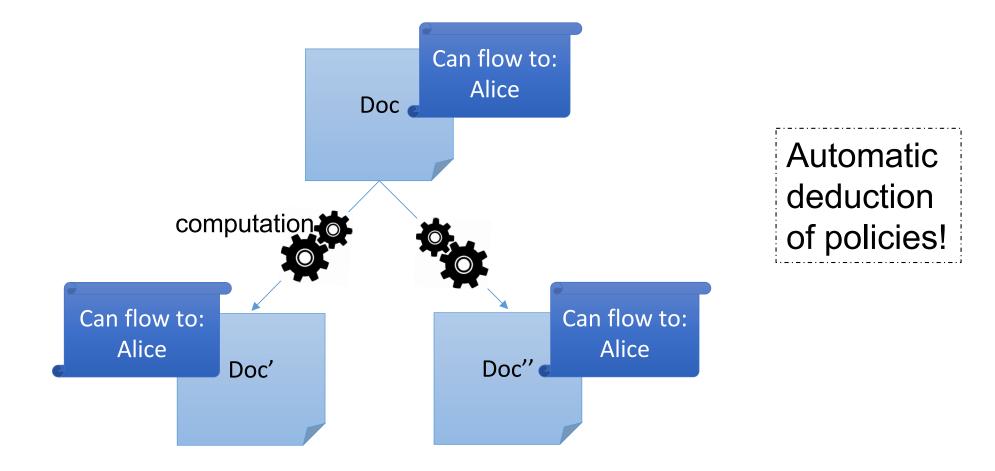
Lecture 20: Information Flow Control

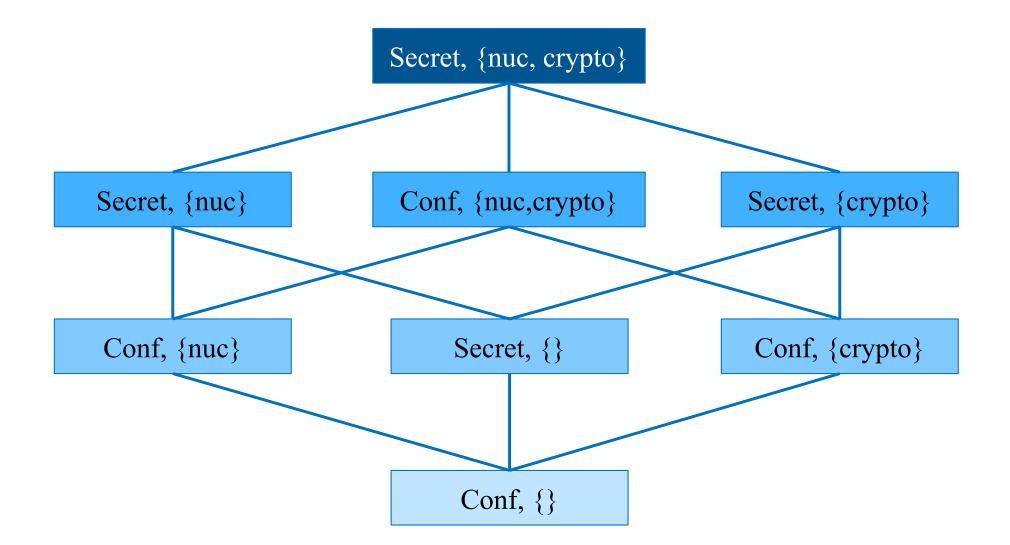
CS 5430

4/11/2018

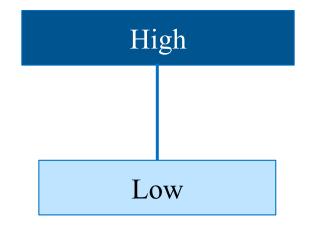
Information flow policies



Labels represent policies



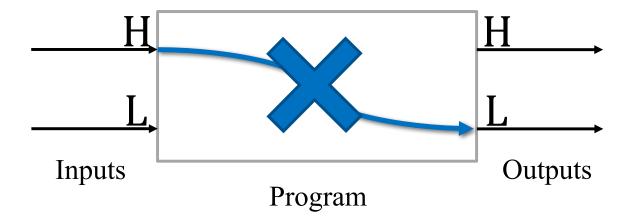
Labels represent policies



Noninterference [Goguen and Meseguer 1982]

