Lecture 21: Dynamic Information Flow Control

CS 5430 4/16/2018

Information flow policies

Can flow to:
Alice

Doc

- deduction é
- of policies!

Can flow to: Can flow to:

Alice Alice

Labels represent policies

Secret, {nuc, crypto}

Conf, {nuc} Secret, {} Conf, {crypto}

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
Changes on H inputs should not cause changes on L outputs.

H H
L: x L
Inputs Outputs
Program

Static type system

I'Fe:l L Uctx ET (x)

Assignment-Rule:
I ,ctx-x:=e

['Fe: l I' (Uctx el ' [UctxFc2
If-Rule:
[,ctx+-1f e then cl else c2
['HFe: X ', {Uctxtc
While-Rule:

I, ctx-while e do c

I ,ctxFecl I', ctx F c2

Sequence-Rule:
I ,ctxFecl;c2

This type system is not complete.

c satisfies noninterference 7 T, ctx - ¢

There is a command ¢, such that noninterference is satisfied, but ¢
IS not type correct.
Example 1:
'(x) =H, '(y) =L
c is if x>0 then y:=1 else y:=1
Example 2:
'x) =H, T'(y) =L
c is if 1=1 then y:=1 else y:=x
So, this type system is conservative. It has false
negatives:

There are programs that are not type correct, but that satisfy
noninterference.

Can we build a complete mechanism?

Is there an enforcement mechanism for information flow
control that has no false negatives?

A mechanism that rejects only programs that do not satisfy
noninterference?

No! [Sabelfeld and Myers, 2003]

“The general problem of confidentiality for programs is undecidable.”

The halting problem can be reduced to the information flow control
problem.

Example:
if h>1 then c¢; 1l:=2 else skip

If we could precisely decide whether this program is secure, we could
decide whether ¢ terminates!

Dynamic Enforcement

Dynamic mechanisms use run time information to decrease

false negatives.
A dynamic mechanism (monitor) checks/deduces labels

along the execution:
When an assignment x : =e is executed,

either check whether I'(e) U ctx E I'(x) holds (fixed I),
The execution of a program is halted when a check fails.

or deduce I'(x) such that I'(e) U ctx E I'(x) holds (flow-sensitive I').

Monitor maintains a context label ctx. When execution enters a conditional
command, the mechanism augments ctx with the label of the guard.

Dynamic Enforcement

Example 2:
'x) =H,I'(y) =L
c IS if 1=1 then y:=1 else y:=x
c satisfies noninterference, because x does not leak to y.

dynamic check I'(1) uT'(1=1) c I'(y) always succeeds, because branch
y :=x IS never taken.

Remember: the static type system rejects this program before execution,
even though the program is secure!

But, there Is a caveat...

A dynamic mechanism may leak information
when deciding to halt an execution due to a failed check (fixed I'), or
when deducing labels during execution (flow-sensitive TI').

Leaking through halting (fixed I')

Consider fixed I': I'(h)=L and I'(1)=H.
Consider program:
y:=0;
i1f h>0 then 1l:=1 else h:=1;
©3..=2
If h>0 is true, then execution is halted.
No public output.
If h>0 is false, then execution terminates normally.

One public output.
Problem: h>0 is leaked to public outputs.

But, there Is a caveat...

A dynamic mechanism may leak information
when deciding to halt an execution due to a failed check (fixed I'), or
when deducing labels during execution (flow-sensitive TI').

Leaking through labels (flow-sensitive I')

Initially: T'(x) =L, I'(y) =L, I'(h) = H
x:=0;
if h>0 then x:=1 else skip
o,yY:=X
At tefmination, when h»0:I'(y) =T'(x) = L.
Two public outputs.
At termination, when h>0: I'(y) = I'(x) = H.
No public output.

Problem: Even though h flows to x, x is tagged with H only
when h>0. So, h>0 is leaked to public outputs.

The Problem with Dynamic Mechanisms

Purely dynamic mechanisms are usually unsound.

Purely dynamic mechanism with additional restrictions can

become sound:

Restriction: Stop execution whenever the guard expression of a
conditional command is high.
But, the resulting mechanism is more conservative than desired.

Alternatively...

Use on-the-fly static analysis

Use on-the-fly static analysis to update the labels of target
variables in untaken branch.

The resulting mechanism is sound and less conservative.

Use on-the-fly static analysis

Problem: x was tagged with H only when h>0 was
true, even though h always flow to x.
Goal: x should be tagged with H at every execution.

x:=0;
if h>0 then x:=1 else skip

h>0 1s Execute

evaluated taken
to false. branch.

Use on-the-fly static analysis

Problem: x was tagged with H only when h>0 was

true, even though h always flow to x.

