
Chapter 3

Mandatory Access Control

Mandatory access control (MAC) policies1 are designed to support practices
that institutions use to limit the damage that can be caused by individuals.
Examples of such practices include using labels and clearances to control ac-
cess, separation of duty, accounting controls such as double-entry bookkeeping,
and the privileges implicit in role hierarchies found in larger organizations. By
enforcing a MAC policy, we reduce the level of trust that must be placed in the
individuals accessing an institution’s computer systems and the software those
systems execute. Enforcing a discretionary access control (DAC) policy would
not su�ce, because the authorization to access an object then would be con-
trolled by the object’s owner or by subjects whose authority can be traced back
to that owner, but the goals of an institution might not align with the goals of
those individuals.

3.1 MAC for Government

To prevent leaks of information, governments will authorize an individual to
access only the information needed for the tasks that individual has been as-
signed. Such policies were first employed to protect military secrets, are now
widely used throughout governments, but also have applications in commercial
settings. This section2 discusses two schemes for specifying and enforcing such
policies for access by subjects to files, where a subject may be an individual or
a program that individual has invoked. One scheme uses a partially ordered set
of labels to specify authorizations; the other scheme replaces that partial order
with tables specifying relations that might not be partial orders. Each scheme
has been implemented in widely deployed systems.

1The term non-discretionary access control is also sometimes used for these policies.
2Policies for information flow control also can be applicable. These are discussed in chap-

ters 5 and 6 on information flow control.

111

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

112 Chapter 3. Mandatory Access Control

3.1.1 Partially Ordered Labels

David Bell and Leonard LaPadula collaborated on this early and influential
scheme to to limit the propagation of file contents. The scheme—which we call
BLP—uses a set L of labels and assumes (i) a fixed label LF ∈ L has been
assigned to each file F , (ii) a fixed label LS ∈ L has been assigned to each
subject S, and (iii) read and write accesses to files requested by subjects are the
sole way that file contents propagates. Partial order � on labels (where L � L′
abbreviates L � L′ ∧L ≠ L′), specifies allowed and prohibited propagation of file
contents to other files and to subjects, as follows.

BLP Policy. The contents of a file assigned label L is authorized to
propagate to a file or subject assigned label L′ only if L � L′ holds.

For example, if L is {L, H} with L � H then contents derived from files with
label H (“high”) may not be copied to files or read by subjects assigned label
L (“low”). So we prevent leaks from files containing secret information if those
files are given label H and if files that can be made public are given label L. BLP
Policy can protect file integrity, as well. To prohibit information in untrusted
files from being copied into trusted files, the files storing untrusted information
are given label H and the files storing trusted information are given label L.

BLP Policy is enforced when reads and writes to files comply with the fol-
lowing BLP rules.

Simple Security Condition. Subject S assigned label LS is authorized
to read from file F assigned label LF only if LF � LS holds.

∗-Property. Subject S assigned label LS is authorized to write into file
F assigned a label LF only if LS � LF holds.

The Simple Security Condition implies that LS is the upper bound on the labels
for files that a subject S is authorized to read, and the ∗-Property implies that
LS is the lower bound on the labels for files that S is authorized to write. So S
is prohibited from “reading up” and from “writing down” relative to its label
LS and partial order �.

Notice, the ∗-Property prevents subjects from subverting the Simple Security
Condition by copying from one file to another.3 Therefore, the BLP rules block
Trojan horse4 attacks that circumvent access controls by causing a program to

3Suppose some subject S can read from file F and write into file F ′. According to the
Simple Security Condition and the ∗-Property, LF � LS � LF ′ must hold so, by transitivity,
LF � LF ′ holds. A subject S′ could subvert the prohibitions on reading content from F
if S′ cannot read F but could read the copied content from F ′. However, the existence of
such a subject S′ would lead to a contradiction, as follows, so we conclude that S′ cannot
exist. The Simple Security Condition and the ∗-Property imply LF ′ � LS′ � LF , which implies
LF ′ � LF . We earlier concluded that LF � LF ′ holds, but that conclusion contradicts also
having LF ′ � LF hold, since we are assuming that � is a partial order.

4A Trojan horse attack is a program that an individual invokes because it appears use-
ful, but the program also implements hidden and nefarious functionality. Greek mythology
recounts how the 10-year Greek siege of Troy was ended by a clever subterfuge. The Greeks

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.1. MAC for Government 113

copy contents from a file that an attacker cannot read to a file the attacker can
read.

The ∗-Property, however, does allow a subject S to update a file that S is
not authorized to read. Such updates are called blind writes. Blind writes are
best avoided, because a subject cannot subsequently perform a read in order
to check whether a blind write actually was performed. We can prohibit blind
writes by strengthening the ∗-Property to require that LS = LF hold (rather
than requiring that LS � LF hold) in order for a subject S to update a file F .

3.1.1.1 Labels for Multilevel Security

Confidentiality. A common form of need-to-know policy for file access is to
authorize a user’s file access requests based on (i) the file’s content, (ii) whether
the access would facilitate the content being leaked, and (iii) the damage such
a leak might cause. The U.S. Department of Defense (DoD) uses multilevel
security (MLS) labels for implementing such policies. Each MLS label comprises
a pair �T ,C�, with T and C having a di↵erent interpretation for file labels than
for subject labels.

MLS Labels for Files. These MLS labels are assigned by classification
authorities that are knowledgeable about the subjects covered in the file
and that understand the broader context necessary for predicting possible
damage from leaking the contents of the file.

– T is a set of topic names. The information contained in the labeled
file is limited to these topics. Topic names come from a catalog that
has been adopted by the community using these labels.5

– C is the labeled file’s sensitivity. It gives an upper bound on the
potential damage that could be caused if the file contents leaks. Fig-
ure 3.1 gives the terms that DoD uses, along with the meaning of
each.

MLS Labels for Subjects. Subjects make requests on behalf of users, so
a subject’s MLS label is the MLS label assigned to the user instigating
the execution that is making the request. A user’s MLS label might be
assigned by the user’s employer or by some external agency.

built a huge wooden horse, hid a small force of warriors inside, placed the horse outside the
gates of Troy, and then appeared to abandon the siege by sailing out of sight. With the Greek
force gone, the Trojans opened the city gates and moved the horse—thought to be a tribute
marking the end of the siege—inside. But once the sun had set, the Greek fleet turned around
and headed back to Troy. At midnight, the Greek warriors inside the horse emerged, killed
the Trojan guards, and opened the city gates. The Greek force, which by then had returned,
entered the open gates and destroyed the city, thereby winning the war.

5For MLS labels used within DoD, topic names might be self-explanatory (e.g., chem�bio,
crypto, or nuclear) or obscure (e.g., Ultra or Umbra). Obscure topic names are used so that
people who see a label but do not have a need to know will remain ignorant about what the
label describes. With DoD labels, names whose meanings are secret are called codewords. For
example, the codeword Ultra was used during World War II to label information that the Allies
obtained by decrypting intercepts of German communications, and Umbra is a more recent
(but also now-retired) codeword for the most-sensitive kinds communications intercepts.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

114 Chapter 3. Mandatory Access Control

C
file sensitivity: user clearance:
potential damage trustworthiness

TS (Top Secret) exceptionally grave strong
S (Secret) serious moderate
C (Confidential) some somewhat
U (Unclassified) none unknown

Figure 3.1: Interpretations for C in an MLS label �T ,C�, where U < C < S < TS

and X ≤ Y denotes X = Y ∨ X < Y

– T is a set of topic names. These topics cover all content relevant to
the user’s current position or task assignments.

– C is the user’s clearance. The user is believed to be at least this
trustworthy. Figure 3.1 gives the categories that DoD uses for user
clearances and how each is interpreted. A user clearance is presumed
to predict whether the individual will leak or corrupt the contents of
files.6

To be using fixed labels, we must ensure that if the MLS labels initially
assigned to files and users are accurate characterizations then these labels will
remain so throughout any execution satisfying the Simple Security Condition
and the ∗-Property. The BLP Policy allows propagation from a file with label L
to a subject or file with label L′ only if L � L′ holds, so we define the partial order
� on MLS labels as follows to ensure that an MLS label L′ remains accurate
after a read or write.

�T ,C� � �T ′,C′�∶ T ⊆ T ′ ∧ C ≤ C′ (3.1)

To show that definition (3.1) of � preserves the accuracy of MLS labels, we
establish that propagation allowed by �T ,C� � �T ′,C′� never transfers contents
to any subject7 or file with MLS label �T ′,C′�, where
(i) the topics are not covered by T ′ and
(ii) the sensitivity of the contents exceeds C′.

Assume �TF ,CF � is the label on a file F and �TS ,CS� is the label for a subject S.
Propagation of file contents occurs because subjects read files and/or because
subjects write files.

6Clearances are typically granted after an individual has submitted to a background in-
vestigation that seeks to identify character flaws or exploitable personal circumstances. This
background investigation might range from a short interview with the individual to a set of
interviews with the individual’s family and friends as well as a polygraph test.

7This analysis assumes that increasing the number of people who know a secret does
not increase the risk of leaks, which probably is not a valid assumption about the general
population. Benjamin Franklin is reported to have written: “Three can keep a secret if two of
them are dead”. However, the assumption could be reasonably sound for a set of individuals
who have been vetted by background investigations.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.1. MAC for Government 115

S reads F . �TF ,CF � � �TS ,CS� must hold for S to be authorized to read
F . So we conclude that TF ⊆ TS and CF ≤ CS hold due to definition (3.1)
for �. All content in F is covered by topic list TF . From TF ⊆ TS , we
conclude that content also is covered by topic list TS , so requirement (i)
is satisfied. From CF ≤ CS , we conclude that the user associated with S is
believed to be at least as trustworthy as the least trustworthy user that is
authorized to read F . So requirement (ii) is satisfied.

S writes to F . �TS ,CS� � �TF ,CF �must hold for S to be authorized to write
into F . So we conclude that TS ⊆ TF and CS ≤ CF hold due to definition
(3.1) for �. From TS ⊆ TF we have that any information S writes is covered
by topic list TF because it is covered by TS , so requirement (i) is satisfied.
To discharge (ii), observe that a subject SR that can read F must have a
clearance CR satisfying CF ≤ CR. Thus, by transitivity with CS ≤ CF from
�TS ,CS� � �TF ,CF �, we conclude that CS ≤ CR must hold. So requirement
(ii) is satisfied.

Integrity. Multilevel integrity (MLI) labels are used to ensure that content
from low-integrity files and/or content from untrusted users is not written into
files purported to store high-integrity content. Each MLI label comprises a
pair �T ,I� where T and I have di↵erent interpretations for file labels than for
subject labels.

MLI Labels for Files.
– T is a set of topic names. The information contained in the labeled

file is limited to these topics.

– I is the file’s criticality. It gives an upper bound on the level of
damage that could be caused if the file contents gets corrupted.8

Figure 3.2 suggests a list of possible categories, along with their def-
initions.

MLI Labels for Subjects. A subject label is the MLI label for the user
initiating the execution making the request.

– T is a set of topic names. These topics cover all content relevant to
the user’s current position or task assignments.

– I is the user’s clearance. A user’s clearance is presumed to predict
whether the individual will leak or corrupt the contents of files.

