specified by using an idempotent, commutative, and as-
sociative join operator � that satisfies the axioms:

�i � (�1 � �2 ��� �n) for 1 ≤ i ≤ n (9.5)

(�1 � � ∧ �2 � � ∧ � ∧ �n � �) ⇒ (�1 � �2 ��� �n) � � (9.6)

Axiom (9.5) says that �1 � �2 � � � �n is an upper bound for {�1,�2, . . . ,�n},
and axiom (9.6) says that �1��2����n is a least upper bound. We can ensure
that ⇤ contains least upper bound �1��2����n for any subset {�1,�2, . . . ,�n}
of ⇤ simply (i) by adding to ⇤ an element �⇤ that satisfies � � �⇤ for all � ∈ ⇤,
and (ii) by defining � � �′ to equal �⇤ for every pair of labels � and �′ where
previously ���′ was not a member of ⇤. Figure 9.1 depicts a set ⇤ of labels and
some least upper bounds. Notice that not all labels in ⇤ are related by �—for
example, neither �1 � �6 nor �6 � �1 holds.

Axiom (9.5) suggests that a definition for �E(f(E1,E2, . . .En)) satisfying
(9.4) can be constructed with �. It is

�E(f(E1,E2, . . .En))∶ �
1≤i≤n�E(Ei) (9.7)

where we define

�
i∈I �i∶ � �⇤ if I = �

�i1 � �i2 ��� �in if I = {i1, i2, . . . , in} (9.8)

January 10, 2026 Copyright Fred B. Schneider All rights reserved

236 Chapter 9. Information Flow Control: TINI

�⇤

�1 �2 �3

�4 �5 �6

�⇤

�1 � �2 = �4

�1 � �3 = �5

�2 � �3 = �6

�1 � �2 � �3 = �⇤
� �′ denotes � � �′

Figure 9.1: Examples of � for ⇤ = {�⇤,�1, . . . ,�6,�⇤}
By combining (9.2), (9.3), and (9.7), we then get the definition for the label
�E(E) that we give to an expression E.

�E(E)∶
���������������

�⇤ if E is a constant c

�(v) if E is a variable v

�
1≤i≤n�E(Ei) if E is f(E1,E2, . . . ,En)

(9.9)

Some useful corollaries of (9.9) include the following, where Vars(expr) is the
set of variables referenced in expr .

�E(E) = �
v∈Vars(expr)

�(v) (9.10)

(�E(E) �� �(w)) ⇒ (∃v ∈ Vars(E)∶ �(v) �� �(w)) (9.11)

9.2 ⇤LH : A Simple Label Scheme

The set ⇤LH = {L,H} of labels, along with the partial order � and join � depicted
in Figure 9.2, are often used when discussing information flow policies.

• For specifying confidentiality, variables storing public information are given
label L, and variables storing secret information are given label H. Because
H �� L holds, secret values are then prohibited from a↵ecting public values.

• For specifying integrity, variables storing trusted information are given
label L and variables storing untrusted information are given label H.
Because H �� L holds, untrusted values are prohibited from a↵ecting trusted
values.

Many people find it counterintuitive to be using the same label (H) both
for untrusted values and for secret values. Here is a way to reconcile these

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 237

� L H

L � �
H �� �

(a) Definition of �

� L H

L L H

H H H

(b) Definition of �
Figure 9.2: Definitions of � and � for ⇤LH = {L,H}, where �⇤LH

is L

interpretations. In both cases, the presumed readers of variables with label H
is a subset of the presumed readers for variables with label L due to (9.1). For
confidentiality, this restriction on readers limits the propagation of secrets; for
integrity, the restriction limits the propagation of untrusted information.

Some find it helpful to think of an information flow from a variable with label
L (Low) to a variable with label H (High) as information flowing “up”, and they
think of an information flow from a variable with label H to a variable with label
L as information flowing “down”. According to that view, two formulations of
the information flows that are prohibited by � in Figure 9.2(a) are:

No read up. A value read from a variable with label H cannot be used to
update a variable with label L.

No write down. A variable with label L cannot be updated using a value
read from a variable with label H.

More succinctly put: “no read up; no write down”.

9.3 Termination Insensitive Noninterference

Noninterference policies prevent a �-observer (for any � ∈ ⇤) from learning
about the initial values of variables in V��� by reading variables in V�� at certain
designated points during executions. What is considered a “designated point”
during an execution depends on what capabilities we attribute to attackers,
since attackers are �-observers. Some noninterference policies assume that �-
observers only have access to the initial and final states of those executions that
terminate; other noninterference policies assume that �-observers can access
intermediate states of terminating and non-terminating executions. And some
noninterference policies assume that �-observers are also capable of detecting
that an execution is non-terminating or that an execution has been blocked by
an enforcement mechanism.

Termination insensitive noninterference (TINI) policies prohibit the values
of variables from V��� in initial states from a↵ecting the values of variables from
V�� in final states of terminating executions, for all labels � ∈ ⇤. So if TINI is
being enforced then the initial and final values of variables from V�� in termi-
nating executions will reveal nothing about the initial values of variables from
V���.2 TINI policies are intended for settings where attackers have limited system
access, so the following assumptions are satisfied.

2TINI policies thus ignore leaks that occur if an observer can deduce that some execution

January 10, 2026 Copyright Fred B. Schneider All rights reserved

238 Chapter 9. Information Flow Control: TINI

Batch. For a program S with variables V , a �-observer can read variables
in V�� before and after, but not during, terminating executions of S.

Asynchronous. A �-observer cannot distinguish a non-terminating execu-
tion from a terminating execution that has not yet terminated.

TINI policies can be formally defined by using a predicate V S��→ti W that holds
if, for terminating executions by S, the initial values of variables in the set V
do not a↵ect the final values of variables in the set W .

Termination Insensitive Noninterference (TINI). For a determin-
istic program S where the variables have labels from a set ⇤ with partial
order �:

(∀� ∈ ⇤∶ V���
S��→ti V��)

The formal definition for V S��→ti W uses a function [[S]](s) that characterizes
the relevant e↵ects of executing program S from a state s.

