
CS 5430 4/16/2018

Lecture 21: Dynamic Information Flow Control

Information flow policies

Doc

Can	flow	to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can	flow	to:
Alice

Can	flow	to:
Alice

2

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

4

H

L

H

L

Program
Inputs Outputs

Static type system

G , 𝑐𝑡𝑥 ⊢ x:=e
G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥	 ⊑ G(x)

G , 𝑐𝑡𝑥 ⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c1 G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c2

G , 𝑐𝑡𝑥 ⊢ while e do c
G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c

G , 𝑐𝑡𝑥 ⊢ c1;c2
G , 𝑐𝑡𝑥 ⊢ c1 G , 𝑐𝑡𝑥 ⊢ c2

5

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

This type system is not complete.
• c satisfies noninterference ⇏ G , 𝑐𝑡𝑥 ⊢ c

• There is a command c, such that noninterference is satisfied, but c
is not type correct.

• Example 1:
• Γ x = H, Γ y = L
• c is if x>0 then y:=1 else y:=1

• Example 2:
• Γ x = H, Γ y = L
• c is if 1=1 then y:=1 else y:=x

• So, this type system is conservative. It has false
negatives:
• There are programs that are not type correct, but that satisfy

noninterference.

6

Can we build a complete mechanism?
• Is there an enforcement mechanism for information flow

control that has no false negatives?
• A mechanism that rejects only programs that do not satisfy

noninterference?
• No! [Sabelfeld and Myers, 2003]

• “The general problem of confidentiality for programs is undecidable.”
• The halting problem can be reduced to the information flow control

problem.
• Example:

if h>1 then c; l:=2 else skip
• If we could precisely decide whether this program is secure, we could

decide whether c terminates!

7

DYNAMIC ENFORCEMENT

Dynamic Enforcement
• Dynamic mechanisms use run time information to decrease

false negatives.
• A dynamic mechanism (monitor) checks/deduces labels

along the execution:
• When an assignment x:=e is executed,

• either check whether Γ e ⊔ 𝑐𝑡𝑥	 ⊑ Γ(x) holds (fixed Γ),
• The execution of a program is halted when a check fails.

• or deduce Γ(x) such that Γ e ⊔ 𝑐𝑡𝑥	 ⊑ Γ(x) holds (flow-sensitive Γ).
• Monitor maintains a context label 𝑐𝑡𝑥.When execution enters a conditional

command, the mechanism augments 𝑐𝑡𝑥 with the label of the guard.

9

Dynamic Enforcement
• Example 2:

• Γ x = H, Γ y = L
• c is if 1=1 then y:=1 else y:=x
• c satisfies noninterference, because x does not leak to y.
• dynamic check Γ 1 ⊔ Γ(1=1) ⊑ Γ(y) always succeeds, because branch
y:=x is never taken.

• Remember: the static type system rejects this program before execution,
even though the program is secure!

10

But, there is a caveat…
• A dynamic mechanism may leak information

• when deciding to halt an execution due to a failed check (fixed Γ), or
• when deducing labels during execution (flow-sensitive Γ).

11

Leaking through halting (fixed Γ)
• Consider fixed Γ: Γ(h)=L and Γ(l)=H.
• Consider program:

p:=0;
if h>0 then l:=1 else h:=1;
l:=2

• If h>0 is true, then execution is halted.
• No public output.

• If h>0 is false, then execution terminates normally.
• One public output.

• Problem: h>0 is leaked to public outputs.

12

But, there is a caveat…
• A dynamic mechanism may leak information

• when deciding to halt an execution due to a failed check (fixed Γ), or
• when deducing labels during execution (flow-sensitive Γ).

13

Leaking through labels (flow-sensitive Γ)
• Initially: Γ x = L, Γ y = L, Γ h = H

x:=0;
if h>0 then x:=1 else skip
y:=x

• At termination, when h≯0:	Γ y = Γ x = L.
• Two public outputs.

• At termination, when h>0: Γ y = Γ x = H.
• No public output.

• Problem: Even though h flows to x, x is tagged with H	only
when h>0. So, h>0 is leaked to public outputs.

14

The Problem with Dynamic Mechanisms
• Purely dynamic mechanisms are usually unsound.
• Purely dynamic mechanism with additional restrictions can

become sound:
• Restriction: Stop execution whenever the guard expression of a

conditional command is high.
• But, the resulting mechanism is more conservative than desired.