As with MLS labels, the definition of partial order � on MLI labels is based
on preserving the accuracy of these labels if execution causes file contents
to propagate when �T ,I� � �T ′,I ′� holds. That is, propagation allowed by
�T ,I� � �T ′,I ′� must never transfer contents to any user or file with an MLI
label �T ′,I ′�, where
(i) the topics are not covered by T ′ and
8Be cautioned that higher values for I indicate lower levels of integrity.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

116 Chapter 3. Mandatory Access Control

I
criticality user clearance:
of content: trustworthiness

0 crucial strong
1 very important moderate
2 important unknown

Figure 3.2: Interpretations for I in an MLS integrity label �T ,I�

(ii) the integrity of the content does not satisfy I ′.
Requirement (i) is equivalent to T ⊆ T ′, and requirement (ii) is equivalent to
I ≤ I

′. So � definition (3.1) works for MLI labels as well as working for MLS
labels.

3.1.1.2 Trusted Subjects

Execution that complies with BLP Policy is constrained by the axioms that a
partial order must satisfy. These constraints can be problematic. Consider, for
example, a subject S that encrypts a confidential file txt by using the secret key
in file key , writing the ciphertext output to file out . For S to read files key and
txt , the Simple Security Condition requires that Lkey � LS and Ltxt � LS hold.
For S to write into out , the ∗-Property requires that LS � Lout hold. So, by
transitivity, Lkey � Lout and Ltxt � Lout also hold.

However, a subject S′ that the Simple Security Condition prohibits from
reading files txt or key ought to be allowed to read ciphertext output file out ,
because ciphertext output reveals nothing about the plaintext input or the en-
cryption key. That would mean Lout � LS′ � Lkey and Lout � LS′ � Ltxt hold and
(by transitivity) Lout � Lkey and Lout � Ltxt would also hold. A label LS′ that
satisfies those conditions cannot exist if � is a partial order, given that we estab-
lished previously that Lkey � Lout and Ltxt � Lout must hold, too. So we cannot
have an instance of BLP Policy where ciphertext output file out can be read
by subjects that cannot read the input files txt and key . There are also other
examples where systems need to perform “write downs” that are safe because
the content being written is carefully controlled.9

The BLP Policy prohibition of “write downs” is thus problematic. A solution
is to introduce trusted subjects, which are subjects that are not required to
comply with the BLP rules. Trusted subjects are thus allowed to perform “write
downs”. In the encryption scenerio described above, if TS is designated as a
trusted subject then TS , by fiat, would be allowed to read txt and key as well
as to write file out .

Trusted subjects that misbehave can cause great harm, though. Therefore,
a trusted subject should not be incorporated into a system without first con-

9One example is a server that receives requests involving classified information and then
replies with an acknowledgment or it writes unclassified status information to a public log.
Another example is an election system that reads secret votes and writes the majority to a
public file.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.1. MAC for Government 117

sidering whether restructuring that system might eliminate the need for that
trusted subject. Also, a trusted subject should not be employed without first
getting assurance about its behaviors. So it is better if the trusted subject is
limited to executing a small and simple piece of code (because large programs
are di�cult to analyze) and if the system has only a few trusted subjects.

3.1.2 Type Enforcement

Type enforcement (TE) policies specify authorizations for subjects to perform
operations on objects, including other subjects. Each subject is in a domain;
each object is in a type. Privileges authorize the subjects in a given domain to
perform operations on the objects in a type and on the subjects in a domain
according to the following tables.

• Domain definition table ddt[⋅, ⋅] has a row for each domain and a column
for each type. Entry ddt[D,T] for a row D and a column T gives the
privileges that subjects in domain D are granted for operations on objects
in type T . Examples of privileges for types that comprise files might
include r (for reading), w (for writing), and x (for executing).

• Domain interaction table dit[⋅, ⋅] has a row and a column for each domain.
Entry dit[D,D′] for a row D and a column D′ gives the privileges that
subjects in domain D are granted for operations on subjects in domain D′.
Examples of such privileges might include x (for transferring control to a
subject), i (for interrupting execution of a subject), and d (for terminating
the subject).

The domain definition table and the domain interaction table together specify
an authorization relation ATE that relates a subject S, an object O, and a
privilege p as follows.

�S,O, p� ∈ ATE if and only if S ∈ D ∧ O ∈ T ∧ ddt[D,T] = p

�S,S′, p� ∈ ATE if and only if S ∈ D ∧ S′ ∈ D′ ∧ dit[D,D′] = p
Figure 3.3(a) is an example of a domain definition table that (among other
things) gives subjects in domain DL privileges r and w for files in type FL and
privilege w for files in type FH. Figure 3.3(b) is an example of a domain inter-
action table that (among other things) gives subjects in domain DH privilege x
authorizing control transfers to domain DEnc and within DH.

Systems that support TE often provide a specialized language that a system
administrator will use to populate the entries of the domain definition table and
the domain interaction table. The language provides statements to define the
system’s domains by giving a name for each domain and by listing the entry
points for binaries that subjects in each given domain are authorized to execute.
The language also provides statements to define the system’s types by giving
a name for each type and listing the files and/or other objects that the type

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

118 Chapter 3. Mandatory Access Control

type
domain Fkeys FH FL . . .

DL w r, w
DH r, w r

DEnc r r, w r, w

⋮

(a) ddt for Encryption Use

domain
domain DL DH DEnc . . .

DL x

DH x x

DEnc x x

⋮

(b) dit for Encryption Use

Figure 3.3: Trust Enforcement Policy for Using Encryption

includes. Finally, there would be a way to specify the privileges that are assigned
to each domain for each type.

TE can be used to specify a broad range of MAC policies. The e↵ects of the
BLP rules (page 112) for a set ⇤ of labels with partial order � can be achieved
using TE by defining a domain D� and a type T� for each label � ∈ ⇤. A subject
S with label �S would be in domain D�S , a file F with label �F would be in
type T�F , and the domain definition table would satisfy:

ddt[D�,T�′] = r if and only if �′ � � holds. (3.2)

ddt[D�,T�′] = w if and only if � � �′ holds. (3.3)

The Simple Security Condition is satisfied because (3.2) asserts that a subject
S having label �S is authorized to read a file F having label �F only if �F � �S

holds. The ∗-Property is satisfied because (3.3) requires that �S � �F hold in
order for subject S to write file F .

TE also can be used to specify MAC policies10 that do not comply with the
BLP rules. Since authorization relation ATE is not constrained to represent
a partial order, authorization is not required to be transitive. That means a
subject S could be authorized to read file F , propagation of information from
file F ′ to F allowed, but S not be authorized to read F ′—a configuration that
restricts S to accessing the content of F ′ through intermediary F . Moreover, a
special category of trusted subjects is not required with TE, because any domain
can be given any privileges. So the privileges assigned to each subject can be
limited to those that are consistent with the Principle of Least Privilege.

As an illustration, Figure 3.3 gives a TE specification for the policy in §3.1.1.2
for the encryption of secrets that will be stored in a public file.

• For subjects in domains DL and DH, the Simple Security Condition and
the ∗-Property are implied by the ddt : domain DL does not have an r
privilege for files in type FH, and domain DH does not have a w privilege
for files in type FL.

10Besides the examples we give here, the MAC policies for supporting commerce discussed
in §3.2 are examples of such policies.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 119

• Subjects in domains DL and DH are not permitted to read or write files in
type Fkeys containing the cryptographic keys, but subjects in domain DEnc

are permitted to read those files.

• Subjects in DEnc are permitted to violate the BLP rules by reading files
in type FH and writing files in type FL. These subjects, however, are not
permitted to write files in types Fkeys.

To justify granting subjects in domain DEnc the privileges for reading from FH
files and writing to FL files, though, the programs that these subjects execute
should be scrutinized. We would want assurance that these programs cannot
be subverted to reveal secret keys from files in Fkeys or content from files in FH
by writing into files in FL.

TE also can be used to specify MAC policies that prohibit problematic trans-
fers of control. Restrictions in the domain interaction table can enable this. Use
of this table to restrict transfers of control also enables a TE policy to mandate
that information reaching a subject or an object must be first validated or trans-
formed. An important application is an assured pipeline. We write S1 �S2 ���Sn

to indicate that the input to a stage Si+1 must be derived only from the output
produced by predecessor stage Si. If each stage Si is a subject in a di↵erent
domain Di then the defining restriction of an assured pipeline is achieved if

(∀i, 1 ≤ i < N ∶ ddt[Di,Di+1] = w ∧ ddt[Di+1,Di] = r ∧ dit[Di,Di+1] = x)
holds, and no other privileges are assigned to these domains.

One use for an assured pipeline would be to ensure that content being writ-
ten to a disk is encrypted. The disk driver (presumed to be the only way to
perform disk operations) would be the final stage of the assured pipeline, an
encryption routine would be an earlier stage of that pipeline, and an update to
the disk would be instigated by transferring content to the assured pipeline’s
first stage. Another use arises in settings where each text page that is printed
must include a banner identifying the authorized readers for that page—a fea-
ture often required for classified documents. In such an assured pipeline, the
printer driver (presumed to be the only way to have something printed) would
be the final stage of that assured pipeline. An earlier stage would be a program
that inputs a file, divides that file into pages, adds the appropriate banner into
each page, and forwards that sequence of pages to a successor stage.

3.2 MAC for Commerce

On-line records about a company’s assets and liabilities are the basis for many
business decisions. Dishonest individuals in this setting perpetrate fraud by
performing bogus updates to these records. Fraud, however, is as old as com-
merce itself, and the accounting profession long ago developed defenses, known
as financial controls. They include:

• Separation of Duty. By requiring several individuals to participate, collu-
sion becomes necessary in order to perform or subvert a transaction.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

120 Chapter 3. Mandatory Access Control

• Prescribed Transformation Procedures. Damage can be limited if specific
programs o↵er the only way for an individual to update certain records.

• Mandated Audit. If each update is logged in a way that is immutable and
identifies the accountable individual then attackers are deterred for fear
of detection and because logs provide incriminating evidence for use in
prosecution.

Notice that DAC’s owner-control of authorization is incompatible with Sepa-
ration of Duty. Also, defining a partial order on labels for individuals and for
data items is not helpful for implementing any of these defenses. So the needs
of commerce involve new kinds of MAC policies.

3.2.1 Separation of Duty

Fraud occurs when trusted individuals abuse their authority. Separation of
duty defends against such abuses by limiting the authority granted to any one
individual. With only limited authority, a dishonest individual working alone
can cause only limited damage; a set of dishonest individuals must collaborate
in order to perpetrate bigger frauds. The chances that one dishonest employee
would be able to find others who would participate then can be much reduced
by careful attention to hiring.

With a static separation of duty, the authority given to each individual is
fixed and pre-determined. This approach is often adopted by companies where
job titles are linked to sets of tasks. For example, individuals in the Billing
Department who generate customer invoices would be authorized to update the
accounts-receivable database but not authorized to update the database storing
warehouse inventory, whereas the opposite would hold for warehouse workers.
Static separation of duty has two shortcomings. First, attackers are able to
identify the specific individuals to recruit for committing a fraud. Second, there
is limited flexibility for reassigning work when a business must cope with unusual
demand or employee absences.