An interpretation of noninterference for a program:

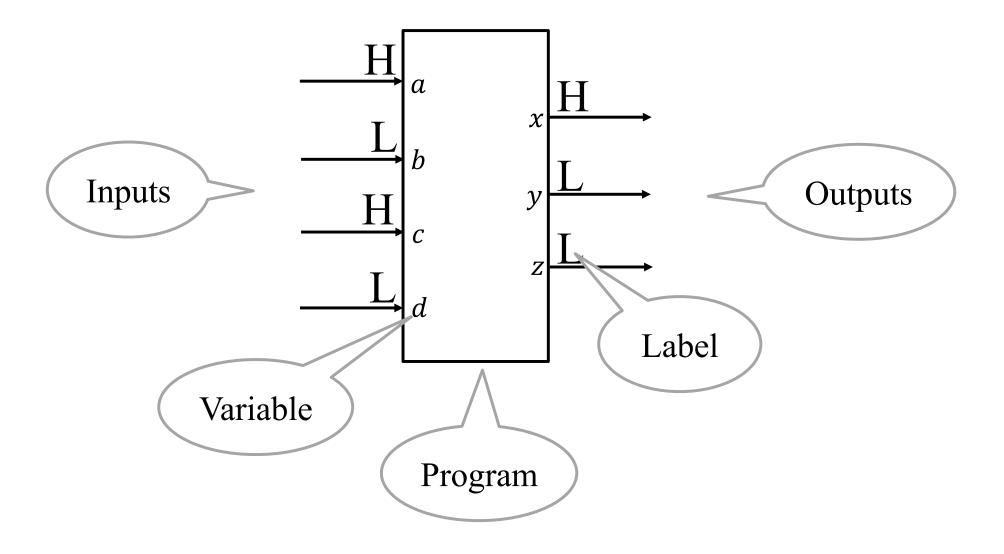
• Changes on H inputs should not cause changes on L outputs.



Today: Information Flow Control

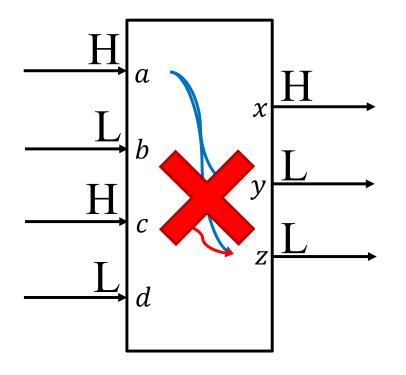
- Goal: Enforce IF policies that tag variables in a program.
- There is a mapping Γ from variables to labels, which represent desired IF policies.
- The enforcement mechanism should ensure that a given program and a given Γ satisfy noninterference.

Information Flow Control



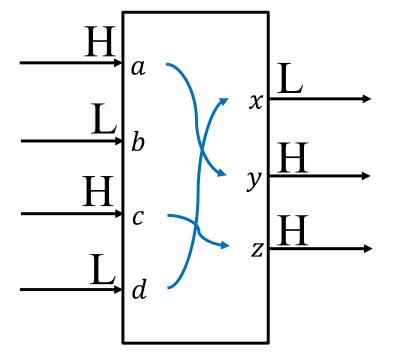
7

Information Flow Control: fixed Γ



- Γ remains the same during the analysis of the program.
- The mechanism checks that Γ satisfies noninterference.
- The program is rejected, if at least one red arrow appears in the program.

Information Flow Control: flow-sensitive Γ



- Γ may change during the analysis of the program.
- The mechanism deduces $\Gamma(x)$, $\Gamma(y)$, $\Gamma(z)$ such that noninterference is satisfied.
- The program is never rejected.