Goal: x should be tagged with H at every execution.

x:=0;

if h>0 then x:=1 else skip

On-the-fly static analysis:
'x) =TA)urlrkm>0) =H

Apply on-the-
fly static
analysis to the
untaken branch.

Use on-the-fly static analysis

Problem: x was tagged with H only when h>0 was
true, even though h always flow to x.
Goal: x should be tagged with H at every execution.

x:=0;
if h>0 then x:=1 else skip

'(x) =H

Static versus Dynamic

Static:
Low run time overhead.
No new covert channels.
More conservative.

Dynamic
Increased run time overhead.
Possible new covert channels.
Less conservative.

Ongoing research for both static and dynamic.

Different expressiveness of policies, different NI versions, different
mechanisms.

Past and current research on dynamic

analysis
RIFLE (ISA) [Vachharajani et al. 2004]
HiStar (OS) [Zeldovich et al. 2006]
Trishul (JVM) [Nair et al. 2008]
TaintDroid (Android) [Enck et al. 2010]
LIO (Haskell) [Stefan et al. 2011]

e ————————————
TaintDroid

Smartphones run apps
developed by (potentially
untrusted) third parties

Apps can access sensitive
information (location, ivapp purchases
contacts, etc.)

In Android, users grant
apps partICUIar Phone calls |
permissions on download Network communication

End-user license
agreement (EULA) states
how information will be
used

How can you tell whether
app behavior follows its
permissions?

App permissions

Storage

See all

TaintDroid Labels

Sensitive, {GPS} Sensitive, {camera}

Sensitive, {contacts}

\/

Public

e ————_mmm—
Android Background Info

Linux-based, open source,
mobile-phone platform

Middleware written in Java
and C/C++.

Functionality implemented
by (3" party) applications.
Apps run on top of
middleware.

Applications written in
Java.

Compiled into Dalvik
Executable(DEX) byte-
code format.

custom byte-code

Register-based as opposed to
stack-based.

Executes within Dalvik VM
Interpreter instance.
Runs isolated on the platform.
Has unique UNIX user ids.

Communicate via binder IPC
mechanism.

TaintTracking

Instrument VM
interpreter to provide
variable-level taint
tracking

Use message-level
tracking between apps

Use method-level
tracking in native
libraries

Use file-level tracking
for persistent data

Taint Propagation

Description

Op Format Op Semantics
const-opvy C vg — C
move-op v VB VA — VB
move-op-R v o va — R
return-op v A R«— vy
move-op-E v 5 vpg — FE
throw-op v 4 E — vy
unary-op va vg v — Qup

binary-opva v vo
binary-opvs vp
binary-op vy vg C
aput-op vp Vg Vo
aget-opva VB V¢
sput-opva fB
sget-opva B
iput-op va vB fc
iget-opva vB fc

vA <~ VB ®uC
VA — VA QUB
vg—vp®RC
vplvc] —va
va — vBlvc]
fB —wva

va < fB
vp(fc) < va
va —vp(fc)

m(va) =0

7(va) < 7(vB)
T(va) «— T(R)
R) —7(va)
a) — 7(E)
)« 7(va)
— 7(vB)

~\~1~\ﬂ

v
v
v

**\ﬂ

vp)

3

A
B

v
fB
VA

3

— 7(vB[])
— 7(va)

) — 7(fB)

3

A)
A) —
A) =
[
A)
)

3

(
(
(
(
(E
(
(v
(
(v
(
(
(
(
(
(

Clear v 4 taint
Set v 4 taint to vp taint
Set v 4 taint to return taint

T(vp) UT(ve)
vy) — TE’UA) Ur(vp)

1) = 7(vp[]) UT(va)

T(vB(fc)) < 7(va)
T(va) < 7(v(fc)) UT(vp)

Set return taint ({) if void)

Set v 4 taint to exception taint
Set exception taint
Set v 4 taint to v g taint

Ut(ve)

Set v 4 taint to v taint U v taint
Update v 4 taint with vp taint

Set v 4 taint to v taint

Update array vp taint with v 4 taint
Set v 4 taint to array and index taint

Set field fp taint to v 4 taint
Set v 4 taint to field fp taint

Set field fc taintto v 4 taint
Set v 4 taint to field fc and object reference taint

Message-level tracking

Application Code

Virtual
Machine

v

Application Code

Virtual
Machine

l Native System Libraries ¢

Network Interface

Secondary Storage

| < .. Variable-level
tracking

< .. Method-level
tracking

R - File-level
tracking

Limitations

Dynamic IFC mechanisms incur run-time overhead
14% for CPU bound microbenchmark
Negligible for interactive applications

Doesn't capture implicit flows

Experimental Findings

Researchers studied real-world apps with TaintDroid

Of 30 apps, found:

Observed Behavior (# of apps)

Details

Phone Information to Content Servers (2)

2 apps sent out the phone number, IMSI, and ICC-ID along with the
geo-coordinates to the app’s content server.