In dynamic separation of duty, the authority assigned to an individual is nei-
ther pre-determined nor fixed. The assignment might be random, or it might de-
pend on state or history. A software development group, for example, might fol-
low a code check-in regime that requires every module any programmer changes
to be audited by a di↵erent programmer—a separation of duty for updates ver-
sus audits. If the auditor is selected based on who is the least overworked, then
we have state-based dynamic separation of duty; if a programmer who has (or
has not) previously contributed to the updated module must be selected, then
we have history-based dynamic separation of duty.

Randomness can be used to good advantage in dynamic separation of duty.
The absence of advance knowledge about who will participate in a given trans-
action can frustrate attempts by attackers to recruit collaborators.11 Banks

11A group is unlikely to collude unless the members already trust each other. It takes time
to establish such trust. So attackers need long lead times to recruit collaborators.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 121

and other financial institutions, for instance, require employees to be away from
the o�ce (at training or on vacation) annually, for an uninterrupted interval
(typically one or two weeks). A randomly-selected peer is given the absent
employee’s workload for that period. The required absence is, by design, long
enough that the temporary substitute would see some irregularities if fraud
was being committed. And use of random selection makes it unlikely that the
temporary substitute would already be in collusion with the absent employee.

Separation of duty might be tied to objects and/or tied to activities. In
either case, enforcement could require that information about task assignments
be available and, if history is involved, that it be preserved for future use.

• When separation of duty is tied to an object, then that object provides an
obvious place for recording task assignments. For example, code check-in
requires separation of duty for the programmer and the auditor of each
module. The file storing the module’s source code or that file’s meta-data
would be a natural place for recording the names of programmers and
auditors involved in each a change.

• Activities typically are transient and, therefore, do not o↵er places for
long-term storage of information about task assignments. New objects
might have to be created for this purpose, and these objects might have
to be stored indefinitely if separation of duty is based on history. Garbage
collection of these objects now becomes an issue.

The enforcement of separation of duty for program execution initiated by a
human user requires the system to authenticate that user. Authentication of
users is useful only if di↵erent user identifiers actually do correspond to di↵erent
individuals. We are thus making assumptions about whether the authentication
protocol can be spoofed and about whether attributes are validated by that
protocol when new individuals are enrolled as users.

Delegation of authority from one principal to another also brings complica-
tions, since distinct internal identifiers could now speak for the same individual.
One option is to prohibit delegation from/to principals that are constrained
by separation of duty. A second option is for each request to carry the iden-
tifier of the principal making the request as well as carrying the identifiers of
all principals that delegated authority to that requester. And a third option is
to monitor delegations and create a central database that records equivalences
that delegations induce among the identifiers being used.

Finally, occasions where one user informally recruits another to share a work-
load can be tricky to handle while still enforcing separation of duty. Such del-
egations are a form of collusion if they are hidden from the enforcement mech-
anism. However, sharing a workload is quite natural and often encouraged.
One employee might lend a hand to another, or a manger might stand-in for
a subordinate. A separation of duty policy can be formulated to support such
delegations, provided they are made known to the enforcement mechanism and,
therefore, appropriate authority assignments still can be made.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

122 Chapter 3. Mandatory Access Control

Chinese Wall Policies. A conflict of interest occurs for someone who is en-
gaged in multiple activities if serving the best interests of one of those activities
might not be in the best interests of another. For example, a consultant advis-
ing one company would have a conflict of interest if that consultant was also
advising a competitor. But accepted12 practice sometimes allows competitors
to be advised by di↵erent employees from the same firm if the following Chinese
Wall13 policy is being enforced: No employee of the firm is allowed to access
information from two or more client companies that are competitors.

A Chinese Wall policy specifies a separation of duty. Initially, an employee
would have accessed information from no client company and, therefore, is al-
lowed to access information from any client company. Thereafter, authorization
to access information from a client company will depend on the information the
employee has already accessed. The separation of duty is thus dynamic and
based on history.

Enforcement. Assume that a separate collection of files is maintained about
each client company. Subjects correspond to executing programs that read
and/or update these files, each subject associated with a di↵erent user.

• A subject source set IS contains the names of the companies that provided
the information to the collections of files that S has read. Initially IS = �
holds.

• A company source set IC contains the names of the companies that pro-
vided the information a subject could learn from reading the files in the
collection associated with a company C. Initially IC = {C} holds.

The e↵ect of a subject S reading from the files in the collection maintained
about a client company C causes the contents of subject source set IS to be
increased, because we assume (conservatively) that S internalizes the contents
of all the files:

IS ∶= IS ∪ IC (3.4)

The e↵ects of a subject S updating a file associated with a client company
C causes the contents of company source set IC to be increased, because we
assume (conservatively) that what S writes might reflect anything that S has
internalized and, therefore, could have come from any file that S previously
read:

IC ∶= IC ∪ IS (3.5)

12Acceptance is by no means universal. In the United States, investment banks do have
clients that are competitors, but law firms do not.

13This name alludes to the Great Wall of China, which was built to protect the northern
border of China. The Great Wall of China is roughly 5500 miles long, comprising segments
that are above-ground wall (earth, stones, and wood), trenches, and geologic barriers (rivers
and mountains). The earliest segments were built in the 7th century B.C.E. These were later
connected in the 3rd century B.C.E.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 123

C files in collection
ua u1, u2, u3

dl d1, d2, d3
hilton h1, h2

omni o1, o2, o3, o4
westin w1,w2,w3,w4

Figure 3.4: File Collections for Client Companies

Notice that (3.5) could cause C ′ ∈ IC to hold where C ′ ≠ C.
Define a set of companies to be cw-compliant if that set does not contain

companies that are competitors. So the Chinese Wall policy is enforced if, for
each subject S, we ensure that IS remains cw-compliant throughout execution.

Chinese Wall Enforcement (Compliance). Block a subject S from
reading a file in the collection associated with a company C if IS ∪ IC is
not cw-compliant.

To see this enforcement mechanism in action, we consider a sequence of accesses
to the files listed in Figure 3.4 for client companies in two industry classes: air-
lines (ua and dl) and hotels (hilton, omni, westin). The first line in the
sequence below gives the initial values for the subject and company source sets;
each subsequent line gives an action and any updated subject and company
source sets that result from executing that action. An access has a strike-thru
if that access is rejected by the enforcement mechanism.

access IS IS′ Iua Idl Ihilton
initial value � � {ua} {dl} {hilton}

1 S reads u2 {ua}
2 S reads h2 {ua,hilton}
3 S reads d3
4 S′ reads d3 {dl}
5 S writes h2 {ua,hilton}
6 S′ reads h1

7 S writes d1 {dl,ua,hilton}
8 S reads d3

The read at line 1 changes IS to {ua} because subject S has read a file provided
by ua. The Chinese Wall policy prohibits S from later reading files provided
by competitors to ua, and we see this enforced at line 3 for the attempt by
S to read dl file d3. The enforcement mechanism rejects this read because
IS ∪ Idl is not cw-compliant—it contains competitors ua ∈ IS and dl ∈ Idl. The
attempt at line 6 by S′ to read h1 is similarly rejected, since IS′∪Ihilton contains
competitors dl ∈ IS′ and ua ∈ Ihilton and, therefore, would not be cw-compliant.

At line 8, the attempt by S to read d3 is rejected because dl ∈ Idl and
ua ∈ Idl, so IS ∪ Idl would not be cw-compliant. In fact, after the write by
S at line 7, no subject can read any file from the collection associated with

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

124 Chapter 3. Mandatory Access Control

dl. Such a lock-out can be avoided by blocking any update that invalidates
cw-compliance for a company source set.

Chinese Wall Enforcement (No Lock-Out). Block a subject S from
updating files or adding files to the collection associated with a company
C if IS ∪ IC is not cw-compliant.

One last form of potentially problematic behavior remains possible. The
enforcement mechanisms presented thus far allow one subject’s writes to block
another subject from repeating a previously successful read. Here is an example:

action IS IS′ Iua Idl Ihilton
initial value � � {ua} {dl} {hilton}

1 S reads h2 {hilton}
2 S reads d3 {dl,hilton}
3 S′ reads u1 {ua}
4 S′ writes h2 {ua,hilton}
5 S reads h2

Subject S reads hilton file h2 (at line 1) but is later (at line 5) blocked from
rereading that file. The blocking occurs because S reads dl file d3 (at line 2),
so when line 5 is reached IS ∪ Ihilton is no longer cw-compliant—ua ∉ Ihilton
holds at line 1, but ua ∈ Ihilton holds at line 5. In blocking the read a line 5,
the enforcement mechanism is being conservative. It is preventing file h2 from
serving as a channel that gives S indirect access to information about client
company ua. That information could have been written into h2 at line 4 by
S′. Since S has been accessing client company dl, getting information about
competitor ua would violate the Chinese Wall policy.

The way to prevent files from serving as illicit channels is to further restrict
which companies each subject can access. To do this, we group sets of companies
that are not competitors into conglomerates, with each conglomerate considered
a competitor to all of the other conglomerates. A Chinese Wall policy enforced
for access to the conglomerates does not block attempts to re-read files.14

Chinese Wall Enforcement (Allow Rereading). Partition the client
companies into disjoint sets where no partition contains companies that
are competitors. Restrict each subject to reading and/or writing only the
companies in a single partition.

For example, the companies in Figure 3.4 might be partitioned into three con-
glomerates: {ua,hilton}, {dl,omni}, and {westin}. A subject that reads
files from ua then also would be authorized to read files from hilton but not

14To see why this works, consider a partition ⇧i. If every subject S that writes to files for
companies in ⇧i is restricted to reading files for companies in ⇧i then throughout execution
we have IS ⊆ ⇧i and IC ⊆ ⇧i for every C ∈ ⇧i. That implies (IS ∪ IC) ⊆ ⇧i holds through-
out execution. By construction, ⇧i does not contain competitors, so it and its subsets are
cw-compliant. Therefore, subset IS ∪ IC is cw-compliant. So the enforcement mechanisms
described above will not block a read or write operation.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 125

from dl, omni, or westin. And a subject that reads files from ua and/or
hilton will not be subsequently blocked from rereading files from those com-
panies.

3.2.2 Transformation Procedures and Consistency

An external consistency constraint is an assertion that links the information a
computer system stores to the actual values of those quantities in the physical
world. For example, Widgets-R-Us might define the following external consis-
tency constraint for the number of widgets it has available for sale.

nw = wS + �

1≤i≤N
wi (3.6)

If wS is the number of widgets stored in the Widgets-R-Us warehouse and wi is
the number of widgets in stock at distributor i of N then (3.6) asserts that the
Widgets-R-Us computer system’s variable nw is an accurate count of the actual
number of widgets that Widgets-R-Us has available to sell.

A company’s computing system can manipulate only the variables that it
stores in its memory and files. However, it is reasonable to expect that some
company employee would observe or participate in any event that changes the
values of any other variables mentioned in an external consistency constraint. In
(3.6), for example, variable nw would be changed by the computer system, but
the values of variables wS and wi change in response to events like transferring
some widgets from the warehouse to a distributor (which changes wS and a wi).
By mandating business processes that employees must follow, we can ensure
that a computer system’s variables do get updated as necessary to keep external
consistency constraints satisfied.