[[S]](s)∶ � s′ if execution of S in state s terminates in state s′⇑ if execution of S in state s is non-terminating
(9.12)

The formal definition of V S��→ti W also uses a predicate on pairs of states that is
satisfied if these states are indistinguishable to an observer that can read only
the variables in some given set V. For a state s, we write s.v to denote the
value of a variable v in a state s, and we define the value of a variable v in state
projection s�V as follows, where “?” represents an unknown value.

s�V .v∶ � s.v if v ∈ V
? otherwise

(9.13)

State projections provide a straightforward way to assert that two states give
the same values to the variables in V.

s =V s′∶ s�V = s′�V
We then have the following formal definition for predicate V S��→ti W , where InitS
is the set of initial states of program S and V denotes the set Vars(S) − V.

V S��→ti W ∶ (∀s, s′ ∈InitS ∶ s =V s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑
⇒ [[S]](s) =W [[S]](s′))

(9.14)

is non-terminating. For example, deducing that an execution of

while x = 0 do skip end

is non-terminating implies that x = 0 was true in the initial state. Termination sensitive

noninteference (TSNI) strengthens TINI to account for �-observers that can detect that an
execution is non-terminating.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 239

Predicate V S��→ti W thus specifies a requirement on the states produced by ter-
minating executions of S if those executions start in states s and s′, give di↵erent
values to one or more variables in V, but give the same values to variables not
in V. The requirement is that final states [[S]](s) and [[S]](s′) must satisfy[[S]](s) =W [[S]](s′) and, therefore, the final values of variables in W have not
been a↵ected by any di↵erences in starting states s and s′. Since initial states s
and s′ di↵er only in the values for variables in V, we have made a counterfactual
argument3 that the di↵erent initial values for variables in V did not a↵ect the
final values of variables in W .

9.3.1 TINI in Action

Consider the TINI policy specified by set ⇤LH of labels given in Figure 9.2. For
a deterministic program S with variables V , replacing � with its possible values

L and H in V���
S��→ti V�� from the above formal definition of TINI results in

V��L
S��→ti V�L ∧ V��H

S��→ti V�H. (9.15)

By expanding
S��→ti according to definition (9.14), we obtain the following re-

strictions on the initial and final states of the terminating executions by S:

(∀s, s′ ∈ InitS ∶ s =V ��L s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑⇒ [[S]](s) =V�L [[S]](s′))
∧ (∀s, s′ ∈ InitS ∶ s =V ��H s′ ∧ [[S]](s) ≠⇑ ∧ ; [[S]](s′) ≠⇑

⇒ [[S]](s) =V�H [[S]](s′))
(9.16)

Writing V� to denote the set of variables having label �, the following hold

V��L = VL V�L = VL V��H = VL ∪ VH V�H = VL ∪ VH

and therefore (9.16) is equivalent to:

(∀s, s′ ∈ InitS ∶ s =VL
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =VL
[[S]](s′))

∧ (∀s, s′ ∈ InitS ∶ s =VL∪VH
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑

⇒ [[S]](s) =VL∪VH
[[S]](s′))

(9.17)

We have that VL∪VH = V holds, since every variable is assigned a label from ⇤LH.
Therefore, predicate s =VL∪VH

s′ in (9.17) is equivalent to predicate s = s′. So
the second quantified formula of (9.17) is always satisfied due to the assumption
that S is deterministic—terminating executions of deterministic program that

3With a counterfactual argument, multiple hypothetical starting points or sets of assump-
tions are the basis for justiying a conclusion.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

240 Chapter 9. Information Flow Control: TINI

�(in) �(out) V�L V��L V�H V��H out ∶= in?
L L {in,out} � {in,out} � √
L H {in} {out} {in,out} � √
H L {out} {in} {in,out} � ×
H H � {in,out} {in,out} � √

Figure 9.3: Possible information flow policies for out ∶= in
start from the same states produce the same final states. Thus, (9.17) simplifies
to:

(∀s, s′ ∈ InitS ∶ (s =VL
s′ ∧ [[S]](s) ≠⇑ ∧ [[S]](s′) ≠⇑)

⇒ [[S]](s) =VL
[[S]](s′))

States satisfying s =VL
s′ may di↵er in the values of variables in VH but must

agree on the values of variables in VL. So (9.17) is specifying that the values of
variables in VH in initial states are not allowed to a↵ect on the values of variables
in VL in final states or, equivalently, that the values of variables with label H
are prohibited from a↵ecting the values of variables with label L. Enforce this
TINI policy and variables with label H can store information that must not leak
to variables with label L.

We illustrate with the simple program: out ∶= in. This program is determin-
istic, it always terminates, and the value of in in initial states a↵ects the value
of out in final states. Figure 9.3 summarizes whether program out ∶= in satisfies
the TINI policy defined by the labels that a row gives for variables in and out .
There is a

√
in the final column if the TINI policy defined by the row is satisfied

by executions of out ∶= in. The third row has an × in the final column, because
TINI is violated. This violation should not be surprising—TINI prohibits ex-
ecutions where a variable having label H a↵ects a variable having label L, and
for the third row in has label H, the initial value of in a↵ects the final value of
out , but out has label L.

Some implications of various specific TINI policies might be surprising,
though. Consider variables xL and xH, with �(xL) = L and �(xH) = H. The
following program shows that TINI can be violated by assignment statements
where the expressions are constants, even though constants have label L.

if xH = 0 then xL ∶=1 else xL ∶=2 fi (9.18)

The next program slightly changes the else alternative.

if xH = 0 then xL ∶=1 else xL ∶=1 fi (9.19)

TINI is not violated by (9.19) because the same assignment to xL is executed
for any value of xH.

Two final programs illustrate that TINI policies are not necessarily violated
if assignment statements store values into variables labeled L from variables

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 241

stmt ∶∶= skip� var ∶= expr� if expr then stmt else stmt fi� while expr do stmt end� stmt ; stmt

Figure 9.4: Syntax for IMP programs

labeled H. In program

xL ∶=xH; xL ∶=63; (9.20)

TINI is satisfied, since the final value of xL is not a↵ected by the initial value of
xH. This next program satisfies TINI if Boolean expression B does not mention
xL or xH, even though a variable with label H a↵ects a variable with label L in
the body of the while.

while B do xL ∶=xH end (9.21)

If B is initially true then B will remain true (because the only variable changed
in the loop body is not mentioned in B), so the while never terminates. TINI
is then satisfied because TINI impose no restrictions on non-terminating exe-
cutions. If B is initially false, then TINI is satisfied because the loop body is
never executed, so problematic assignment statement xL ∶=xH is never executed.