Enforcing IF policies

- Static mechanism
 - Checking and/or deduction of labels before execution.
- Dynamic mechanism
 - Checking and/or deduction of labels during execution.
- Hybrid mechanism
 - Combination of static and dynamic.

STATIC TYPE CHECKING

fixed Γ

A simple programming language

- e ::= x | n | e1+e2 | ...
- c ::= x := e
 - | if e then c1 else c2
 - | while e do c
 - | c1; c2

$\mathbf{x} := \mathbf{y}$

Examples for confidentiality

$\Gamma(\mathbf{x})$ is L. $\Gamma(\mathbf{y})$ is L.Does this assignment satisfy NI?
$\Gamma(\mathbf{x})$ is H. \odot $\Gamma(\mathbf{y})$ is L. \odot Does this assignment satisfy NI?
$\Gamma(\mathbf{x})$ is L. \frown $\Gamma(\mathbf{y})$ is H. \frown Does this assignment satisfy NI?

Assignments cause explicit information flows.

$\mathbf{x} := \mathbf{y}$

It satisfies NI, if $\Gamma(\mathbf{y}) \sqsubseteq \Gamma(\mathbf{x})$.

$\mathbf{x} := \mathbf{y}$

It satisfies NI, if $\Gamma(\mathbf{y}) \sqsubseteq \Gamma(\mathbf{x})$.

MLS for confidentiality

"no read up":

S may read O iff Label(O) \sqsubseteq Label (S)

"no write down": S may write O' iff Label(S) \sqsubseteq Label (O')

$\mathbf{x} := \mathbf{y}$

It satisfies NI, if $\Gamma(\mathbf{y}) \sqsubseteq \Gamma(\mathbf{x})$.

MLS for confidentiality

"no read up":

C may read \mathbf{y} iff Label(\mathbf{y}) \sqsubseteq Label (C)

"no write down": C may write \mathbf{x} iff Label(C) \sqsubseteq Label (\mathbf{x})

$\mathbf{x} := \mathbf{y} + \mathbf{z}$

It satisfies NI, if $\Gamma(\mathbf{y}) \sqsubseteq \Gamma(\mathbf{x})$ and $\Gamma(\mathbf{z}) \sqsubseteq \Gamma(\mathbf{x})$. It satisfies NI, if $\Gamma(\mathbf{y}+\mathbf{z}) \sqsubseteq \Gamma(\mathbf{x})$.

Operator for combining labels

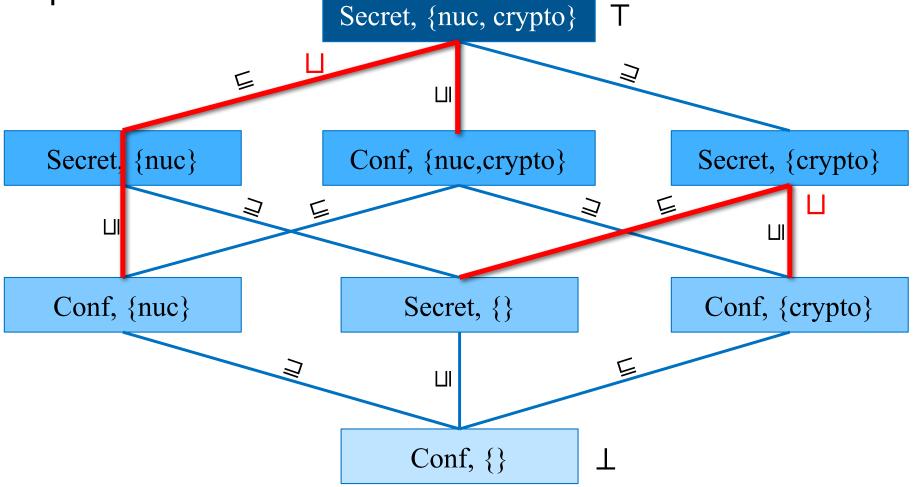
- For each l and l, there should exist label $l \sqcup l$, such that:
 - $l \sqsubseteq l \sqcup l'$, $l' \sqsubseteq l \sqcup l'$, and
 - if $l \subseteq l$ and $l \subseteq l$, then $l \sqcup l \subseteq l$.
- $l \sqcup l$ is called the **join** of l and l.
- Operator ⊔ is associative and commutative.