External Consistency Preservation. To maintain the validity of ex-
ternal consistency constraints, follow business processes that ensure:

– Every event in the physical world that could invalidate an external
consistency constraint will bre observed by some employee.

– The business process requires that employee to run an appropriate
program when such an event is observed.

– That program performs appropriate updates to the computing sys-
tem’s variables.

Attackers don’t necessarily follow mandated business processes, though. So
a company’s business processes ought to include periodic audits that validate
each of the external consistency constraints. During an audit, an independent
third party first gathers evidence about the state of the physical world. In this
phase, the auditor conducts local inspections, such as counting inventory in
the warehouse. This phase also has the auditor contact customers, creditors,
and banks, to learn about outstanding orders, pending deliveries, and bank
balances. The auditor then uses this information to identify di↵erences with the

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

126 Chapter 3. Mandatory Access Control

values being stored by the computer system. Finally, the auditor determines
the reasons for any di↵erences, and the information in the computer system is
adjusted if necessary.

A business process defines restrictions on the sequences of steps that employ-
ees perform for their jobs. One of those steps might involve invoking a program.
In the computer security literature, the term transformation procedure is used
for such a program. Execution of a transformation procedure TP will read
and/or write some objects—typically files—and we require that is also record
details about its invocation (who invoked TP , when, and what updates were
made) in a write-only tamper-proof log file. The log file enables implementing
the Mandated Audit financial control discussed at the start of §3.2.

Trustworthy employees perform their jobs properly and invoke transforma-
tion procedures as appropriate. Untrustworthy employees, however, might at-
tempt to perpetrate a fraud by invoking a transformation procedure when it
is not appropriate. To help defend against such fraud, we restrict which em-
ployees are allowed to invoke each transformation procedure, and we restrict
which objects and operations can be accessed during such an invocation. These
restrictions can be specified as an authorization relation Acom having elements
of the form15

�EmplSet , TP , Obj 1{op
1
1, . . . op

m1
1 }, . . . , ObjN{op

1
N , . . . op

mp

N }�

to indicate that only employees in EmplSet are authorized to execute transfor-
mation procedure TP , and this execution of TP is allowed access only to objects
Obj 1, . . . ,ObjN by performing operations op1i , . . . op

mi
i on each object Obj i. En-

forcement of the authorization policy specified by Acom presumes a computer
system having

• a means to authenticate each employee that attempts to invoke a trans-
formation procedure, and

• a reference monitor16 that uses this authenticated identity to restrict ex-
ecution of transformation procedures according to Acom .

Notice, static separation of privilege can be supported by having EmplSet con-
tain disjoint sets of employees.

A reference monitor is, by definition, tamperproof. Assume this integrity
guarantee extends to whatever representation is being used for Acom . To ensure
compliance with business processes, though, we must also protect the integrity
of the programs implementing the transformation procedures. A standard ap-
proach is to use separation of duty.

Independent Certification. No employee who is authorized to execute
transformation procedures is authorized to certify or modify the code that

15This relation could be represented using type enforcement’s domain definition table. Do-
mains would be pairs �emp,TP�, where emp is an employee and TP is a tranformation pro-
cedure; types would be objects. Thus, op ∈ ddt[�E,TP�,Obj] would authorize an employee
E to invoke a transformation procedure TP that performs an operation op on object Obj .

16Chapter 12 gives a detailed treatment of reference monitors.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 127

Set Class Informal Description

A assets things that add value to the business
E expenses expenditures over some specified period
I income income over that same period
L liabilities things that reduce the value of the business
Q equity overall value of the business

Figure 3.5: Classes of Accounts in Double-entry Bookkeeping

implements a transformation procedure. No employee who is authorized
to write or modify a transformation procedure is authorized to certify that
transformation procedure.

Collusion now becomes necessary to create a bogus transformation procedure
and cause it to be executed.

Double-Entry Bookkeeping. In double-entry bookkeeping, the financial state
of a business is recorded using a set of accounts. Every account stores an initial
balance and a sequence of postings. A posting �amt , id� is a pair that gives an
amount amt to change the account’s balance and gives an identifier id that is
associated with the employee who made the posting. With double-entry book-
keeping, the balances of a company’s accounts always satisfy an invariant17

�

i∈Q
i = �

i∈A∪I
i − �

i∈L∪E
i (3.7)

where Figure 3.5 defines categories A, E, I, L, and Q that accountants tradi-
tionally use for grouping accounts.18 Notice, adding a single (non-zero) posting
to only one account will falsify (3.7). The need to add two or more postings
(usually to di↵erent accounts) is what leads to the name double-entry book-
keeping.

When double-entry bookkeeping is used, allowable sequencings for the trans-
formation procedures in a business process can be mandated by having each
transformation procedure store information about which transformation proce-
dures are next eligible to execute. To enforce the sequence tp1 tp2 . . . tpn, each
transformation procedure tpi would be designed to block or terminate with an
error if some prespecified Boolean condition pre(tpi) is false when tpi is invoked.
Condition pre(tpi) would achieve this e↵ect by checking the states of certain
specified set of accounts; execution of tpi then adds postings to accounts in a
way that falsifies pre(tpi) and makes pre(tpi+1) true, so only tpi+1 can next

17An accountant would know (3.7) as the accounting equation.
18Assets and liabilities refer to all aspects of a company’s current financial position. This

includes inventories of supplies, unpaid bills, accounts payable (including outstanding purchase
orders and worker time-sheets), accounts receivable (including unpaid customer invoices), the
cash disbursements journal (i.e., list of checks issued), the cash receipts journal (i.e., list of
deposits), and so on.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

128 Chapter 3. Mandatory Access Control

be executed. Postings in accounts are thus serving as a token that is required
for execution and that gets passed from one transformation procedure tpi in a
sequence to its successor tpi+1 in that sequence.

To make this concrete, we give transformation procedures to implement a
business process for acquiring inventory. The code for these transformation
procedures uses two new statement types: post and check.

• A post statement

post �+cost , id� to L-AcntPay

causes the posting �+cost , id� to be appended to the sequence of postings
associated with account L-AcntPay . Identifier id enables this posting
to be linked with other postings and to the employee who is responsible
for the posting. We adopt the convention that account names include
a prefix to indicate a class from Figure 3.5, so it is easy to see that no
transformation procedure falsifies invariant (3.7).

• A check statement either executes a then clause or an else clause, de-
pending on whether some specified Boolean condition evaluates to true.
That Boolean condition can introduce new identifiers, which then can be
referenced within the scope of the then and will have the values of the
most recent posting that satisfied the Boolean condition. For example, in

check �ĉ, id� ∈ A-ShpExp ∧ �ĉ, id� ∉ A-Invtry then ...

variables ĉ and id when execution of the then starts have initial values
that correspond to some prior posting �ĉ, id� to A-ShpExp that is not also
a posting to A-Invtry .

The steps in the business process for inventory acquisition are: place an
order, receive delivery, and pay the invoice for goods received. For the initial
step, an employee invokes a transformation procedure genPO , specifying the
item to purchase, a source supplier , and an amount cost that will be paid.

genPO ∶ transproc(item, supplier , cost , id)
post �+cost , id� to L-AcntPay
post �+cost , id� to A-ShpExp
send order number id for item to supplier

end genPO

Execution of genPO creates a liability, because the goods will ultimately have
to be paid for—this liability is reflected by the posting to L-AcntPay . However,
the expectation for ultimate delivery is an asset, reflected in the posting to
A-ShpExp. Identifier id is thereafter associated with this purchase order and
expected to appear in the paperwork that accompanies the delivery and in the
supplier’s invoice.

Eventually the item is delivered, accompanied by a packing slip that refer-
ences id . The employee on the loading dock who accepts this delivery would
invoke transformation procedure orderRcvd .

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.2. MAC for Commerce 129

orderRcvd ∶ transproc(id)
check �ĉ, id� ∈ A-ShpExp ∧ �ĉ, id� ∉ A-Invtry then

post �−ĉ, id� to A-ShpExp
post �+ĉ, id� to A-Invtry

else exception(“Unsolicited or duplicate delivery”)
end orderRcvd

Execution of orderRcvd checks A-ShpExp to ensure that the delivery was ex-
pected and checks A-Invtry to make sure that the delivery is not a duplicate.
A decrement is then posted to A-ShpExp because the shipment is no longer
expected, and an increment is posted to A-Invtry because inventory has been
increased.

Receipt of the invoice for the goods with identifier id , causes an employee in
the payments department to invoke transformation procedure invRcvd to pay
the supplier.

invRcvd ∶ transproc(supplier , cost , id , chkNo)
check �+cost , id� ∈ L-AcntPay

∧ �+cost , id� ∈ A-Invtry
∧ �−cost , id� ∉ L-AcntPay

then
post �−cost , id� to L-AcntPay
post �−cost , chkNo� to A-ChkAcnt
send check chkNo for cost to supplier re invoice id

else exception(“Not delivered, not ordered, or paid once”)
end GenCheck

This transformation procedure validates that a purchase order was issued (by
checking �+cost , id� ∈ L-AcntPay), the delivery has been received (by checking
�+cost , id� ∈ A-Invtry), and the invoice has not yet been paid (by checking
�−cost , id� ∉ L-AcntPay). A posting to L-AcntPay then cancels the liability of
an unpaid invoice; a posting to A-ChkAcnt records an equivalent expense.

Notice that orderRcvd is enabled due to the check for a posting in A-ShpExp
not also appearing in A-Invtry . And invRcvd is enabled due to the check for
postings to L-AcntPay and A-Invtry but not also appearing in L-AcntPay . So
a sequence—genPO , orderRcvd , invRcvd—is imposed on the execution order
for transformation procedures that all concern the same value of id .

Also note (at least) two separate transformation procedures are always in-
volved in any update to an account. If no employee is authorized to execute more
than one of the transformation procedures genPO , orderRcvd , and invRcvd then
two or more employees would have to collude in order to embezzle funds or in-
ventory. So we posit that sets EmpsGen EmpsDeliv , and EmpsPay of employees
be disjoint with the following authorizations.

�EmpsGen , genPO , L-AcntPay{post}, A-ShpExp{post}�

�EmpsDeliv , orderRcvd , A-ShpExp{post,check}, A-Invtry{post,check}�

�EmpsPay , invRcvd , A-Invtry{check}, L-AcntPay{post,check}�

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

130 Chapter 3. Mandatory Access Control

3.3 Role-based Access Control

Responsibilities and authority in enterprises and institutions are often associated
with roles. A role might be equated with being assigned to a particular job title,
project, client, or some combination. The role grants privileges. These privileges
authorize only those actions expected from a role’s occupants. This set of actions
is presumed to be relatively fixed for a given role, so a fixed set of privileges can
be associated with each role. Authorization schemes we have discussed thus far,
which decide access based on user identity, obviously could be used to implement
such a policy. But the administration of privilege-assignments to users based
on identity is cumbersome when privileges are in support of roles and change
only when a user’s role changes. So identity-based access-control schemes are
not well suited for enterprise and institutional settings; roles are a better basis
for authorization.