9.3.2 TINI Enforcement

To be concrete in our discussions about how to enforce TINI and other nonin-
terference policies, Figure 9.4 gives the grammer for IMP, a simple imperative
programming language. Instead of including variable declarations, an IMP pro-
gram will be accompanied by a label assignment �(⋅) giving a fixed label �(v)
for each variable v. Expressions expr in IMP programs are constructed from
constants, variables, operators, and functions, as discussed in §9.1.1. Finally,
we write “`i: S” to indicate that a statement label `i names the control point
associated with the start of statement S. Statement labels will also be used to
refer to the statement at the control point. No statement label will appear more
than once in a program, and statement labels are disjoint from the labels in ⇤.

Assignment statements var ∶= expr are the way an IMP program changes
the value of a variable; var is called the target, and expr is called the source.
IMP provides two kinds of control-flow statements: if statements and while
statements. Each control-flow statement has a guard and a body. The guard
is a Boolean expression; the body comprises one or more statements. With an
if statement, the body comprises a then alternative and an else alternative;
the value of the guard determines which alternative is executed. With a while

January 10, 2026 Copyright Fred B. Schneider All rights reserved

242 Chapter 9. Information Flow Control: TINI

`1∶ S1

`2∶ ifG2 then `3∶ S3

else `4∶ while G4 do
`5∶ S5

end;
`6∶ S6

fi;
`7∶ S7

`i ⇥S(`i)
`1 �
`2 �
`3 {G2}
`4 {G2}
`5 {G2,G4}
`6 {G2}
`7 �

Figure 9.5: ⇥S(`i) for a program S

statement, the value of the guard determines whether the body is executed for
another iteration or, instead, execution of the while statement terminates.

For each statement label ` in a program S, define ⇥S(`) to be the set con-
taining the guards for those control-flow statements having a body that includes
statement `. So the guards in ⇥S(`) could a↵ect whether statement ` will be
reached during some terminating execution of S. Figure 9.5 gives ⇥S(⋅) for
an example program. Notice, ⇥S(`) contains multiple guards when ` is nested
within multiple control-flow statements. Guards in ⇥S(`), however, are not the
only guards that can a↵ect whether statement ` will be reached during exe-
cutions of a program S. In Figure 9.5, for example, G4 ∉ ⇥S(`7) holds even
though G4 could a↵ect whether `7 will be reached—G4 a↵ects whether while
statement `4 terminates, and if that while statement does not terminate then
`7 will not be reached.

By definition, an execution of a program S that violates TINI must be
terminating and it must execute some assignment statement. There are two
ways that executing an assignment statement `∶ w ∶= expr could violate TINI
because ` causes an illicit flow. With an illicit explicit flow, the illicit flow is
from some variable in expr . An illicit explicit flow cannot occur during execution
of `∶ w ∶= expr if the following holds.

�E(expr) � �(w) (9.22)

With an illicit implicit flow, the illicit flow is from some guard G that does not
satisfy �E(G) � �(w) but a↵ects whether `∶ w ∶= expr is executed. Such an illicit
explicit flow cannot occur if

�
� �
G∈⇥S(`)

�E(G)�� � �(w). (9.23)

holds, since then all guards a↵ecting whether ` gets executed satisfy �E(G) � �(w).
Therefore, the following condition ensures that executing an assignment state-
ment `∶ w ∶= expr does not cause an illicit explicit flow or an illicit implicit flow.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 243

⇥S-Safe Assignment Statements. Ensure that

�
��E(expr) �

�
� �
G∈⇥S(`)

�E(G)��
�
� � �(w) (9.24)

holds for each assignment statement `∶ w ∶= expr that S executes.

⇥S-Safe Assignment Statements is conservative—programs that comply will
satisfy TINI, but programs that do not comply might also satisfy TINI. One rea-
son that a program could be speciously rejected is that definition (9.9) for �E(⋅)
ignores the semantics of expressions. If, for example, variables v and w satisfy
�(v) �� �(w) then the program w ∶= v − v does not satisfy ⇥S-Safe Assignment
Statements because �E(v − v) = �(v) and, therefore, �E(v − v) � �(w) does not
hold. However, program w ∶= v − v does satisfy TINI, since the final value of w
is the same for all initial values of v.

A second reason that programs could be speciously rejected is that ⇥S-Safe
Assignment Statements ignores context. Program (9.19) is rejected by ⇥S-Safe
Assignment Statements due to the label of if statement guard xH = 0. Yet this
program satisfies TINI, because the then and the else alternatives each store
the same value into xL for any initial value of xH. A di↵erent e↵ect of context
is seen in program (9.20), where an assignment statement xL ∶=xH that does not
satisfy ⇥S-Safe Assignment Statements is followed by an assignment statement
xL ∶=63 that overwrites the illicit update.

9.3.3 Dynamic Enforcement of TINI

A reference monitor4 is invoked in response to certain specified events that occur
as some monitored program executes. Once invoked, the reference monitor may
update its state and, based on its state, either block further execution by the
monitored program or allow execution of the monitored program to continue.
So when a reference monitor is present, each execution of a monitored program
is blocked, terminating, or non-terminating. Also, the decision to block further
execution of a monitored program must be made without any knowledge of
program statements in the monitored program that have not yet executed.

A reference monitor to enforce TINI blocks further progress and deletes
the program state when a monitored program is about to perform an action
that would violate TINI. Therefore, blocked executions are indistinguishable
from non-terminating executions. Since TINI imposes no constraints on non-
terminating executions, it would seem sensible for TINI to impose no constraints
on other executions that are indistinguishable from blocked executions. So
the definition of TINI as imposing constraints only on terminating executions
remains unchanged.

