
CS5430 – Systems Security Spring 2018

Lecture 28: Hardware-based Security

May 9, 2018 Instructor: Eleanor Birrell

1 The Case for Hardware-based Security

One problem that arises repeatedly in systems security is that a system needs to
interact with another component running on a remote machine controlled by a dif-
ferent (potentially malicious) principal. In a typical client-server system, the server
cannot be sure that the code it is actually interacting with is actually the intended
client and not a malicious impostor client. In a system that depends on a network
of independently operated machines (e.g., Tor), a user cannot ensure that the other
principals it interacts with (e.g., Tor relays) actually behave as intended and don’t
contradict the purpose of the system (e.g., track or censor user connections). Sys-
tems that outsource computation to the cloud cannot be completely confident that
the cloud provider actually performs the desired computation (and no other malicious
behavior, e.g., leaking sensitive data and/or algorithms). Trusted hardware has been
proposed as the solution to this class of problems.

The key feature of a trusted hardware is isolation; dedicated hardware compo-
nents can have isolated storage (either volatile or non-volatile) that can be protected
from external access. Trusted hardware can also have secrets (e.g., cryptographic
keys) embedded in the chip; these secrets can be used enforce and attest to the con-
fidentiality and integrity of stored values. In recent years, there has been a push
towards building secure hardware components that implement these features and us-
ing this hardware as a root of trust for building new, more secure systems.

2 Trusted Platform Module (TPM)

Trusted Platform Modules or TPMs are devices that satisfy an international standard
defined by the Trusted Computing Group, an industry consortium. The current
standard (TPM 2.0) was released in 2014. TPMs are most commonly implemented
as dedicated, special-purpose chips; TPMs are available from most major hardware
vendors.

TPMs include several different components: embedded keys (or seeds for keys),
Platform Configuration Registers (PCR), general-purpose volatile and non-volatile
memory, an execution engine, cryptographic engines, and modules for random number
generation and key generation. Discrete TPM chips are typically wrapped in tamper-
resistant packaging.

The primary feature of a TPM is platform attestation. This is achieved by means
of the PCRs. PCRs have an initial value that is reset when the machine is restarted.

28-1

They can be modified only by extending their value, that is, updating the value to
be PCRnew = H(PCRold||m), where m is a measurement of the software execut-
ing on the platform. Platform attestation was intended to achieve secure boot: the
first software to execute (known as the Root-of-Trust-for-Measurement) measures the
second software, stores the measurement by extending the PCR, and then executes
the second software (if the measurement matches a whitelisted value). The second
software measure the third, extends the PCR, and then executes the third (if the
measurement checks). This continues until the operating system is instantiated. Al-
ternatively, PCRs can be used to implement measured boot, which extends the PCR
without checking the next measurement against an authorized whitelist. Principals
can subsequently check that the boot process was not compromised by asking for the
signed PCR value—known as obtaining a quote—verifying the signature and com-
paring it to the expected value.

In general, TPMs are not used to attest user-level applications because the se-
quence of programs (and the range of possible arguments) renders measurement eval-
uation impossible. TPMs can, however, generate and attest to other values using
platform-specific endorsement keys (EKs) derived from the endorsement seed.

The other key feature of a TPM is data sealing. Data can be encrypted under
a TPM-derived key for secure storage; this sealed data can be tied to the current
PCR values such that the data can only be decrypted when the PCRs contain the
matching values. Sealing can be used to ensure that only the intended software can
access that software’s secrets. This technology is used by Bitlocker, Microsoft’s full-
disk encryption software, to store its encryption keys.

3 TrustZone

TrustZone is an ARM technology designed to provide hardware isolation for trusted
software. Effectively, it partitions the world into Non-Secure—which includes the
standard hardware, rich OS, and existing applications—and Secure—which includes
hardware secure resources (keys, memory, crypto engines, etc), a trusted OS, and
trusted applications. TrustZone protects secure components from non-secure compo-
nents by integrating protective measures into the processor, bus fabric, and system
peripherals. This measures include the addition of Non-Secure (NS) bits to control
signals and cache tags. For example, hardware logic present in the modified bus fabric
ensures that no Secure resources can be accessed by Non-Secure applications.

Software, like any other component, runs in either the secure world or the non-
secure world. These processes are run in separate virtual cores; which world the
processor is running in is indicated by the NS bit in the Secure Configuration Regis-
ter. Context switching is handled by a new monitor mode; mechanisms for entering
monitor mode from the non-secure world are tightly controlled, e.g., dedicated in-
structions.

TrustZone enable devices can implement secure boot by storing the public key of

28-2

the trusted vendor (or a hash of the key) in one-time-programmable hardware (e.g.,
poly-silicon fuses) during manufacture. A TrustZone enabled processor always starts
in the Secure world; secure boot proceeds by iteratively checking the signature of each
bootloader until the trusted OS is running, and then it starts up the normal OS.

Secure systems can be split into trusted and untrusted components that commu-
nicate using the TrustZone API. However, only signed and verified components can
run in the secure world. Signed binaries are verified using a X.509 signing certificate
hierarchy. Since there is no hardware-enforced isolation between trusted components,
signing keys are strictly controlled. This limits the practical use of TrustZone tech-
nology to develop secure systems.