$\mathbf{x} := \mathbf{y} + \mathbf{z}$

It satisfies NI, if $\Gamma(\mathbf{y}) \sqcup \Gamma(\mathbf{z}) \sqsubseteq \Gamma(\mathbf{x})$.

Lattice of labels

The set of labels and relation ⊑ define a lattice, with join operator ⊔.



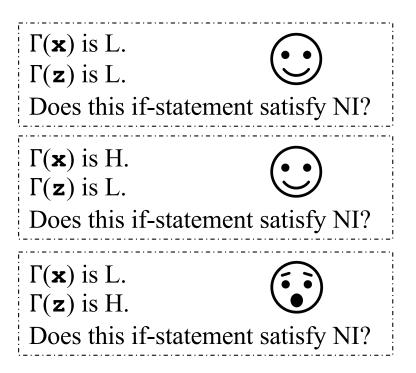
Checking an if-statement

if z > 0 then x := 1

else

x := 0

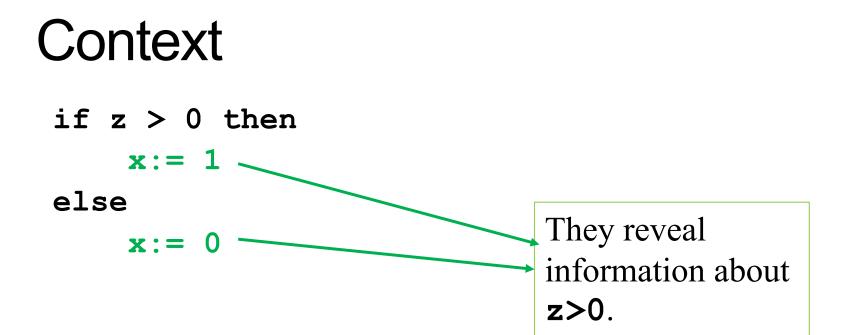
Examples for confidentiality



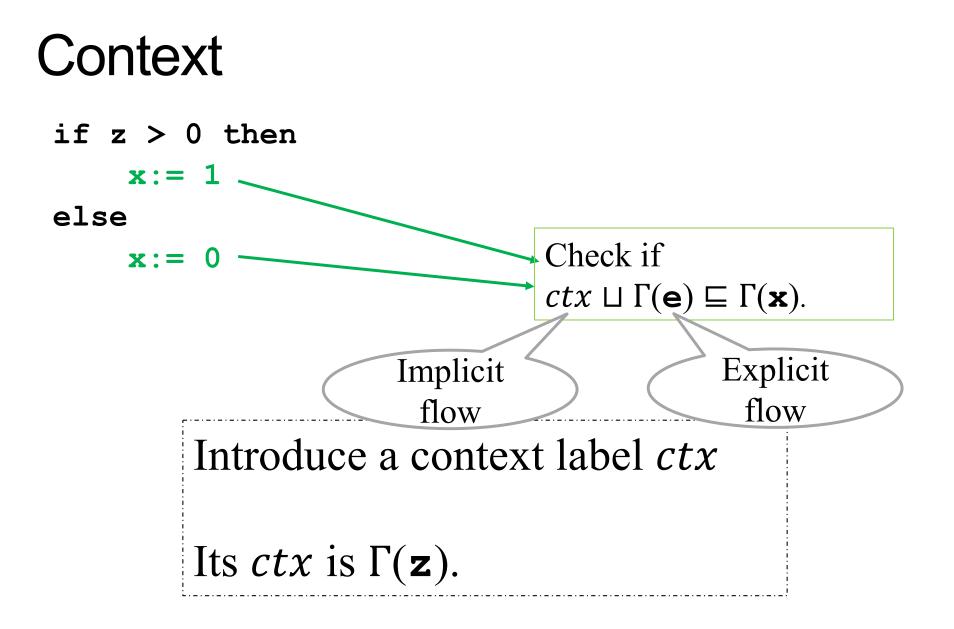
Checking an if-statement

if z > 0 then
 x:= 1
else
 x:= 0

Conditional commands (e.g., if-statements and while-statements) cause **implicit** information flows.