The only way for a terminating execution of an IMP program S to violate
TINI is by executing an assignment statement that does not satisfy ⇥S-Safe

4Chapter 11 gives a detailed treatment of reference monitors.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

244 Chapter 9. Information Flow Control: TINI

upon S reaching ● action to be performed

● w ∶= expr require(top(sti) � �E(expr) � �(w))
● if G then . . . push(sti , top(sti) � �E(G))

. . . fi ● pop(sti)
● while G do . . . push(sti , top(sti) � �E(G))

. . . end ● pop(sti)

Figure 9.6: Reference monitor RTI for TINI

Assignment Statements condition (9.24). So a reference monitor for enforc-
ing TINI should be invoked and check this condition whenever an assignment
statement is about to execute. To perform this check for an assignment state-
ment `∶ w ∶= expr in some monitored program S, the reference monitor needs
labels �(w), �E(expr), and �G∈⇥S(`) �E(G). The values of these labels can be
determined using �(⋅), as follows.

• �(w) and �E(expr) can be determined by the reference monitor if (i)
reaching an assignment statement `∶ w ∶= expr is an event that causes the
reference monitor to be invoked, and (ii) the name of target w and the
names of variables referenced in expr are delivered to the reference monitor
with that event.

• �G∈⇥S(`) �E(G) can be calculated by the reference monitor if (i) reaching
or exiting if and while statements are events that cause the reference
monitor to be invoked and (ii) a reason (if G, fi, while G, or end) for
the event is available to the reference monitor.

Figure 9.6 gives the actions for such a reference monitorRTI . A require(B)
statement is used there in describing those reference monitor actions. Execution
of require(B) evaluates B. If B evaluates to false then the reference monitor
terminates the monitored program that was being executed when the reference
monitor was invoked and also deletes the state of that program; if B evaluates
to true then the monitored program is allowed to proceed.RTI is invoked and checks ⇥S-Safe Assignment Statements condition (9.24)
whenever an assignment statement is reached in monitored program S. To
facilitate this checking, RTI is also invoked to update a stack5 sti whenever S
reaches or exits a control-flow statement. (Assume that a new instance of stack
sti is allocated and initialized to empty for each monitored program S .) The

5We use operations push(sti , v) to insert value v onto stack sti ; pop(sti) to remove the
most recently added value from stack sti ; and a function top(sti) that returns the value
currently at the top of stack sti .

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 245

updates to this stack ensure that

top(sti) = �
G∈⇥S(`)

�E(G) (9.25)

holds whenever an assignment statement (say) `∶ w ∶= expr is about to execute in
the monitored program. Therefore, the value of top(sti) along with �(w) and
�E(expr), can be used by the reference monitor to check ⇥S-Safe Assignment
Statements condition (9.24) for that assignment statement.

What RTI Enforces. The result of executing a program S with RTI present
is a combined program, which we represent using notation RTI ▷S. By con-
struction, terminating executions of RTI ▷S are terminating executions of S
where ⇥S-Safe Assignment Statements condition (9.24) holds for every assign-
ment statement that was executed.

For RTI▷S to satisfy TINI, the following must hold.

(∀� ∈ ⇤∶ V���
RTI▷S��→ti V��) (9.26)

If (9.26) does not hold then, according to definition (9.14) of V S��→ti W , there
would be initial states s and s′ of terminating executions that agree on the
initial values of all variables in V�� but do not agree on the final values of those
variables. We prove that this scenerio is impossible by assuming that such a
problematic pair of terminating executions exists and deriving a contradiction.

If two executions of RTI▷S do not have the same final values for some vari-
ables in V��, then there must be an earliest state where the values for one or
more of those variables disagree. The disagreement must be caused by an assign-
ment statement that was a↵ected by some variable outside of V��, since the two
executions agreed on values for variables from V�� in all previous states. How-
ever, such an assignment statement would have violated ⇥S-Safe Assignment
Statements condition (9.24), so execution would be blocked before performing
that assignment statement, which contradicts the assumption that we started
with terminating executions. We conclude that RTI▷S satisfies TINI.

However, the matter of leaks is more nuanced. If S does not also satisfy
TINI then there must be terminating executions of S that become blocked exe-
cutions of RTI▷S. The initial states of the resulting smaller set of terminating
executions for RTI▷S must then exhibit additional correlations over the corre-
lations present in the initial states of the terminating executions for S withoutRTI present. But if variables in initial states are correlated then the value of
one can be used to predict the values of the others, potentially compromising
confidentiality. That suggests RTI▷S might exhibit a leak.

To make this concrete, here is an example. Assume that �(xL) = L and
�(xH) = H hold.

if even(xH) then xL ∶=1 else skip fi (9.27)

January 10, 2026 Copyright Fred B. Schneider All rights reserved

246 Chapter 9. Information Flow Control: TINI

RTI blocks executions of (9.27) that start in states where even(xH) is true; RTI

does not block executions that start in states where even(xH) is false. So an
L-observer of a terminating execution of (9.27) when RTI is present learns some-
thing about the initial value of xH—that initially xH was odd. Arguably, that’s
a leak. Yet TINI holds, because di↵erences in the initial values for xH in ter-
minating executions are not visible to an L-observer reading xL when execution
terminates. Moreover, an L-observer cannot detect that an execution is blocked
and, therefore, cannot determine that the initial value of xH is even—apparently,
there is no leak.

9.3.4 Typing Rules to Enforce TINI

A type-safe programming language will come with typing rules that derive the
set of type-correct programs. The typing rules will have been formulated to
ensure that all executions of type-correct programs are guaranteed to satisfy
certain properties. You are doubtless familiar with typing rules to ensure that
only the right kinds of values are stored into specific program variables or appear
as arguments to certain operations. Such typing rules, for example, reject pro-
grams that perform arithmetic operations on variables storing character strings.
In this section, we give typing rules that ensure type-correct programs satisfy
TINI.

To assert that a program or statement S is type-correct, we use judgements

�,� �ti S (9.28)

where typing context � is a label assignment, and control context � is a label
from ⇤.6 Judgements that satisfy certain constraints are defined to be valid.

Valid Judgements for TINI. Judgement �,� �ti S for a deterministic
program S is valid if and only if

(i) (∀� ∈ ⇤∶ V���
S��→ti V��).