With role-based access control (RBAC), all access requests are made during a
session. Each session S speaks for a set ⇢(S) of roles occupied by the user µ(S)
who instigated that session. A system that implements RBAC will typically
provide commands to begin or end a session and, from within a session, to
enter or exit a specified role. For example, a graduate student in Computer
Science, after being authenticated as user EK, might begin a session S (say),
enter role studentCS6110 and then also enter role graderCS5430, so µ(S) = EK
and ⇢(S) = {studentCS6110, graderCS5430} would hold.

The privileges associated with a session S are constrained by two sets.

• UserRoles(U) is the set of roles that a user U is authorized to occupy.

• RolePrivs(R) is the set of privileges granted to occupants of role R.

One constraint is that UserRoles(⋅) restricts ⇢(S) based on µ(S):

⇢(S) ⊆ UserRoles(µ(S))

A second constraint is that during a session S, user µ(S) is granted privileges
in RolePrivs(R) for every R ∈ ⇢(S). For example, RolePrivs(studentCS6110)
might include privileges granting read access to lecture notes (but not home-
work solution sets) for course CS6110, whereas RolePrivs(graderCS5430) might
include privileges that grant write access to lecture notes and read access to
solutions sets for CS5430.

RBAC privileges might authorize low-level operations, such as reads or writes
to particular files. Or the privileges might authorize high-level operations that
bundle access by some given program to specific objects, as required by trans-
formation procedures (§3.2.2).

Role Hierarchy and Privilege Inheritance. An organization’s structure
might imply that the occupants of one role are also entitled to the privileges
granted by some other role. For example, an individual occupying an o�cer role
in many clubs is entitled to all of the privileges that the member role grants.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.3. Role-based Access Control 131

RBAC provides the reflexive and transitive role inheritance relation19 � to spec-
ify when privileges associated with one role are also granted to occupants of
another role: R � R′ specifies that occupants of role R′ receive all privileges
granted by role R—whether or not the occupant is even authorized to occupy
role R. The following defines a set ⇢∗(S) containing all of the roles that grant
privileges to the user µ(S) operating within a session S.

⇢∗(S) = ⇢(S) ∪ {R′ � R ∈ ⇢(S) ∧R′ � R}
The set privs(S) of privileges that a session S grants to user µ(S) is then:

privs(S) = �

R∈⇢∗(S)
RolePrivs(R) (3.8)

For example, an RBAC scheme implemented for Cornell University might
specify role inheritance relations

cornellian � CUstudent and cornellian � CUsta↵

to specify that occupants of the CUsta↵ and CUstudent roles also receive priv-
ileges (e.g., access to the library, parking, and cafeterias) granted to occupants
of the cornellian role (a label for all current members of the university commu-
nity), making it unnecessary for RolePrivs(CUsta↵) and RolePrivs(CUstudent)
to explicitly list any of the privileges in RolePrivs(cornellian).

Not only might multiple roles inherit privileges from a single role, but a single
role might inherit privileges from multiple roles. Managers are often authorized
to do anything that their immediate subordinates are authorized to do. If emp1,
..., empn are the roles occupied by individuals supervised by the occupant of role
mngr, then specifying role inheritance relations

emp1 � mngr, . . . , empn � mngr

would ensure that mngr occupants are granted the needed privileges.
There are situations, though, where a manager should inherit some but not

all of the privileges granted to subordinates. For example, the programmers in
a group should have write privileges for the code repository, but whether their
manager also should have that privilege depends on whether that manager is
a capable programmer. To specify that a role R′ inherits some—but not all—
of privileges associated with another role R we could employ a selective role
inheritance relation R �P R′ that adds only the privileges in RolePrivs(R) ∩ P
to the privileges granted to the occupants of role R.

Role inheritance relation � is not strictly necessary. We could instead man-
ually copy the privileges from RolePrivs(R) to RolePrivs(R′) for each role R
satisfying R � R′. The implicit granting of privileges through role inheritance
is invaluable for system administration, though. When R � R′ holds, a change

19So RBAC gives a di↵erent meaning to symbol � used in §3.1.1 as a partial order on BLP
labels.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

132 Chapter 3. Mandatory Access Control

Term Informal Description

⇢(S) set of roles entered in session S
⇢∗(S) set of roles e↵ectively occupied in session S
µ(S) user who instigated session S
Act set of all sessions currently active

privs(S) set of privileges granted in session S
R � R′ role R′ inherits privileges granted by role R
Roles set of all roles

RolePrivs(R) the set of privileges granted by role R
Users set of all users

UserRoles(U) set of roles user U is authorized to occupy

Figure 3.6: Terms for Formulating RBAC Constraints

to RolePrivs(R) not only changes what privileges are granted to occupants of
role R but automatically changes what privileges are granted to occupants of all
roles R′ satisfying R � R′. This e↵ect is impossible to achieve by analyzing and
updating the RolePrivs(R′) sets. Yes, an administrator could check whether
R′ satisfies RolePrivs(R) ⊆ RolePrivs(R′), but RolePrivs(R) ⊆ RolePrivs(R′)
might hold either because R � R′ holds or because roles R and R′ coincidentally
authorize overlapping privileges. Without knowing whether a role inheritance
relation R � R′ is intended, a system administrator would not know whether to
change RolePrivs(R′) when changes to RolePrivs(R) are made.

Constraints. In RBAC, separation of duty and other policies that restrict
mutual occupancy of roles are specified by giving RBAC constraints. An RBAC
constraint can be any Boolean expression formulated using the terms given in
Figure 3.6; an action is prohibited from executing if that execution would cause
an RBAC constraint to be falsified.

The RBAC constraint to specify the separation of duty policy that any user
authorized to occupy role R is not authorized to occupy R′ and vice versa is:

(∀U ∈ Users ∶ R∉UserRoles(U) ∨ R′ ∉UserRoles(U)) (3.9)

A weaker separation of duty policy is defined by RBAC constraint

(∀S ∈ Act ∶ R∉⇢(S) ∨ R′ ∉⇢(S)) (3.10)

since it excludes users from occupying roles R and R′ within a single session but
does not prevent a user from occupying roles R and R′ in separate, concurrent
sessions; the following RBAC constraint does prevent that.

(∀S,S′ ∈ Act ∶ µ(S) = µ(S′) ⇒ (R∉⇢(S) ∨ R′ ∉⇢(S′))) (3.11)

Notice that (3.11) achieves the desired e↵ect only if µ(S) ≠ µ(S′) implies that
sessions S and S′ speak for di↵erent individuals. The validity of that assumption

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

3.3. Role-based Access Control 133

depends on how individuals are being authenticated and on the accuracy of the
enrollment protocol employed to register new users.

Role inheritance creates a complication for separation of duty policies. If
there is role inheritance then separation of duty policies formulated in terms
of role occupancy do not necessarily impose separation of duty for privileges.
Separation of duty for privileges can be achieved by adding RBAC constraints,
though. For example, we specify that a privilege p is granted to only a single
user at any time (without identifying what user or restricting which privileges
various roles grant) with the following RBAC constraint.

¬(∃S,S′ ∈Act , R,R′ ∈ Roles ∶ µ(S) ≠ µ(S′) ∧ R ∈ ⇢∗(S) ∧ R′ ∈ ⇢∗(S′)
∧ p ∈ RolePrivs(R) ∧ p ∈ RolePrivs(R′))) (3.12)

Besides specifying separation of duty policies, RBAC constraints o↵er a way
to incorporate user attributes or system state into authorization. The following
RBAC constraint restricts occupancy in a role R to normal working hours

(∀S ∈ Act ∶ R ∈ ⇢(S) ⇒ 0900 ≤ time() ≤ 1700) (3.13)

if function time() evaluates to the current time. And given a function locate(U)
that evaluates to the current location of a user U , the following RBAC constraint
restricts occupancy in R to those users working at the o�ce (versus, say, at home
or at an Internet cafe).

(∀S ∈ Act ∶ R ∈ ⇢(S) ⇒ locate(µ(S)) = o�ce) (3.14)

Just because a constraint is easy to specify does not mean it would be easy
to check. To check a constraint might require detecting some set of relevant
events and informing a runtime whenever these events occur. Certain events
are straightforward to detect because they cause the operating system to be
invoked. These events include:

• system administrator commands to change the sets of users or roles, the
roles each user is authorized to occupy, the privileges associated with each
role, and the role inheritance relation;

• system calls that allow a user to begin/end a session or to enter/exit a
specified role within a session.

Moreover, we might reasonably expect that these events would be the sole means
for causing any of the terms in Figure 3.6 to change value.

A reference monitor incorporated into the operating system could be used
to support RBAC constraints (3.9)–(3.12). Enforcement becomes expensive,
though, if an RBAC constraint depends on functions (e.g., time() and locate(⋅))
that change value undetectably or too frequently for the reference monitor to be
invoked. Although (3.13) could be enforced by scheduling timer-interrupts that
invoke the reference monitor at times 0900 and 1700, other RBAC constraints
involving the passage of time might require more frequent checking than would
be practical. And enforcement of RBAC constraints involving location might
well be completely infeasible.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

134 Chapter 3. Mandatory Access Control

Some Practical Considerations. RBAC is best suited for settings in which

• there are many more users than roles, and

• the role hierarchy and privileges assigned to each role change slowly, even
if the role assignments for users change relatively rapidly,

because then assigning privileges to roles involves less administrative e↵ort than
directly assigning privileges to individual users. Therefore, RBAC is well suited
for use in mature industries and institutions, because these tend to have a stable
set of roles, where each role has fixed responsibilities and authority. But RBAC
is not well suited for settings where the number of users is comparable to the
number of roles (i.e., small organizations), many users should be assigned the
same set of privileges (i.e., flat organizations), or privilege assignments to roles
change frequently in unanticipated ways (i.e., highly dynamic organizations).

RBAC also does not work well in settings where a user’s authority does not
derive entirely from that user’s role(s) in the institution. The role of doctors in
a hospital illustrates. We might be tempted to define a single doctor role for au-
thorizing access to patient records. However, each doctor should be authorized
to access only the records for that doctor’s patients. So a separate role could
be needed for each doctor, which diminishes the value of using roles for au-
thorization. A bank with multiple branches is another example. Every branch
manager has the same responsibilities, but the branch manager for each branch
should have access only to the records associated with that branch. Defining a
single role for all branch managers then does not provide su�cient selectivity.

As just illustrated, a roles explosion makes RBAC expensive to administer
when authorization depends, in part, on user attributes. With attribute-based
access control (ABAC), an authorization decision is made based on a set of at-
tributes that is associated with each user. A role that a user occupies, however,
can be seen as an attribute of that user. So the authorization that RBAC spec-
ifies can be enforced using ABAC. In fact, RBAC and ABAC are theoretically
equivalent: the privilege to occupy a role can be seen as defining an attribute,
and each possible subset of attributes can be seen as defining a role. There
are an exponential number of subsets for a given set of attributes. So having a
smaller number of attributes significantly reduces the burden on system admin-
istrators. Since a role can replace a subset of the attributes, RBAC and roles
o↵er a way to reduce that burden.