Device ID to Content Servers (7)*

2 Social, 1 Shopping, 1 Reference and three other apps transmitted
the IMEI number to the app’s content server.

Location to Advertisement Servers (15)

5 apps sent geo-coordinates to ad.qwapi.com, 5 apps to admob.com,
2 apps to ads.mobclix.com (1 sent location both to admob.com and
ads.mobclix.com) and 4 apps sent location' to data.flurry.com.

* TaintDroid flagged nine applications in this category, but only seven transmitted the raw IMEI without mentioning such practice in the EULA.

TTo the best of our knowledge, the binary messages contained tainted location data (see the discussion below).

Flume

Extends linux with process-level information flow control
User-level implementation
No new OS, can use existing communication abstractions

Flume Labels

Lattice of labels

Label summarizes which categories of data a process is assumed
to have seen.
Examples:

{ “Financial Reports”
{ “‘HR Dc

‘Financial Reports”Jand “HR Documents’”
\,,

Processes have an integrity label and a confidentiality
label
Processes can upgrade their labels
Processes can create new tags, can declassify tags they created
Inter-process communication mediated by Flume to enforce IFC

Information Flow Control in Flume

Linux processes communicate via a variety of channels:
sockets, pipes, shared memory

Endpoint abstraction: process can specify which privileges
can be used when communicating through each endpoint

Information Flow Control in Flume

Linux processes communicate via a variety of channels:
sockets, pipes, shared memory

Endpoint abstraction: process can specify which privileges
can be used when communicating through each endpoint

Flume mediates all communications between endpoints
(system call delegation)

Flume Libc

LiInux K

Secret

Data

Information Flow Control in Flume

Linux processes communicate via a variety of channels:
sockets, pipes, shared memory

Endpoint abstraction: process can specify which privileges
can be used when communicating through each endpoint

Flume mediates all communications between endpoints
(system call delegation)

Flume Libc

Linux rernel
Secret

Flume enforces IFC Data

} | Process Process _
(HR) b e | f S,={HR}

S.={HR} S,={HR} q

Limitations

Dynamic IFC mechanisms incur run-time overhead
30-40% reduction in throughput for file 1/0
Increased latency

Large trusted computing base
Coarse granularity

Alternative solutions:
Dedicated OS (e.g., Asbestos, HiStar)
PL-level techniques (e.g., DLM, TaintDroid)

Past and current research on static

analysis
[Denning and Denning 1977]
V3l type system [Volpano, Smith, and Irvine 1996]
Jif [Myers 1999] Java + Information Flow (originally JFlow)

FlowCaml [Simonet 2003] OCaml + Information Flow
Aura, PCMLS5, Fine, ...

Jif

class passwordFile authority(root) {
public boolean
check (String user, String password)
where authority(root) {
/| Return whether password is correct
boolean match = false;
try {
for (int i = 0; i < names.length; i++) {
if (names[i] == user &&
passwords|i] == password) {

match = true;
break:

1
}

catch (NullPointerException e) {}
catch (IndexOutOfBoundsException €) {}
return declassify(match, {user; password});

private String [| names;
private String { root: } [] passwords;

J

Security type:
only root may

information in
this field

f

learn

class passwordFile authority(root) {
public boolean
check (String user, String password)
where authority(root) {
/| Return whether password is correct
boolean match = false;
try {
for (int i = 0; i < names.length; i++) {
if (names[i] == user &&
passwords|i] == password) {
match = true;
break:

1
}

catch (NullPointerException e) {}
catch (IndexOutOfBoundsException €) {}
rn declassify(match, {user; password});

] names;
root: } [] passwords;

private String

Jif

class passwordFile authority(root) {
public boolean

check (String user, String password)
where authority(root) {

/| Return whether password is correct

boolean match = false;

try {

for (int i = 0; i < names.length; i++) {
if (names[i] == user &&

Declassification:

okay to leak passwords|i] == password) {
match = true;
whether break;

password ;

matches . :
(NullPointerException €) {}

ndexOutOfBoundsException e) {}
return declassify(match, {user; password});

private String [| names;
private String { root: } [] passwords;

Jif type checking

Variables (fields, methods, etc.) may have additional
as part of their type, e.g., int { } x;

Label constrains information flow to and from variable
reader label: alice -> bob, charlie

Alice owns this constraint; her permission required to violate it

Alice permits the information to flow to Bob and Charlie

On previous slide: is short for root -> root
writer label:

Alice owns this constraint; her permission required to violate it
Alice permits the information to flow from Bob and Charlie
can have multiple such constraints as part of label
can read these arrows as the may flow relation —

Decentralized label model (DLM) [Myers and Liskov 1997]