(ii) � � �(w) holds for target w of every assignment statement in S.

Requirement (i) ensures that type-safe programs comply with TINI. Require-
ment (ii) ensures that ⇥S-Safe Assignment Statements is not violated if S is put
in the body of a control-flow statement that has a guard G satisfying �E(G) � �.
So requirement (ii) allows valid judgements for a compound statement to be de-
rived from valid judgements for its component statements. A derivation below
will illustrate.

Typing Rules. Each typing rule r is specified as a schema

r:

H1, H2, . . . , Hn

�,� �ti S
6Consistent with the IMP syntax given in Figure 9.4, “statement” and “program” are used

interchangeably in the following discussions.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 247

skip:

�,� �ti skip assign:

� � �E(expr) � �(v)
�,� �ti v ∶= expr

if:

�E(expr) = �, �,� � � �ti S, �,� � � �ti S′
�,� �ti if expr then S else S′ fi

while:

�E(expr) = �, �,� � � �ti S
�,� �ti while expr do S end

seq:

�,� �ti S, �,� �ti S′
�,� �ti S; S′

Figure 9.7: Typing rules for TINI compliance

that gives a procedure for deriving the rule’s conclusion �,� �ti S by mechan-
ically transforming some or all of the rule’s hypotheses H1, H2, . . . , Hn. By
design, the conclusion of a typing rule will be a valid judgement if each of the
rule’s hypotheses is valid.

Figure 9.7 gives a set of typing rules for enforcing TINI in IMP programs.
An IMP program S is considered type-correct if judgement �,�⇤ � S can be
derived using these typing rules, because having �,�⇤ � S be valid implies that
S satisfies TINI. So, TINI is enforced if IMP programs that are type-correct are
allowed to execute but other programs are not allowed to execute.

The typing rules in Figure 9.7 ensure that assignment statements in type-
correct programs do not violate⇥S-Safe Assignment Statements condition (9.24).
TINI then follows. An example is a good way to see how the rules prevent viola-
tions of⇥S-Safe Assignment Statements condition (9.24). Consider the following
possible conclusion of rule if, where S′ denotes an IMP statement.

�,�⇤ �ti S∶ ifB then `∶ w ∶= expr else S′ fi (9.29)

To derive this judgement requires having a derivation for each hypothesis of rule
if. Substituting �E(B) for � due to the first hypothesis, the second hypothesis
requires a derivation of the following.

�, �⇤ � �E(B) �ti `∶ w ∶= expr
Rule assign must be used to derive this judgement, and the required hypothesis
for that derivation is satisfied provided the following holds

�⇤ � �E(B) � �E(expr) � �(w),
which is equivalent to �E(B) � �E(expr) � �(w). For program S, we have that
⇥S(`) is {B} and, therefore, the following holds.

�E(B) = �
G∈⇥S(`)

�E(G)

January 10, 2026 Copyright Fred B. Schneider All rights reserved

248 Chapter 9. Information Flow Control: TINI

1. �E(0) = L ... defn (9.9) of �E(⋅), since �⇤{L,H} = L .
2. �(m) = H ... assumption.
3. ((L �H) � L) � H ... defns of � and � in Figure 9.2.
4. �,L �H �ti m ∶=0 ... assign with 1, 2, 3.
5. �E(y) = H ... defn (9.9) of �E(⋅), given assumption �(y) = H.
6. ((L �H) �H) � H ... defns of � and � in Figure 9.2.
7. �,L �H �ti m ∶=y ... assign with 5, 2, 6.
8. �E(x ≤ y) = H ... defn (9.9) of �E(⋅), since

�E(x ≤ y) = (�(x) � �(y)) = (L �H) = H.
9. �,L �ti if x ≤ y then m ∶=0 else m ∶=y fi ... if with 8, 4, 7.

Figure 9.8: Example of Hilbert-style proof format

So we have showed that the derivation of (9.29) implies

�
� �
G∈⇥S(`)

�E(G)�� � �E(expr) � �(w).
This is exactly what ⇥S-Safe Assignment Statements condition (9.24) requires
for assignment statement `∶ w ∶= expr , since whether ` executes is a↵ected by
guard B of the if statement (and by no other guards).

Proof Formats. Various formats are available for presenting the derivation
of a judgement to establish that some given IMP program is type-correct. Each
has advantages and disadvantages. To illustrate the di↵erent formats, we use
each to give the type-correctness derivation for the following judgement

�,L �ti if x ≤ y then m ∶=0 else m ∶=y fi (9.30)

assuming �(x) = L, �(y) = H, and �(m) = H hold, ⇤ is {L,H}, and the rules for
evaluating expressions involving � and � are those given in Figure 9.2.

Hilbert-Style Proof Format. Figure 9.8 gives a type-correctness derivation
as a list of sequentially numbered steps. Each step comprises a formula F (often,
a judgement) and a rationale R. When F is a judgement, R names a typing
rule and lists the numbers for earlier steps that discharge hypotheses needed to
derive F by using that rule. Sometimes the validity of a hypothesis is given as
part of the justification rather than by referencing an earlier step. Such inline
justifications are used by steps 1, 2, 3, 5, and 8 of Figure 9.8.

Derivation-Tree Proof Format. Figure 9.9 gives the type-correctness deriva-
tion as a series of derivation trees. A derivation tree vertically stacks instances
of typing rules, positioning the conclusion of one rule to appear as a hypothesis
for another rule. Three derivation trees appear in Figure 9.9. Tags (DT1 and
DT2) on the first two derivation trees allow their conclusions to be used for

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.3. Termination Insensitive Noninterference 249

assign:

((L �H) � �E(0)) � H

�,L �H �ti m ∶=0 (DT1)

assign:

((L �H) � �E(y)) � H

�,L �H �ti m ∶=y (DT2)

if:

�E(x ≤ y) = H, DT1:

�
�,L �H �ti m ∶=0 , DT2:

�
�,L �H �ti m ∶=y

�,L �ti if x ≤ y then m ∶=0 else m ∶=y fi

Figure 9.9: Example of derivation tree proof format

1. �,L �ti if x ≤ y thenm ∶=x elsem ∶=y fi if with 1.1, 1.2, and 1.3.
1.1. �E(x ≤ y) = H �E(x ≤ y) = (�(x) � �(y)) = (L �H) = H.
1.2. �,L �H �ti m ∶=0 assign with 1.2.1 and 1.2.2.
1.2.1. �E(0) = L Definition (9.9) of �E(⋅), since �{L,H} = L.
1.2.2. �(m) = H Assumption.
1.2.3. ((L �H) � L) � H Definitions of � and � in Figure 9.2.