Notes and Reading for Chapter 3

Security policies imposed by an institution—the sine qua non for a mandatory
access control policy—have a long history. Long before the advent of computers,
armies were concerned with protecting secrets in order to preserve technological
superiority and/or to surprise an adversary. The Byzantine Empire kept secret
the recipe for making Greek Fire, a napalm-like burning mixture that their ships
in combat would spray or catapult to wreak havoc on an adversary’s wooden-
hulled ships. And Sun Tzu’s The Art of War [59], written in the fifth century

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 135

B.C.E., advocates a secrecy policy when it opines that “the formation and pro-
cedure used by the military should not be divulged beforehand”. Outside of
the military, medieval guilds imposed secrecy policies that prevented nonmem-
bers from learning the skills needed to enter certain occupations. We also find
businesses throughout history maintaining trade secrets, either to protect an
existing competitive advantage or to secure a first-mover advantage.

The Orange Book [16, §3.1.1.3] popularized the term “mandatory access con-
trol” and equates it with a class of authorization policies where access to objects
by subjects is based on labels that form a lattice. Those labels were required to
be “a combination of hierarchical classification levels and non-hierarchical cat-
egories” [16, §3.1.1.4], which was describing the document classification scheme
being used by the U.S. government. Quist [51, chapter 2], drawing heavily from
an unpublished manuscript by Patterson [50], chronicles the precursors and evo-
lution of U.S. government document-classification schemes. The current scheme
is detailed in Executive Order 13526 [47], signed by President Barack Obama
in December 2009. It is the most recent in a series of Executive Orders, start-
ing with Executive Order 8381 [52], signed by President Roosevelt in March
1940 [51, chapter 3].

U.S. document-classification schemes were derived from a British scheme
circa 1917. But Britain’s document-classification schemes date back to the late
19th century. Prior to the Crimean War (1853–1856), the British War O�ce
had been marking documents that should be kept confidential, and by 1894
British Army regulations were distinguishing between markings “Secret” and
“Confidential” that each imposed specific rules for handling and disclosure. An
early version of “need to know” appears in an 1868 publication of British Army
regulations:

Access to o�cial records is only permitted to those who are entrusted
with the duties of the o�ce or department to which they belong ...

Peacetime classification of military secrets in Britain commenced with an 1866
report on mines and torpedoes—new technologies that would be less e↵ective if
the details became known by an adversary.

The Orange Book was produced by a process that began when the U.S. De-
partment of Defense (DoD) began to contemplate storing classified information
on time-sharing systems.20 An early and widely-cited discussion of the technical
issues to be addressed appears in the 1970 report [61] from a committee chaired
by Ware and convened in Fall 1967 under the auspices of the Defense Science
Board. Computers back then were expensive and, thus, had to be shared. So
for storing classified documents, DoD required

• a system that could support multiple, concurrent users having di↵erent
clearances and accessing objects that had di↵erent classifications, and

• an assurance argument to establish that the system’s access controls could
not be circumvented either by bona fide users or by outsiders.

20See Mackenzie and Pottinger [43] for the context and history of this e↵ort.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

136 Chapter 3. Mandatory Access Control

The Adept-50 time-sharing system [62] was an early and notable attempt
to address these DoD needs. That system, which was operational by 1969,
was developed at System Development Corporation (SDC) under an ARPA21

contract. The authorization policy that Adept-50 enforced was based on a
high-water mark security label that was maintained for each process by the
system. Adept-50 also supported a change command for reducing the security
label associated with an object. Unfortunately, a program could leak secret
information by executing change—read the secret information from one file,
write it to another file (causing the file’s label to be set appropriately), and then
invoke change to decrease the label on that output file so the secret information
could be read by any process.

Frustrated by a lack of progress in creating secure time-sharing systems,
USAF Major Roger R. Schell commissioned a study. Chaired by Edward Glaser
of Case Western Reserve University, this study assembled the established ex-
perts in order to reach a consensus on a research and development plan. The
final report [2], published in 1972, is today known as the Anderson Report,
named after the committee member who managed the study and did much of
the writing. The report advocates (among other things) that a small secu-
rity kernel be the only software involved in enforcing a system’s authorization
policies—an architecture that Schell had long been advocating. This recom-
mendation was a rejection of the prevailing view at the time, which was that
extant time-sharing systems could be made su�ciently secure simply by adding
code to perform further checking. Schell had contended that only with a small
security kernel could a thorough analysis and testing be feasible, thereby pro-
viding assurance about the enforcement mechanism. An assurance argument
for the entire time-sharing system then would be obtained by combining the
assurance for security kernel with a proof that the authorization policy implies
the intended security properties. The Anderson Report also brought the term
Trojan horse to cybersecurity; it is discussed in appendix I “Security threats
and penetration techniques” where it is attributed to Dan Edwards, one of two
NSA representatives to committee.

Two research groups were subsequently funded to develop formal models,
define security policies, and prove that information labeled as classified could not
be read by users lacking suitable clearances.22 Bell and LaPadula, working at
MITRE, published their proposal in 1973 [6, 7], though Shell and the members
of the Anderson Report committee are likely to have seen write-ups of this
work in earlier unpublished MITRE reports. This Bell and LaPadula proposal
became the basis for much of DoD’s computer security work over the next
decade; the BLP rules in §3.1.1 are from there. The other research group,
working independently at Case Western University, developed essentially the

21The Advanced Research Projects Agency (ARPA) was created in 1958 to fund research
in support of DoD to help avoid technological surprises like the Soviet Union’s October 1957
launch of Sputnik 1, the first artificial Earth satellite. The name Defense Advanced Research
Projects Agency (DARPA) for this organization has been in use since March 1996.

22Landwehr [37] surveys the various formal models for computer security from that time
period.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 137

same restrictions (couched in terms of repositories and agents rather than files
and processes) and published their work [60] a few months later.

Trusted subjects were proposed in Bell and LaPadula [8] when their original
scheme [6, 7] was found to be deficient for enforcing security in Multics [49].23

Bell and LaPadula [8, section IV] also identified some limitations with the defi-
nition of security given in their original scheme [6, 7], which had ignored various
covert channels, information corruption, and denial of service.

Integrity is ignored in Bell and LaPadula [6, 7]. That omission was prob-
lematic once DoD grew concerned about preventing unauthorized changes to
targeting data that was going to be loaded onto U.S. missiles [56]. An exten-
sion to handle integrity was proposed by Biba [9]. This scheme introduced MLI
labels, an additional set of partially ordered labels forming a lattice that was
described as being the dual of the lattice used for confidentiality in Bell and
LaPadula [6, 7]. A close look, however, reveals (as discussed on page 112 in
connection with the BLP policy) that integrity is being enforced by Biba [9]
using the same partial order that Bell and LaPadula [6, 7] uses to enforce
confidentiality—it prohibits the propagation of content from containers with
high labels to containers with lower labels.

Biba [9] also describes a scheme that adapts the Adept-50 [62] high-water
mark policy in order to relax the requirement that an MLI label for a subject or
file must be fixed throughout execution. Using Biba’s low-water mark integrity
scheme, the label for a subject or file during an execution reflects the lowest
integrity content previously transferred there. Twenty-five years later, the low-
water mark scheme was found to be ideally suited for protecting system integrity
against malware inadvertently downloaded from the internet, and the scheme
was implemented in Lomac [27], a Unix variant. In Lomac, every file from the
initial operating system installation is given a label signifying highest integrity,
objects a user creates get labels indicating mid-level integrity, and content from
hardware devices that provide external access (e.g, keyboard, mouse, and net-
work interfaces) has a label for the lowest level of integrity. The BLP rules then
ensure that content downloaded from the Internet cannot become part of the
operating system.

Besides a suitable security policy, the vision of the Anderson Report required
that a small security kernel be used for enforcement. To establish the feasibility
of that, DoD by the late 1970’s had funded four prototyping e↵orts.

• Multics developers added the Access Isolation Mechanism (AIM) [18], im-
plemented other security functionality [63], and ran a vulnerability anal-
ysis [33].

• KVM/370 [29, 30] was developed by System Development Corporation
(SDC) as a retrofit to IBM’s virtual machine operating system VM/370.

23Walter et al. [60] at Case Western University is credited with developing the access policy
in [8] for Multics tree-structured directories. Directories are files having specific semantics
and thus warranted special treatment.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

138 Chapter 3. Mandatory Access Control

• Kernelized Secure Operating System (KSOS) [44] was implemented at
Ford Aerospace as a security kernel that executed a UNIX emulator.

• The Secure Communications Processor (Scomp) and its operating system
STOP (Secure Trusted Operating System) [25] were built at Honeywell to
serve as a secure front-end processor for Multics.

It was understood that ultimately a range of available commercial o↵-the-shelf
(COTS) computer systems would be needed for use by DoD. The National
Computer Security Center (NCSC) within NSA was created to help achieve
that goal.

The NCSC then drafted the Orange Book to specify the requirements that
commercially developed systems would have to satisfy for hosting classified con-
tent, and it also created a process for rating how well a system complied with
those requirements.24 The lowest rating was D and the highest was A1, with
the rating based on security functionality, system structure, and the assurance
argument that was being provided. Discretionary access control was required
for C and above; authorization that enforced multilevel security (i.e., labels and
the BLP rules) was required for B and above; and assurance arguments were
required for an A1 rating. Multics was submitted for evaluation and received a
B2 rating; Scomp received an A1 rating.

COTS software developers had good reasons not to invest in building systems
that would receive a B or higher Orange Book rating, though. First, was the
market size. The U.S. government and defense industry did not form a large
segment of the market for COTS software, only a small part of that segment
actually needed systems rated B or higher, and export restrictions on certain
technologies at that time made it di�cult to sell such systems abroad. Second,
the rating process increased time-to-market. Third, customers in the private
sector did not perceive a need for multilevel security or for most of the other
security functionality required by a B or higher rating.

With hopes of entering the markets for computers that handle classified in-
formation, in 1981 Digital Equipment Corporation (DEC) nevertheless began
developing VAX/SVS (Secure Virtual System) [34, 35, 39], with plans to obtain
an A1-rating. VAX/SVS was implemented as a virtual machine manager and,
therefore, could run the VMS and Ultrix-32 operating systems already in use
on DEC’s VAX computers, easing the migration path for a large base of cus-
tomers. By 1989, a version of VAX/SVS was being field-tested at government
and defense industry sites. The system exhibited acceptable performance and
allowed multilevel secure tasks to be performed. But the limited prospects for
domestic sales and di�culties in arranging sales abroad (among other things),
prompted DEC to cancel the project a year later.

Besides the dearth of COTS systems rated B or above, questions were also
being raised about the utility of using multilevel security for DoD applications.

24Lipner [41] gives a history, writing with the perspective of a participant in the discussions
leading to publication of the Orange Book, a contributor to the debate that followed, and a
developer of a system that would comply with its directives.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 139

A widely reported attempt by Landwehr et al. [38] at the Naval Research Labo-
ratory to implement security for military-message systems reported various ways
in which multilevel security was not well suited for this and other applications.
The di�culties included (i) a need for trusted subjects because certain write-
downs had to be performed but there was no way to impose application-specific
constraints on those trusted subjects and (ii) a lack of support for objects having
components with di↵erent security levels. Further concerns were subsequently
raised in McLean [45, 46] with the infamous system Z, which automatically
declassified objects to make all reads and writes appear legal. The same “Basic
Security Theorem” proved in Bell and LaPadula [8] for Multics could be proved
for system Z. That troubling observation led to much debate [5] about whether
proving that a system satisfies the “Basic Security Theorem” actually provides
assurance.