Introduce a context label ctxIts ctx is $\Gamma(\mathbf{z})$. 23



Typing system for IF control

- Static
- Fixed Γ
- Labels as types
 - Label $\Gamma(\mathbf{x})$ is the type of \mathbf{x} .
- Typing rules for all possible commands.
- **Goal**: type-correctness ⇒ noninterference

We are already familiar with typing systems!

Example of typing rule from Java or OCaml:

x + y : int if x : int and y : int

Typing rules for expressions

```
Judgement \Gamma \vdash \mathbf{e} : \ell
```

According to mapping Γ , expression **e** has type (i.e., label) ℓ .

```
Constant: \Gamma \vdash \mathbf{n} : \bot
Variable: \Gamma \vdash \mathbf{x} : \Gamma(\mathbf{x})
Expression: \Gamma \vdash \mathbf{e} + \mathbf{e'} : \ell \sqcup \ell'
if \Gamma \vdash \mathbf{e} : \ell
and \Gamma \vdash \mathbf{e'} : \ell'
```

Typing rules for expressions

```
Expression: \Gamma \vdash e+e' : \ell \sqcup \ell'
if \Gamma \vdash e : \ell
and \Gamma \vdash e' : \ell'
```

Inference rule:Premises $\longrightarrow \Gamma \vdash \mathbf{e} : \ell \quad \Gamma \vdash \mathbf{e'} : \ell'$ Conclusion $\longrightarrow \Gamma \vdash \mathbf{e+e'} : \ell \sqcup \ell'$

Example

- Let $\Gamma(\mathbf{x}) = L$ and $\Gamma(\mathbf{y}) = H$.
- What is the type of **x+y+1**?
- Proof tree:

$\Gamma(\mathbf{x}) = L$	$\Gamma(\mathbf{y}) = \mathbf{H}$	
$\Gamma \vdash \mathbf{x}$: L	Γ⊢ γ : Η	Γ⊢ 1 : L
	$\Gamma \vdash \mathbf{x} + \mathbf{y} + 1 : \mathbf{H}$	

Typing rules for commands

Judgement Γ , $ctx \vdash c$

According to mapping Γ , and context label *ctx*, command **c** is type correct.

Assignment rule

 $\Gamma, ctx \vdash \mathbf{x} := \mathbf{e}$ if $\Gamma \vdash \mathbf{e} : \ell$ and $\ell \sqcup ctx \sqsubseteq \Gamma(\mathbf{x})$

$\Gamma \vdash \mathbf{e} : \ell \qquad \ell \sqcup ctx \sqsubseteq \Gamma(\mathbf{x})$

 Γ , $ctx \vdash \mathbf{x} := \mathbf{e}$

If-rule

$\Gamma \vdash \mathbf{e} : \ell$ $\Gamma, \ell \sqcup ctx \vdash c\mathbf{1}$ $\Gamma, \ell \sqcup ctx \vdash c\mathbf{2}$

$\Gamma, ctx \vdash if e then c1 else c2$

If-rule (example)

$\begin{array}{c} \Gamma \vdash \mathbf{0} : \bot, \\ \Gamma \vdash \mathbf{1} : \bot \quad \bot \sqcup \Gamma(\mathbf{z}) \sqcup L \sqsubseteq \Gamma(\mathbf{x}) \bot \sqcup \Gamma(\mathbf{z}) \sqcup L \sqsubseteq \Gamma(\mathbf{x}) \\ \Gamma(\mathbf{z}) \sqcup L \sqsubseteq \Gamma(\mathbf{x}) \\ \Gamma, \Gamma(\mathbf{z}) \sqcup L \vdash \mathbf{x} := \mathbf{1} \\ \end{array}$