1.3. �,L �H �ti m ∶=y assign with 1.3.1, 1.3.2, and 1.3.3.
1.3.1 �E(y) = H Assumption.
1.3.2. �(m) = H Assumption.
1.3.3. ((L �H) �H) � H Definitions of � and � in Figure 9.2.

Figure 9.10: Example of hierarchically presented proof format

discharging hypotheses in the third derivation tree. Many people prefer reading
derivation trees over reading the Hilbert-style proof format, because derivation
trees graphically show dependencies between steps. Derivation trees are a natu-
ral format when working with pen and paper, but few text formatters facilitate
their construction.

Hierarchical Proof Format. A combination of Hilbert-style proofs and deriva-
tion trees is to present a list of judgements, but do so hierarchically. This format
is illustrated in Figure 9.10. Here, each hypothesis (with a rationale) needed
to infer the judgement of step n is listed after step n, indented, and numbered
by appending sequence numbers to n to get n.1, n.2, etc. Arbitrary levels of
nesting are permitted. With this format, indentation helps readers to see the
steps that support a conclusion.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

250 Chapter 9. Information Flow Control: TINI

9.3.5 Comparison of TINI Enforcement Mechanisms

Checking type-correctness entails overhead before a program is executed but
incurs no runtime overhead. With a reference monitor like RTI , there is no
overhead before a program executes. But transfers of control to reference moni-
tor actions incur the overhead of context switches, and the execution of reference
monitor actions brings more overhead. The reference monitor, however, only
checks an assignment statement when that statement is reached during an exe-
cution, so potentially fewer assignment statements need to be checked (although
the same assignment statement would be checked each time it is executed).

Permissiveness is often an important di↵erence between type-correctness and
a reference monitor. Type-checking rejects any program S containing a state-
ment T that would violate TINI if T is executed in isolation—even if T could
never be reached during any terminating execution of S. RTI can be more per-
missive, as program (9.27) illustrates. Program (9.27) is not type-correct, so
type-checking would not allow its execution, but RTI does not block its execu-
tions that start in states where even(xH) is false.

Could di↵erent typing rules enable substantial improvements in premissive-
ness when we use type-correctness for enforcement? If the typing rules could
identify and ignore unreachable assignment statements then more programs
would be type-correct. However, to determine that a statement is reachable
would require that the typing rules determine whether while statements are
guaranteed to terminate and whether the guards for a collection of if state-
ments all could hold during one execution. The undecidability of the halting
problem implies no algorithm can make such inferences. Since typing rules are
actually just defining an algorithm—its what the type-checker executes—we
must conclude that inferences about statement reachability cannot be incorpo-
rated into typing rules.

9.4 Trusted Code and Weaker Policies

Public outputs from many real systems are a↵ected by secret inputs. Exam-
ples of such public outputs include encryption of a secret for transmission or
storage, redaction7 of a document for wider disclosure, and transmission of an
acknowledgement message to confirm receipt of a request involving secret values.
Systems also sometimes can benefit from having trusted outputs be a↵ected by
untrusted inputs. Digital signature verification and the use of Byzantine agree-
ment algorithms are examples where the output can be trusted but the input is
not. We conclude that noninterference policies may need to be relaxed in parts
of real systems.

To avoid these problems, many systems incorporate statements or routines
that, by fiat, are allowed to violate noninterference. This is variously known

7
Redaction deletes or obscures parts of a document, producing a version that complies

with a given confidentiality policy. Redaction often will be used to delete a name or other
personally identifiable information from a document.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

9.4. Trusted Code and Weaker Policies 251

as trusted code or, for larger components, trusted subjects. During execution of
trusted code, the value of any variable is allowed to a↵ect the value of selected
variables, independent of labels. The system implementors either verify or sim-
ply posit that the trusted code will have the e↵ects that it should, not do things
that it shouldn’t, and cannot be subverted. An alternative approach, however,
is to enforce a security policy that is not as stringent as noninterference. Such an
approach would depend on the weaker properties that the trusted code satisfies.

*Uncertainty-Based Security. An example of such a weaker security pol-
icy is uncertainty-based security. This security policy asserts that �-observers
are able to conclude only that the variables in V��� could have many possible
initial values and, therefore, the specific initial values of those variables remains
confidential.

Uncertainty-Based Security. Despite knowing the values of variables
in V��, a �-observer still has su�cient uncertainty about possible initial
values for the variables in V���.

Uncertainty-Based Security notably does not prohibit the values of variables in
V�� from being a↵ected by the values of variables in V���. So Uncertainty-Based
Security is weaker than noninterference. But Uncertainty-Based Security does
prevent a �-observer from learning the initial values of variables in V���. The con-
fidentiality examples mentioned at the beginning of this subsection—encryption,
redaction, and transmission of acknowledgments—satisfy Uncertainty-Based Se-
curity but they violate noninterference.

We use an example—a secret ballot election—to illustrate how compliance
with Uncertainty-Based Security might be established. In a secret ballot elec-
tion, each voter i stores into a ballot bi the name of some candidate from a set
C; the winner m of the election is the candidate named in a majority8 of the
ballots:

S∶ m ∶=maj (b1, . . . , bn) (9.31)

We assume that only voter i ever has access to ballot bi, but m can be read by
all voters.

The voters in a secret ballot election expect compliance with ballot confiden-
tiality. This security policy stipulates that the value of ballot bi and the value
of winner m does not allow a voter i to rule out any possible value for a ballot bj
if i ≠ j holds. It is implied by an instance of Uncertainty-Based Security where,
for an initial system state s and each candidate c ∈ C, there will be an initial
system state s′ that satisfies bj = c and s′ is indistinguishable to voter i from s.