The potential vulnerabilities introduced by trusted subjects led Boebert and
Kain to devise type enforcement [10, 11] (TE) for supporting MAC policies
in LOCK [55, 48] (Logical Coprocessing Kernel).25 TE was a radical (and
politically perilous, given the beliefs of the intended customer for the e↵ort)
break with the Orange Book’s dogma, because TE did not use labels or the
BLP rules. To avoid provocation, early publications about TE and LOCK
focus on enforcing integrity policies and implementing assured pipelines; there
is little discussion that TE does not require introducing trusted subjects or that
TE enforces a broader class of MAC policies than are described in the Orange
Book.

LOCK was commercialized as Sidewinder, a successful firewall and VPN
gateway that was developed and sold by Secure Computing Corporation (SCC),
a 1989 spino↵ from Honeywell’s Secure Computing Technology Center (the de-
veloper of LOCK). TE also has served as a starting point for the authorization
implemented by other operating systems that support MAC policies. One ex-
ample is DTE Unix [3], which implements domain and type enforcement (DTE),
an extension of TE where the types for files and certain other objects are de-
rived automatically from the hierarchies defined by UNIX directories. A Linux
implementation of DTE is described in Hallyn and Karns [31]. Extensions to
support a dynamically configurable variant of DTE—dynamic domain and type
enforcement (DDTE)—are proposed by Tidswell and Potter [58].

In addition to all of the concerns raised about using Orange Book systems
for DoD systems, there were questions about whether the needs of commercial
institutions would be well served. Lipner [40] in 1982 claims that a security
lattice model may be applicable in these settings, based on discussions with a
senior EDP auditor. But a 1987 paper [13] by David Clark (a computer scientist)
and David Wilson (an accountant) forcefully argues the opposite. The Orange
Book’s MAC policies are shown to be ill well suited for commercial institutions
because outside of the military the primary concern is with di↵erent forms of

25If LOCK was the sole path to reach a network then a time-sharing system or a personal
computer no longer had to be trusted to encrypt the messages it sends. Supply chain attacks
that compromise personal computer hardware or software were among the concerns that
LOCK was intended to address.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

140 Chapter 3. Mandatory Access Control

malfeasance (e.g., fraud and error, rather than disclosure).
The defenses that Clark and Wilson [13] describes—audit and the use of

well-formed transactions—derive from classic accounting controls, which date
back to the beginnings of commerce and taxation. The Egyptians and Baby-
lonians employed audits to keep track of warehouse contents, so they could
reconcile inventory with deposits and withdrawals. By the 1400’s, Venice was
an important commercial center, and double-entry bookkeeping was proving an
e↵ective method for recording business transactions. The ledger for 1299–1300
of the Florentine merchant Amatino Manucci is the earliest documented use of
the approach [17]. The first full description of double-entry bookkeeping was
apparently printed in a volume by Luca Pacioli that was published in November
1494.26

So Clark and Wilson [13] establish that that multilevel security is just one
kind of MAC policy, and a new (or significantly revised) Orange Book would be
needed to support commerce. Further corroboration comes with the publication
of Brewer and Nash [12], which introduces computer security researchers to yet
another useful class of MAC policies for commercial institutions: Chinese Wall
policies. These policies are not only orthogonal to the MAC policies in the Or-
ange book but they di↵er from the commercial policies of Clark and Wilson [13].
Chinese Wall27 policies originated in U.S. investment-industry regulators follow-
ing the 1929 stock market crash that began the Great Depression. A so-called
Chinese Wall was intended to give the public assurance that a brokerage was
being prevented from profiting at the expense of its customers.

Separation of duty had enjoyed a long history in governance, where it is
called “separation of powers”. The U.S. Constitution (drafted in 1789), for ex-
ample, stipulates a tripartite structure comprising a legislative branch (to make
laws), an executive branch (to enforce laws), and a judiciary branch (to inter-
pret laws). Tripartite governing structures, which is attributed to the Age of
Enlightenment’s political philosopher Baron de Montesquieu [15], had earlier
been adopted by the Dutch and the English. Still further back, we see govern-
ments of the Roman Republic and the Greek city-states in antiquity employing
separation of powers. Among the earliest discussions of separation of duty in
connection with computer security is the “separation of privilege” principle dis-
cussed in Saltzer and Schroeder [53], which credits a 1973 conversation with
Roger Needham.

Early operating systems did not support RBAC or roles per se. However,
early operating systems did support groups that (like individuals) could be as-

26Pacioli’s description of so-called Venetian bookkeeping appears in volume I, chapter 9,
part 11 of his mathematical encyclopedia Summa de arithmetica, geometria, proportioni et

proportionalità, which also was the first printed book to describe Hindu-Arabic arithmetic
and algebra. The publication a decade later of the pamphlet La scuola perfetta dei mercanti

excerpting the material about double-entry bookkeeping doubtless was important for facilitat-
ing widespread adoption of the approach. This history and the later impacts of double-entry
bookkeeping are given in Gleeson-White [28].

27The term “Chinese Wall” is attributed to U.S. President Franklin D. Roosevelt who,
shortly after he was elected in 1933, used the phrase “Chinese wall of silence” to describe the
isolation sought for di↵erent principals within a single financial institution. [32, page 81].

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

Notes and Reading 141

signed privileges. Some operating systems only supported a predefined set of
groups; other operating systems allowed groups to be created and populated
as needed, either by system administrators or by users. By the mid 1980’s,
Landwehr et al. [38] for their military-message systems security policy had pro-
posed something that foreshadows RBAC, saying:

Role—the job a user is performing, such as downgrader, releaser,
distributor, and so on. A user is always associated with at least one
role at any instant, and the user can change roles during a session.
To act in a given role, the user must be authorized for it. Some roles
may be assumed by only one user at a time (e.g., distributor). With
each role comes the ability to perform certain operations.

Ferraiolo and Kuhn were the first to argue in favor of using roles in gen-
eral as the basis for mandatory access control policies. Concerns being voiced
about the policies discussed in the Orange Book had led Ferraiolo et al. to con-
duct a survey28 [20] of the security needed for civilian government agencies and
commercial enterprises. The survey responses indicated that these non-military
institutions required a means to associate privileges with roles (rather than as-
sociating privileges with individuals), and doing that association was not easily
implemented using existing systems. A form of role-based access control thus
seemed like it would better serve those surveyed than the Orange book’s MAC
policies or than Clark and Wilson’s transformation procedures.

The original proposal by Ferraiolo and Kuhn [21] focused on roles and inher-
itance [21]. It generalized named protection domains, which had been described
in Baldwin [4] as a basis for authorization in ANSI SQL databases. Constraints
were added after roles proved inadequate for formalizing certain separation of
duty policies [19]. The presentation in §3.3 is derived from Sandhu et al. [54], an
early and influential e↵ort to structure role-based access control in terms of the
simpler models: RBAC 0 supports roles, sessions, and privileges; RBAC 1 adds
role inheritance to RBAC 0; RBAC 2 adds constraints to RBAC 0; and RBAC 3

combines RBAC 1 and RBAC 2. ANSI standard INCITS 359-2004 (approved
February 2004) for role based access control is based on RBAC 3 (see [22]).
The standard is implemented in operating systems (e.g., Microsoft’s active di-
rectory) and in database management systems (Microsoft SQL server, Oracle
DBMS, SAP R/3). See Franqueira and Wieringa [26] for a discussions of set-
tings well suited for RBAC. A proposal to combine ABAC and RBAC is made
in Kuhn et al. [36].

But given this diverse set of credible MAC policies, an operating system that
supported only a single MAC policy would not have broad appeal and, therefore,
commercial developers of operating systems did not provide support for MAC
policies. Within DoD, interest nevertheless remained high in having operating
systems that could meet the government’s needs. So DoD funded research in
this area. One thrust—part of the Synergy research program at NSA—was

28The study covered 28 organizations, including 17 federal agencies, 10 corporations, and 1
state agency.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

142 BIBLIOGRAPHY

to develop an architecture that allowed various di↵erent MAC policies to be
enforced within the same operating system, since a large user community could
then be served.

The idea of a security server in a microkernel o↵ered a promising solution.
In a microkernel, the interface to all abstractions is through message-passing
to ports. By having a separate security server for each port, a policy could
be enforced on all requests to the associated abstraction, and di↵erent policies
could be enforced on di↵erent abstractions. A cache in the microkernel then
lowered the overhead by allowing repeated invocations of the security server
to be eliminated for repeated requests. SCC was supported to create a first
implementation of this approach. The result was DTMach [23], a microkernel
that extended Mach [1]. The approach was then explored further with a project
at SCC that developed the DTOS microkernel architecture and also explored
the attendant assurance questions [14]. The DTOS security architecture, with
the help of University of Utah researchers, was then migrated to the Fluke
microkernel environment [24], resulting in the Flask architecture [57].

The next step was an implementation of the Flask architecture in a main-
stream operating system. By the late 1990’s, the adoption of Linux, an open
source operating system, was growing. That made Linux an ideal target for
Flask, and SELinux [42] adds to the Linux kernel a security server that sup-
ported multi-level security (BLP), type enforcement (TE), identity-based access
control, and dynamic role-based access control (RBAC). MAC policies were fi-
nally being supported in a mainstream operating system that had a growing
set of applications being curated by a large community. Subsequent SELinux
releases provided even more flexibility by allowing loadable kernel modules to
serve as Flask security servers.

Bibliography

[1] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B. Golub,
Richard F. Rashid, Avadis Tevanian, and Michael Young. Mach: A new
kernel foundation for UNIX development. In Proceedings of the USENIX
Summer Conference, pages 93–113. USENIX Association, June 1986.

[2] James P. Anderson. Computer security technology planning study. Techni-
cal Report ESD-TR-73-51, Electronic Systems Division (AFSC), Hanscom
Field, Bedford, MA, October 1972.

[3] Lee Badger, Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and
Sheila A. Haghighat. Practical domain and type enforcement for Unix.
In Proceedings of 1995 IEEE Symposium on Security and Privacy, pages
66–77. IEEE Computer Society Press, 1995.

[4] Robert W. Baldwin. Naming and grouping privileges to simplify security
management in large databases. In Proceedings of 1990 IEEE Symposium

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 143

on Security and Privacy, pages 116–132. IEEE Computer Society Press,
May 1990.

[5] D. Elliott Bell. Concerning modeling of computer security. In Proceed-
ings of 1988 IEEE Symposium on Security and Privacy, pages 8–13. IEEE
Computer Society Press, 1988.

[6] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Math-
ematical foundations. Technical Report ESD-TR-73-278, Volume I, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[7] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: A
mathematical model. Technical Report ESD-TR-73-278, Volume II, Elec-
tronic Systems Division (AFSC), Hanscom Field, Bedford, MA, November
1973.

[8] D. Elliott Bell and Leonard J. LaPadula. Secure computer systems: Unified
exposition and MULTICS interpretation. Technical Report EDS-TR-75-
306, Electronic Systems Division (AFSC), March 1976.