• Alternatively…

15

Use on-the-fly static analysis
• Use on-the-fly static analysis to update the labels of target

variables in untaken branch.
• The resulting mechanism is sound and less conservative.

16

Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

17

h>0 is
evaluated
to false.

Problem: x was tagged with H	only when h>0 was
true, even though h always flow to x.
Goal: x should be tagged with H	at every execution.

Execute
taken
branch.

Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

18

Problem: x was tagged with H	only when h>0 was
true, even though h always flow to x.
Goal: x should be tagged with H	at every execution.

Apply on-the-
fly static
analysis to the
untaken branch.

Οn-the-fly static analysis:
Γ x = Γ 1 ⊔ Γ h>0 = Η

Use on-the-fly static analysis

x:=0;
if h>0 then x:=1 else skip

19

Problem: x was tagged with H	only when h>0 was
true, even though h always flow to x.
Goal: x should be tagged with H	at every execution.

Γ x = Η

Static versus Dynamic
• Static:

• Low run time overhead.
• No new covert channels.
• More conservative.

• Dynamic
• Increased run time overhead.
• Possible new covert channels.
• Less conservative.

• Ongoing research for both static and dynamic.
• Different expressiveness of policies, different NI versions, different

mechanisms.

20

INFORMATION FLOW CONTROL
IN PRACTICE(ISH)

Past and current research on dynamic
analysis
• RIFLE (ISA) [Vachharajani et al. 2004]
• HiStar (OS) [Zeldovich et al. 2006]
• Trishul (JVM) [Nair et al. 2008]
• TaintDroid (Android) [Enck et al. 2010]
• LIO (Haskell) [Stefan et al. 2011]
• ...

22

TaintDroid
• Smartphones run apps

developed by (potentially
untrusted) third parties

• Apps can access sensitive
information (location,
contacts, etc.)

• In Android, users grant
apps particular
permissions on download

• End-user license
agreement (EULA) states
how information will be
used

• How can you tell whether
app behavior follows its
permissions?

TaintDroid Labels

Public

Sensitive, {camera}

⊤

Sensitive, {GPS,camera} Sens, {camera, contacts}Sensitive, {GPS, contacts}

Sensitive, {GPS} Sensitive, {contacts}

Android Background Info
• Linux-based, open source,

mobile-phone platform
• Middleware written in Java

and C/C++.
• Functionality implemented

by (3rd party) applications.
• Apps run on top of

middleware.

• Applications written in
Java.

• Compiled into Dalvik
Executable(DEX) byte-
code format.
• custom byte-code
• Register-based as opposed to

stack-based.
• Executes within Dalvik VM

interpreter instance.
• Runs isolated on the platform.
• Has unique UNIX user ids.
• Communicate via binder IPC

mechanism.

TaintTracking
• Instrument VM
interpreter to provide
variable-level taint
tracking

• Use message-level
tracking between apps

• Use method-level
tracking in native
libraries

• Use file-level tracking
for persistent data

Limitations
• Dynamic IFC mechanisms incur run-time overhead

• 14% for CPU bound microbenchmark
• Negligible for interactive applications

• Doesn't capture implicit flows

Experimental Findings
• Researchers studied real-world apps with TaintDroid
• Of 30 apps, found:

Flume
• Extends linux with process-level information flow control
• User-level implementation
• No new OS, can use existing communication abstractions

Flume Labels
• Lattice of labels

• Label summarizes which categories of data a process is assumed
to have seen.

• Examples:
• { “Financial Reports” }
• { “HR Documents” }
• { “Financial Reports” and “HR Documents” }

• Processes have an integrity label and a confidentiality
label
• Processes can upgrade their labels
• Processes can create new tags, can declassify tags they created
• Inter-process communication mediated by Flume to enforce IFC

“tag”

“label”

Information Flow Control in Flume
• Linux processes communicate via a variety of channels:

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges

can be used when communicating through each endpoint

Information Flow Control in Flume
• Linux processes communicate via a variety of channels:

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges

can be used when communicating through each endpoint
• Flume mediates all communications between endpoints

(system call delegation)
Web App

glibc

Linux Kernel
Secret
Data

Flume Libc

Flume
RM

Information Flow Control in Flume
• Linux processes communicate via a variety of channels:

sockets, pipes, shared memory
• Endpoint abstraction: process can specify which privileges

can be used when communicating through each endpoint
• Flume mediates all communications between endpoints

(system call delegation)