(∀i, j, i ≠ j∶ (∀c ∈ C ∶(∀s∶ (∃s′∶ s ={bi} s′ ∧ s′.bj = c ∧ [[S]](s) ={bi,m} [[S]](s′))))) (9.32)

8To simplify the discussion, assume that a majority always exists.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

252 Chapter 9. Information Flow Control: TINI

To establish compliance with (9.32), it su�ces to exhibit a function SK(i, j, c, s)
for producing a state s′ that satisfies9

s ={bi} s′ ∧ s′.bj = c ∧ [[S]](s) ={bi,m} [[S]](s′). (9.33)

provided i ≠ j holds. So SK(i, j, c, s) is producing witnesses s′ for demonstrating
that the variables a voter i can access before and after an execution from initial
state s will have the same values as for an execution from an initial state s′ in
which bj = c could hold for any candidate c. The values of the variables that
voter i can read thus rule out no possible value of bj .

Of course, there is no guarantee that a function SK(i, j, c, s) satisfying these
requirements exists. But if we can give a construction fir SK(i, j, c, s), then we
establish that (9.32) holds and, therefore, ballot confidentiality is being enforced.
Function SK(i, j, c, s) produces a state, so a construction for SK(i, j, c, s) would
show how to produce a mapping from variables to values. The construction we
give assumes that i ≠ j holds and is formulated as a set of terms “var � val”
that each indicate a value val that the state is giving to a variable var ; a value
that is unknown or uninitialized is represented with ?.

SK(i, j, c, s)∶
����������

bi � s.bi
bj � c
bk � maj

1≤h≤n(s.bh) for 1 ≤ k ≤ n ∧ k ≠ i ∧ k ≠ j
m� ?

����������
If there are 2 candidates and at least 5 voters, it is straightforward to establish
that (9.33) is satisfied when s′ is replaced by this definition for SK(i, j, c, s).10

However, (9.33) is not satisfied for elections with 2 candidates and only 3
voters, Moreover, there is no definition for SK(i, j, c, s) that produces states
satisfying (9.33) for such elections—with too few voters, knowing the values of
bi and m sometimes will completely eliminate a voter i’s uncertainty about bj .
Here is an example. Suppose C is {c1, c2}, and we are concerned about voter 1
learning the value of b3. Consider an initial state s

s∶ [m� ?, b1 � c1, b2 � c2, b3 � c2],
9We are proving an existentially-quantified formula (∃x∶ P (x)) by identifying an expression

E that satisfies P (E) and, therefore, generates a witness to the existence of x. This reasoning

is embodied in a standard Predicate Logic inference rule: P (E)(∃x∶ P (x)) . Expression E is called

a Skolem function.
10We show that each conjunct of (9.33) holds. The first conjunct is s ={bi}SK(i, j, c, s), and

it is satisfied because SK(i, j, c, s) is constructed using bi � s.bi. The second conjunct, which
is SK(P, j, c, s).bj = c, is satisfied because SK(i, j, c, s) is constructed using bj � c.

The final conjunct is [[S]](s) ={bi,m} [[S]](s′). State SK(i, j, c, s) gives all but 2 ballots—
bi and bj—a value w (say) equal to maj (s.b1, . . . , s.bn). So at least n − 2 ballots in stateSK(P, j, c, s) have value w. Because n ≥ 5 holds, n − 2 ballots having value w constitues a
majority. Therefore, states s and SK(i, j, c, s) have the same majority, which means executing
S either from initial state s or from initial state SK(i, j, c, s) will assign the same value to m,
as required for the final conjunct to hold.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

Notes and Reading 253

so c2 is the majority. SK(1,3, c, s) would have to produce a state where b3 = c1
holds and the majority remains c2. However, no value for b2 result in having
c2 still be the majority. So there is no function SK(i, j, c1, s) that produces a
state satisfying (9.33). The requirement for at least 5 voters when there are 2
candidates often surprises people who have used informal reasoning and ignored
edge cases. That is a lesson about the use of informal assurance arguments for
trusted code.

Notes and Reading for Chapter 9

Dorothy Denning was the first to suggest that security policies ought to specify
restrictions on information flow. This work is summarized in two papers [4, 7],
which are based on her Ph.D. dissertation [3]. An interview [6] with Den-
ning explores what motivated and influenced this work. Denning’s dissertation
introduces the terms “explicit flow” and “implicit flow” for distinguishing the
information flows caused by control structures.11 Her dissertation also discusses
both fixed and flow-sensitive variables, certification conditions for a static anal-
ysis to enforce security policies, and the undecidability of determining whether
a program satisfies an information flow policy.

Denning’s dissertation characterizes program statements that could cause an
information flow but it does not give a formal definition for information flow per
se. Her later textbook [5, chptr 5] does give a formal definition. That definition
is formulated in terms of entropy as defined by Shannon [20] and, therefore,
involves probabilities that executions will enter given states. The need to have
those probabilities makes Denning’s definition di�cult to use in practice.

The formal definitions widely used today for information flow are based
on noninterference.12 Often, Gougen and Messequer [9] will be cited, because
that paper introduced and formalized noninterference assertions, which specify
that actions performed by one group of users do not a↵ect outputs seen by
another group of users. It is just a small step from noninterference assertions
to an information flow definition that involves checking whether changes to
the values of one set variables a↵ects the values of another set, and the term
“noninterference” is a suggestive way to describe that situation. Gougen and
Messequer [9] was not the first paper to suggest such a counterfactual definition,
though. Cohen [2] had previously introduced strong dependency, which defined
information flow from x to y as variation in x that results in variation in y. But

11Denning was not the first or the only researcher to have investigated information flows
arising from control structures. Fenton [8] had earlier discussed how to prevent such informa-
tion flows in connection with implementing memoryless subsystems. At the SOSP conference
where Denning gave a preliminary version of her paper [4], Jones and Lipton [10] also pre-
sented a paper that uses the term “negative inference” to describe leaks caused by control
structures.

12Alternative definitions that have been suggested, include constraints [16], non-
deducibility [21], generalized non-interference [13], restrictiveness [14], selective interleav-
ings [15], trace closure properties [23], and the modular assembly kit [11, 12]. None has
attracted a large following.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

254 BIBLIOGRAPHY

the theory given in Cohen [2] uses inscrutable notation, making the paper hard
to understand. Also, strong dependency was the negation of what was sought
for security.