 $\Gamma, L \vdash if z>0$ then x:=1 else x:=0

Static type systemAssignment-Rule:
$$\Gamma \vdash \mathbf{e} : \ell \qquad \Gamma, ctx \vdash \mathbf{x} := \mathbf{e}$$
If-Rule:
$$\Gamma \vdash \mathbf{e} : \ell \qquad \Gamma, \ell \sqcup ctx \vdash \mathbf{c1} \qquad \Gamma, \ell \sqcup ctx \vdash \mathbf{c2}$$
The etail of the then c1 else c2While-Rule:
$$\Gamma \vdash \mathbf{e} : \ell \qquad \Gamma, \ell \sqcup ctx \vdash \mathbf{c}$$
The etail of the then c1 else c2While-Rule:
$$\Gamma, ctx \vdash \mathbf{c1} \qquad \Gamma, ctx \vdash \mathbf{c2}$$
Sequence-Rule:
$$\Gamma, ctx \vdash \mathbf{c1} \qquad \Gamma, ctx \vdash \mathbf{c2}$$
$$\Gamma, ctx \vdash \mathbf{c1} \qquad \Gamma, ctx \vdash \mathbf{c2}$$
$$\Gamma, ctx \vdash \mathbf{c1} \qquad \Gamma, ctx \vdash \mathbf{c2}$$

Soundness of type system

Γ , $ctx \vdash c \Rightarrow c$ satisfies NI

Limitations of the type system

This type system does not prevent leaks through covert channels.

Example of covert channel:

while s != 0 do { //nothing };

p:=1

where **s** is a secret variable (i.e., $\Gamma(\mathbf{s})=H$) and **p** is a public variable (i.e., $\Gamma(\mathbf{p})=L$).

A solution

- To prevent covert channels due to infinite loops,
- strengthen the typing rule for while-statement, to allow only low guard expression:

$$\Gamma \vdash \mathbf{e} : \square \qquad \Gamma, ctx \vdash \mathbf{c}$$

$$\Gamma, ctx \vdash \mathbf{while e do c}$$

- Now, type correctness implies termination sensitive NI.
- But, the enforcement mechanism becomes overly conservative.
- Another solution? Research!

This type system is not complete.

- **c** satisfies noninterference $\Rightarrow \Gamma$, $ctx \vdash c$
 - There is a command c, such that noninterference is satisfied, but c is not type correct.
- Example 1:
 - $\Gamma(\mathbf{x}) = H, \Gamma(\mathbf{y}) = L$
 - c is if x>0 then y:=1 else y:=1
 - c satisfies noninterference, because x does not leak to y.
 - **c** is not type correct, because $\Gamma(x) \not\subseteq \Gamma(y)$.

This type system is not complete.

- Example 2:
 - $\Gamma(x) = H, \Gamma(y) = L$
 - c is if 1=1 then y:=1 else y:=x
 - c satisfies noninterference, because x does not leak to y.
 - c is not type correct, because $\Gamma(x) \not\sqsubseteq \Gamma(y)$.
- So, this type system is *conservative*. It has *false negatives:*
 - There are programs that are not type correct, but that satisfy noninterference.

Can we build a complete mechanism?

- Is there an enforcement mechanism for information flow control that has no false negatives?
 - A mechanism that rejects only programs that do not satisfy noninterference?
- No! [Sabelfeld and Myers, 2003]
 - "The general problem of confidentiality for programs is undecidable."
 - The halting problem can be reduced to the information flow control problem.
 - Example:

if h>1 then c; 1:=2 else skip

 If we could precisely decide whether this program is secure, we could decide whether c terminates!

Can we build a mechanism with fewer false positives?

Switch from static to dynamic mechanisms!