• Flume enforces IFC

Web App
glibc

Linux Kernel
Secret
Data

Flume Libc

Flume
RM

f
Sf = { HR }Se = { HR }

Process
q

Process
p

Sp = {}
Dp = { HR } e Sq = { HR }

Limitations
• Dynamic IFC mechanisms incur run-time overhead

• 30-40% reduction in throughput for file I/O
• Increased latency

• Large trusted computing base
• Coarse granularity
• Alternative solutions:

• Dedicated OS (e.g., Asbestos, HiStar)
• PL-level techniques (e.g., DLM, TaintDroid)

Past and current research on static
analysis
• [Denning and Denning 1977]
• VSI type system [Volpano, Smith, and Irvine 1996]
• Jif [Myers 1999] Java + Information Flow (originally JFlow)
• FlowCaml [Simonet 2003] OCaml + Information Flow
• Aura, PCML5, Fine, ...

35

Jif

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

36

Jif

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

Security type:
only root may

learn
information in

this field

37

Jif

Figure 5: JFlow method declarations

be omitted from a method declaration, signifying the use of
implicit label polymorphism. For example, the arguments of

and are unlabeled. When an argument label
is omitted, the method is generic with respect to the label of
the argument. The argument label becomes an implicit pa-
rameter of the procedure. For example, the method can
be called with any two integers and , regardless of their
labels. This label polymorphism is important for building
libraries of reusable code. Without it, a math routine like
would have to be reimplemented for every argument label
ever used.
The default label for a return value is the end-label, joined

with the labels of all the arguments. For , the default
return value label is exactly the label written (), so the
return value could be written just as . The default label
on an exception is the end-label, as in the ex-
ample. If the begin-label is omitted, as in , it becomes
an implicit parameter to the method. Such a method can be
called regardless of the caller’s . Because the within the
method contains an implicit parameter, this method is pre-
vented fromcausing real side effects; it may of coursemodify
local variables andmutate objects passed as arguments if they
are appropriately declared, but true side effects would create
static checking errors.
Unlike in Java, themethodmay contain a list of constraints

prefixed by the keyword :

WhereConstraints:
Constraints

Constraint:
Principals

Principals
Principal Principal

There are three different kinds of constraints:

1 This clause lists principals that
themethod is authorized to act for. The static authority at
the beginning of themethod includes the set of principals
listed in this clause. The principals listed may be either
names of global principals, or names of class parameters
of type . Every listed principal must be also
listed in the clause of the method’s class. This
mechanism obeys the principle of least privilege, since
not all the methods of a class need to possess the full
authority of the class.

1 Calling codemay also dynamically
grant authority to a method that has a constraint.
Unlike with the clause, where the authority
devolves from the object itself, authority in this case

Return whether password is correct

Figure 6: A JFlow password file

devolves from the caller. A method with a clause
may be called only if the calling code possesses the
requisite static authority.
The principals named in the clause need not be
constants; they may also be the names of method argu-
ments whose type is . By passing a principal as
the corresponding argument, the caller grants that prin-
cipal’s authority to the code. These dynamic principals
may be used as first-class principals; for example, they
may be used in labels.

1 2 An constraint may be used to
prevent the method from being called unless the spec-
ified acts-for relationship (1 acts for 2) holds at the
call site. When the method body is checked, the static
principal hierarchy is assumed to contain any acts-for
relationships declared in the method header. This con-
straint allows information about the principal hierarchy
to be transmitted to the called method without any dy-
namic checking.

Now that the essentials of the JFlow language are covered,we
are ready to consider some interesting JFlow code. Figure 6
contains a JFlow implementation of a simple password file,
in which the passwords are protected by information flow
controls. Only the method for checking passwords is shown.
This method, , accepts a password and a user name,
and returns a boolean indicating whether the string is the
right password for that user.
The statement is conditional on the elements of

and on the variables and , whose labels
are implicit parameters. Therefore, the body of the state-
ment has , and the variable

6

Declassification:
okay to leak

whether
password
matches

38

Jif type checking
• Variables (fields, methods, etc.) may have additional label

as part of their type, e.g., int {lbl} x;

• Label constrains information flow to and from variable
• reader label: alice -> bob, charlie

• Alice owns this constraint; her permission required to violate it
• Alice permits the information to flow to Bob and Charlie
• On previous slide: root: is short for root -> root

• writer label: alice <- bob, charlie
• Alice owns this constraint; her permission required to violate it
• Alice permits the information to flow from Bob and Charlie

• can have multiple such constraints as part of label
• can read these arrows as the may flow relation →
• Decentralized label model (DLM) [Myers and Liskov 1997]