With noninterference generally accepted as the formal definition for infor-
mation flow, all of the pieces were present to define a type system for ensuring
compliance with the certification conditions in Denning [3]. Volpano, Smith, and
Irvine combine these pieces in a paper [22] that, for programs having a fixed
label assignment, gives typing rules to enforce what Sabelfeld and Sands [19]
later call termination-insensitive noninterference (TINI). The soundness proof
in Volpano, Smith, and Irvine [22] for that type system is the first formal ac-
count of the connection between Denning’s static analysis and a noninterference
policy.

The design of runtime enforcement mechanisms for TINI also attracted at-
tention. Reference monitors were seen as a promising way to achieve increased
permissiveness. Sabelfeld and Russo [18] explores the di↵erences in permissive-
ness and shows that a reference monitor like our RTI not only enforces TINI
but is more permissive than a type system. However, reference monitors do not
always lead to increased permissiveness, as will be seen in Chapter 10.

Trusted subjects were introduced in Bell and LaPadula [1] when the require-
ment that labels form a partial order was found to be too restrictive. The use of
uncertainty-based security to avoid those di�culties is proposed in Saatcioğlu
and Schneider [17]

Bibliography

[1] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report EDS-TR-75-
306, Electronic Systems Division (AFSC), March 1976.

[2] Ellis S. Cohen. Information transmission in computational systems. In
Proceedings of the Sixth Symposium on Operating System Principles, SOSP
’77, pages 133–139. ACM, November 1977.

[3] Dorothy E. Denning. Secure Information Flow in Computer Ssystems. PhD
thesis, Purdue University, USA, 1975.

[4] Dorothy E. Denning. A lattice model of secure information flow. Commu-
nications of the ACM, 19(5):236–243, May 1976.

[5] Dorothy E. Denning. Cryptography and Data Security. Addison-Wesley,
1982.

[6] Dorothy E. Denning. Oral history interview with Dorothy E. Denning.
Retrieved from the University Digital Conservancy, April 2013.

[7] Dorothy E. Denning and Peter J. Denning. Certification of programs for
secure information flow. Communications of the ACM, 20(7):504–513, July
1977.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

BIBLIOGRAPHY 255

[8] Je↵rey S. Fenton. Memoryless subsystems. The Computer Journal,
17(2):143–147, 1974.

[9] Joseph A. Goguen and José Meseguer. Security policies and security mod-
els. In Proceedings of the 1982 IEEE Symposium on Security and Privacy,
pages 11–20. IEEE Computer Society Press, April 1982.

[10] Anita K. Jones and Richard J. Lipton. The enforcement of security poli-
cies for computation. In Proceedings of the Fifth Symposium on Operating
System Principles, SOSP ’75, pages 197–206. ACM, November 1975.

[11] Heiko Mantel. Possibilistic definitions of security – an assembly kit. In
Proceedings of the 13th IEEE Computer Security Foundations Workshop,
CSFW ’00, pages 185–199. IEEE Computer Society Press, July 2000.

[12] Heiko Mantel. The framework of selective interleaving functions and the
modular assembly kit. In Proceedings of the 3rd ACM Workshop on Formal
Methods in Security Engineering: From Specifications to Code (FMSE),
pages 53–62, Alexandria , VA, USA, November 2005.

[13] Daryl McCullough. Specifications for multi-level security and a hook-up
property. In Proceedings of the 1987 IEEE Symposium on Security and
Privacy, pages 161–166. IEEE Computer Society Press, April 1987.

[14] Daryl McCullough. Noninterference and the composability of security prop-
erties. In Proceedings of the 1988 IEEE Symposium on Security and Pri-
vacy, pages 177–186. IEEE Computer Society Press, April 1988.

[15] John McLean. A general theory of composition of trace sets closed under
selective interleaving functions. In Proceedings 1994 IEEE Symposium on
Security and Privacy, pages 79–93. IEEE Computer Society Press, 1994.

[16] Jonathan K. Millen. Constraints. Part II: Constraints and multilevel se-
curity. In Richard A DeMillo, David P. Dobkin, Anita K. Jones, and
Richard J. Lipton, editors, Foundations of Secure Computation. Academic
Press, 1978.

[17] Göktuğ Saatcioğglu and Fred B. Schneider. Assurance for observable de-
classifications. Submitted for publication.

[18] Andrei Sabelfeld and Alejandro Russo. From dynamic to static and back:
Riding the roller coaster of information-flow control research. In Amir
Pnueli, Irina B. Virbitskaite, and Andrei Voronkov, editors, Perspectives
of Systems Informatics, 7th International Andrei Ershov Memorial Con-
ference (PSI), volume 5947 of Lecture Notes in Computer Science, pages
352–365. Springer, June 2009.

[19] Andrei Sabelfeld and David Sands. A Per model of secure information flow
in sequential programs. In Programming Languages and Systems, 8th Euro-
pean Symposium on Programming, ESOP’99, Held as Part of the European

January 10, 2026 Copyright Fred B. Schneider All rights reserved

256 BIBLIOGRAPHY

Joint Conferences on the Theory and Practice of Software, ETAPS’99, vol-
ume 1576 of Lecture Notes in Computer Science, pages 40–58. Springer,
March 1999.

[20] Claude Elwood Shannon. A mathematical theory of communication. The
Bell System Technical Journal, 27(3,4):379–423, 623–656, July, Ocober
1948.

[21] David Sutherland. A model of information. In Proceedings of 9th Na-
tional Computer Security Conference, pages 175–183. National Institute of
Standards and Technology, National Computer Security Center, September
1986.

[22] Dennis M. Volpano, Cynthia E. Irvine, and Geo↵rey Smith. A sound type
system for secure flow analysis. Journal of Computer Security, 4(2/3):167–
188, 1996.

[23] Aris Zakinthinos and E. Stewart Lee. A general theory of security proper-
ties. In Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pages 94–102. IEEE Computer Society Press, 1997.

January 10, 2026 Copyright Fred B. Schneider All rights reserved