Although TrustZone is designed to run secure applications at any time, the most
well-known example of TrustZone in use is probably Android’s full disk encryption
system. This system relies on a RSA signing key generated by the KeyMaster module,
an application that runs in the secure world; this signing key is only available in the
non-secure world when encrypted under a hardware-backed encryption key. The disk
is stored encrypted under a randomly chosen 128-bit decryption key, this decryption
key is stored under a PBE key derived from the user PIN. The PBE scheme used is
a form of scrypt modified to incorporate an RSA signature during an intermediate
state; this modification is designed to tie decryption of the decryption key (and thus
decryption of the disk) to both the user’s PIN and the physical hardware device.

4 Secure Guard Extension (SGX)

Intel’s Secure Guard Extension (SGX) is a set of extensions to the Intel instruction
architecture designed to enable a trusted execution environment. SGX enables the
construction of a secure container called an enclave; enclaves are isolated and support
both sealing and remote attestation.

Isolation is enforced by introducing a subset of memory called processor reserved
memory that is accessible only to Intel enclaves; this address range includes an enclave
page cache. Pages in the enclave page cache are associated with a particular enclave
and can only be accessed by that enclave.

SGX enclaves are defined by their SGX Enclave Control Structure. This structure
is used to implement the isolation features described above. It can also be used to
produce an identifier or measurement for the enclave. This measurement is used by
the key generation function (along with secrets embedded in the hardware) to derive
keys, including sealing keys. Since sealing keys can only be re-derived if both the
enclave attributes and the hardware secrets match the values at the time the key was
originally derived, this mechanism enables enclave-based sealing. Certain enclave
attributes can optionally be masked, so for example a key might either be unique to
a particular enclave or might be derivable by an enclave with the same author.

SGX, unlike other hardware security tools, also enables remote attestation. Local
attestation (between enclaves) can be achieved by using the EREPORT instruction,

28-3

which produces a signed (HMAC’d) copy of the enclave measurement. Since the
(symmetric) signing key can be constructed by any enclave running on the same
hardware, the enclave measurement can be verified by other enclaves. This is extended
to remote attestation using a pair of Intel-defined enclaves: the provisioning enclave
and the quoting enclave. The provisioning enclave requests an attestation key from
Intel and stores it sealed under a key that can only be derived by Intel-authored
enclaves. The quoting enclave retrieves the attestation key, verifies the measurement
using local attestation, and signs the measurement; the resulting signed measurement,
called a quote can be verified using Intel’s Attestation Service. Replay attacks are
prevented by careful use of nonces.

Use of SGX in practice is limited by Intel’s key management; enclave launch in
production mode requires a production key controlled by Intel, and remote attesta-
tion (quote verification) requires a request to Intel. This ensures that Intel controls
when and how enclaves are used in real-world systems and is in-the-loop for all such
systems. This approach has naturally deterred some companies from depending on
SGX technology.

Since SGX-enabled hardware has only been released in the last year and since
some companies are reluctant to depend on a technology so closely tied to Intel, SGX
is not currently in use in any major systems. However, prototype systems applying
SGX to solve problems related to cloud computing, TOR networks, smart contracts,
and many other applications have been designed and prototyped.

5 Vulnerabilities of Hardware-based Security

Secure hardware offers the potential to build new secure systems using that hardware
as a root of trust. However, these hardware tools are not magical solutions to all
security problems. In particular, hardware-based security is subject to two classes
of vulnerabilities: untrustworthy trusted code and side channels. A summary of the
vulnerabilities of the various secure hardware solutions is given in Table 1.

If trusted code, for example an application running in TrustZone’s secure world or
inside an SGX enclave, contains bugs, these can introduce vulnerabilities that under-
mine the security of the system. For example, a recent version of Android’s full-disk
encryption system was compromised by a privilege-escalation vulnerability in Qual-
comm’s TrustZone kernel. In the case of TrustZone, a malicious (or coerced) original
equipment manufacturer (OEM) could sign a Trusted application that attempts to
extract secrets from the secure world; hardware isolation is designed to protect the
secure world from components in the non-secure world, such attacks would bypass
TrustZone’s hardware-based isolation.

Trusted execution environments like TrustZone’s secure world and SGX enclaves
are also potentially vulnerable to side-channel attacks, including page fault attacks
and cache attacks. Such attacks have been demonstrated in research contexts, but
there feasibility in the real-world is not yet well understood.

28-4

Adversary Attack TPM TrustZone SGX

OS direct probing n/a access checks on TLB misses Access checks on TLB misses
OS page faults n/a secure world page tables X
OS cache timing n/a X X
Another container direct probing n/a n/a (secure world trusted) access checks on TLB misses
Another container cache timing n/a n/a (secure world trusted) X
Peripheral DMA X bus bounces accesses IOMMU rejects DMA
Physical attacker Physical X n/a (on-chip SRAM only) memory encryption engine

Table 1: A summary of the vulnerabilities of current trusted hardware.

28-5