[9] K. J. Biba. Integrity consideration for secure computer systems. Technical
Report MTR-3153, MITRE Corporation, Bedford, MA, June 1975.

[10] W. E. Boebert and R. Y. Kain. A practical alternative to hierarchical
integrity policies. In Proceedings of the 8th National Computer Security
Conference, pages 18–27. U.S. Government Printing O�ce, October 1985.

[11] William E. Boebert and Richard Y. Kain. A further note on the confine-
ment problem. In 1996 International Carnahan Conference on Security
Technology, pages 198–202, 1996.

[12] David F. C. Brewer and Michael J. Nash. The Chinese Wall security policy.
In Proceedings of the 1989 IEEE Symposium on Security and Privacy, pages
206–214. IEEE Computer Society Press, May 1989.

[13] David D. Clark and David R. Wilson. A comparison of commercial and
military computer security policies. In Proceedings of 1987 IEEE Sym-
posium on Security and Privacy, pages 184–194. IEEE Computer Society
Press, 1987.

[14] Secure Computing Corporation. DTOS lessons learned, December 1993.
Contract No. MDA904–93–C-4209, CRDL Sequence No. A008, Part num-
ber 87–0902025A006.

[15] Baron de Montesquieu. De l’esprit des lois, 1748. Republished as Mon-
tesquieu: The Spirit of Laws, Cambridge Texts in the History of Political
Thought, Cambridge University Press, 1989.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

144 BIBLIOGRAPHY

[16] Department of Defense. Department of Defense Trusted Computer Sys-
tem Evaluation Criteria. DoD 5200.28-STD, Supercedes CSC-STD-001-83
dated 15 August 1984, Library Number S225,711.

[17] J. Richard Edwards. A history of double-entry bookkeeping. The Account-
ing Historians Journal, 16(1):59–91, 1989.

[18] B2 Security Evaluation. https://multicians.org/b2.html.

[19] David F. Ferraiolo, Janet A. Cugini, and D. Richard Kuhn. Role-based
access control (RBAC): Features and motivations. In Proceedings of 11th
Annual Computer Security Applications Conference, pages 241–248. IEEE
Computer Society Press, December 1995.

[20] David F. Ferraiolo, Dennis M. Gilbert, and Nickilyn Lynch. Assessing fed-
eral and commercial information security needs. Technical Report NISTIR
4976, National Institute of Standards and Technology, Computer Systems
Laboratory, Gaithersburg, Maryland, November 1992.

[21] David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In
Proceedings of 15th National Computer Security Conference, pages 554–
593. National Institute of Standards and Technology, National Computer
Security Center, October 1992.

[22] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and
Ramaswamy Chandramouli. Proposed NIST standard for role-based access
control. ACM Transactions on Information System Security, 4(3):224–274,
August 2001.

[23] Todd Fine and Spencer E. Minear. Assuring distributed trusted Mach. In
Proceedings of the 1993 IEEE Computer Society Symposium on Research in
Security and Privacy, pages 206–217. IEEE Computer Society, May 1993.

[24] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and
Olin Shivers. The Flux OSKit: A substrate for kernel and language re-
search. In Michel Banâtre, Henry M. Levy, and William M. Waite, editors,
Proceedings of the Sixteenth ACM Symposium on Operating System Prin-
ciples, SOSP ’97, pages 38–51. ACM, October 1997.

[25] L. J. Fraim. Scomp: A solution to the multilevel security problem. IEEE
Computer, 16(7):26–34, 1983.

[26] Virginia N. L. Franqueira and Roel J. Wieringa. Role-based access control
in retrospect. Computer, 45(6):81–88, 2012.

[27] Timothy Fraser. LOMAC: Low water-mark integrity protection for COTS
environments. In Proceedings of the 2000 IEEE Symposium on Security
and Privacy, pages 230–245. IEEE Computer Society, May 2000.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 145

[28] Jane Gleeson-White. Double Entry. W. W. Norton & Company, October
2013.

[29] Barry D. Gold, Richard R. Linde, and P. F. Cudney. KVM/37O in ret-
rospect. In Proceedings of the 1984 IEEE Symposium on Security and
Privacy, pages 13–23. IEEE Computer Society, May 1984.

[30] Barry D. Gold, Richard R. Linde, Marv Schaefer, and John F. Scheid.
VM/370 security retrofit program. In James S. Ketchel, Harvey Z. Krilo↵,
H. Blair Burner, Patricia E. Crockett, Robert G. Herriot, George B. Hous-
ton, and Cathy S. Kitto, editors, Proceedings of the 1977 Annual Confer-
ence, ACM ’77, pages 411–418. ACM, October 1977.

[31] Serge E. Hallyn and Phil Kearns. Domain and type enforcement for Linux.
In 4th Annual Linux Showcase & Conference 2000. USENIX Association,
October 2000.

[32] Anthony Hilton. City within a State: A Portrait of Britain’s Financial
World. I. B. Tauris & Company Limited, 1987.

[33] Paul A. Karger and Roger R. Schell. Multics security evaluation: Vul-
nerability analysis. Technical Report ESD–TR–74–193, Vol. II, Electronic
Systems Division (AFSC), Hanscom AFB, MA, June 1974.

[34] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Cli↵ord E. Kahn. A VMM security kernel for the VAX architecture. In
Proceedings of the 1990 IEEE Symposium on Security and Privacy, pages
2–19. IEEE Computer Society Press, May 1990.

[35] Paul A. Karger, Mary Ellen Zurko, Douglas W. Bonin, Andrew H. Mason,
and Cli↵ord E. Kahn. A retrospective on the VAX VMM security kernel.
IEEE Transactions on Software Engineering, 17(11):1147–1165, 1991.

[36] D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding at-
tributes to role-based access control. Computer, 43(6):79–81, 2010.

[37] Carl E. Landwehr. Formal models for computer security. ACM Computing
Surveys, 13(3):247–278, September 1981.

[38] Carl E. Landwehr, Constance L. Heitmeyer, and John D. Mclean. A secu-
rity model for military message systems. ACM Transactions on Computer
Systems, 2(3):198–222, August 1984.

[39] Steve Lipner, Trent Jaeger, and Mary Ellen Zurko. Lessons from VAX/SVS
for high-assurance VM systems. IEEE Security and Privacy, 10(6):26–35,
2012.

[40] Steven B. Lipner. Non-discretionary controls for commercial applications.
In Proceedings of 1982 IEEE Symposium on Security and Privacy, pages
2–10. IEEE Computer Society Press, 1982.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

146 BIBLIOGRAPHY

[41] Steven B. Lipner. The birth and death of the Orange Book. IEEE Annals
of the History of Computing, 37(2):19–31, April–June 2015.

[42] Peter A. Loscocco and Stephen Smalley. Integrating flexible support for
security policies into the Linux operating system. In Clem Cole, editor,
Proceedings of the FREENIX Track: 2001 USENIX Annual Technical Con-
ference, pages 29–42. USENIX, June 2001.

[43] Donald Mackenzie and Garrel Pottinger. Mathematics, technology, and
trust: Formal verification, computer security, and the U.S. military. IEEE
Annals of the History of Computing, 19(3):41–59, July 1997.

[44] E. J. McCauley and P. J. Drongowski. KSOS—The design of a secure
operating system. In Proceedings of the National Computer Conference,
NCC, pages 345–353. IEEE, 1979.

[45] John McLean. A comment on the ‘Basic Security Theorem’ of Bell and
LaPadula. Information Processing Letters, 20(2):67–70, February 1985.

[46] John McLean. Reasoning about security models. In Proceedings of the 1987
IEEE Symposium on Security and Privacy, pages 123–133. IEEE Computer
Society Press, May 1987.

[47] Barack Obama. Classfied national security information. Ex-
ecutive Order EO 13526, The White House, December 2009.
https://www.fas.org/irp/o↵docs/eo/eo-13526.htm.

[48] Richard O’Brian and Clyde Rogers. Developing applications in LOCK. In
Proceedings of 14th National Computer Security Conference, pages 147–
156. National Institute of Standards and Technology, National Computer
Security Center, October 1991.

[49] Elliott I. Organick. The Multics System: An Examination of its Structure.
MIT Press, 1972.

[50] Andrew Patterson Jr. “CONFIDENTIAL” – The beginning of defense-
information marking. Unpublished manuscript. Sterling Chemistry Labo-
ratory, Yale University, April 1980.

[51] Arvin S. Quist. Security Classification of Information, Volume
1. Introduction, History, and Adverse Impacts. Technical Report
ORCA–12, Oak Ridge Classification Associates, LLC, September 2002.
http://www.fas.org/sgp/library/quist/index.html.

[52] Franklin D. Roosevelt. Defining certain vital military and naval installa-
tions and equipment. Executive Order EO 8381, The White House, March
1940. https://www.fas.org/irp/o↵docs/eo/eo-8381.htm.

[53] Jerome H. Saltzer and Michael D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308, March
1975.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

BIBLIOGRAPHY 147

[54] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E Youman.
Role-based access control models. Computer, 29(2):38–47, Feb 1996.

[55] O. Sami Saydjari, J. M. Beckman, and J. R. Leaman. LOCK Trak: Nav-
igating uncharted space. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy,, May.

[56] Roger R. Schell. Oral history interview with Roger R. Schell. Charles Bab-
bage Institute. Retrieved from the University of Minnesota Digital Conser-
vancy, May 2012.

[57] Ray Spencer, Stephen Smalley, Peter A. Loscocco, Mike Hibler, Dave G.
Andersen, and Jay Lepreau. The Flask security architecture: System sup-
port for diverse security policies. In G. Winfield Treese, editor, Proceed-
ings of the 8th USENIX Security Symposium. USENIX Association, August
1999.

[58] Jonathon Tidswell and John Potter. An approach to dynamic domain and
type enforcement. In Vijay Varadharajan, Josef Pieprzyk, and Yi Mu, ed-
itors, Information Security and Privacy, Second Australasian Conference,
ACISP’97, volume 1270 of Lecture Notes in Computer Science, pages 26–
37. Springer, July 1997.

[59] Sun Tzu. The Art of War. Courier Dover Publications, 2013.

[60] K. G. Walter, W. F. Ogden, W. C. Rounds, F. T. Bradshaw, S. R. Ames,
and D. G. Shumway. Primitive models for computer security. Interim
Technical Report ESD-TR-4-117, Case Western Reserve University, 1974.
NTIS AD-778 467.

[61] Willis H. Ware. Security control for computer systems: Defense Science
Board Task Force on Computer Security. Technical Report R-609-1, Rand
Corporation, Santa Monica, CA, February 1970.

[62] C. Weissman. Security controls in the ADEPT-50 time-sharing system. In
Proceedings of the 1969 Fall Joint Computer Conference, AFIPS Confer-
ence Proceedings, pages 119–133. AFIPS Press, 1969.

[63] J. Whitmore, A. Bensoussan, P. Green, D. Hunt, A. Kobziar, and J. Stern.
Design for Multics security enhancements. Technical Report ESD–TR–74–
176, Honeywell Information Systems, Cambridge, MA, December 1973.

January 26, 2026 Copyright Fred B. Schneider All rights reserved.

