
CS 5430 4/11/2018

Lecture 20: Information Flow Control

Information flow policies

Doc

Can	flow	to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can	flow	to:
Alice

Can	flow	to:
Alice

2

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

5

H

L

H

L

Program
Inputs Outputs

Today: Information Flow Control
• Goal: Enforce IF policies that tag variables in a program.
• There is a mapping Γ from variables to labels, which

represent desired IF policies.
• The enforcement mechanism should ensure that a given

program and a given Γ satisfy noninterference.

6

Information Flow Control

7

𝑎

𝑏

𝑐

𝑑

𝑥

𝑦

𝑧

H

H

L

H
L

L
L

Label

Variable

Program

Inputs Outputs

Information Flow Control: fixed 𝚪

8

𝑎

𝑏

𝑐

𝑑

𝑥

𝑦

𝑧

H

H

L

H
L

L
L

• Γ remains the same during the analysis of the program.
• The mechanism checks that Γ satisfies noninterference.
• The program is rejected, if at least one red arrow appears in the

program.

Information Flow Control: flow-sensitive 𝚪

9

𝑎

𝑏

𝑐

𝑑

𝑥

𝑦

𝑧

H

H

L

L
L

H
H

• Γ may change during the analysis of the program.
• The mechanism deduces Γ(x), Γ(y), Γ(z) such that

noninterference is satisfied.
• The program is never rejected.

Enforcing IF policies
• Static mechanism

• Checking and/or deduction of labels before execution.
• Dynamic mechanism

• Checking and/or deduction of labels during execution.
• Hybrid mechanism

• Combination of static and dynamic.

10

STATIC TYPE CHECKING
fixed Γ

A simple programming language
e ::= x | n | e1+e2 | ...

c ::= x := e
| if e then c1 else c2
| while e do c
| c1; c2

Checking an assignment

13

x := y

Γ(x) is L.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is H.
Γ(y) is L.
Does this assignment satisfy NI?

Γ(x) is L.
Γ(y) is H.
Does this assignment satisfy NI?

Examples for confidentiality

Checking an assignment

14

x := y

It satisfies NI, if Γ(y)	⊑ Γ(x).

Assignments cause explicit information flows.

Checking an assignment

15

x := y
It satisfies NI, if Γ(y)	⊑ Γ(x).

MLS for confidentiality
“no read up”:

S may read O iff Label(O) ⊑ Label (S)

“no write down”:
S may write O’ iff Label(S) ⊑ Label (O’)

Checking an assignment

16

x := y
It satisfies NI, if Γ(y)	⊑ Γ(x).

MLS for confidentiality
“no read up”:

C may read y iff Label(y) ⊑ Label (C)

“no write down”:
C may write x iff Label(C) ⊑ Label (x)

Checking an assignment

17

x := y + z

It satisfies NI, if Γ(y)	⊑ Γ(x) and Γ(z) ⊑ Γ(x).
It satisfies NI, if Γ(y+z) ⊑ Γ(x).

???

Operator for combining labels
• For each ℓ and ℓ’, there should exist label ℓ⊔ℓ’, such that:

• ℓ	⊑ ℓ⊔ℓ’ , ℓ’	⊑ ℓ⊔ℓ’, and
• if ℓ	⊑ ℓ’’ and ℓ’	⊑ ℓ’’, then ℓ⊔ℓ’ ⊑ ℓ’’.

• ℓ⊔ℓ’ is called the join of ℓ and ℓ’.
• Operator ⊔ is associative and commutative.

18

Checking an assignment

19

x := y + z

It satisfies NI, if Γ(y) ⊔ Γ(z)	⊑ Γ(x).

Lattice of labels
• The set of labels and relation ⊑ define a lattice, with join

operator ⊔.

20

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

⊑

⊑

⊑

⊑
⊔

⊔
⊤

⊥

Checking an if-statement
if z > 0 then

x:= 1
else

x:= 0

21

Γ(x) is L.
Γ(z) is L.
Does this if-statement satisfy NI?

Γ(x) is H.
Γ(z) is L.
Does this if-statement satisfy NI?

Γ(x) is L.
Γ(z) is H.
Does this if-statement satisfy NI?

Examples for confidentiality

Checking an if-statement

22

Conditional commands (e.g., if-statements and
while-statements) cause implicit information flows.

if z > 0 then
x:= 1

else
x:= 0

Context

23

They reveal
information about
z>0.

if z > 0 then
x:= 1

else
x:= 0

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is Γ(z).

Context

24

if z > 0 then
x:= 1

else
x:= 0

Introduce a context label 𝑐𝑡𝑥

Its 𝑐𝑡𝑥 is Γ(z).

Check if
𝑐𝑡𝑥 ⊔ Γ(e) ⊑ Γ(x).

Implicit
flow

Explicit
flow

Typing system for IF control
• Static
• Fixed Γ
• Labels as types

• Label Γ(x) is the type of x.

• Typing rules for all possible commands.
• Goal: type-correctness ⇒ noninterference

25

We are already familiar with typing
systems!
Example of typing rule from Java or OCaml:

x + y : int
if x : int
and y : int

26

Typing rules for expressions
Judgement G ⊢ e : ℓ
According to mapping Γ, expression e has type (i.e., label) ℓ.

27

Variable: G ⊢ x : Γ(x)
Constant: G ⊢ n :⊥

Expression: G ⊢ e+e’ : ℓ ⊔ ℓ’
if G ⊢ e : ℓ
and G ⊢ e’: ℓ’

Typing rules for expressions

28

Expression: G ⊢ e+e’ : ℓ⊔ ℓ’
if G ⊢ e : ℓ
and G ⊢ e’ : ℓ’

G ⊢ e+e’ : ℓ⊔ ℓ’
G ⊢ e : ℓ G ⊢ e’ : ℓ’

Inference rule:

Premises
Conclusion

Example
• Let Γ(x)= L and	Γ(y)= H.
• What is the type of x+y+1?
• Proof tree:

29

G ⊢ x + y + 1 : H

G ⊢ x : L G ⊢ y : H

G(x) = L G(y) = H
G ⊢ 1 : L

Typing rules for commands
Judgement G, 𝑐𝑡𝑥 ⊢ c
According to mapping Γ, and context label 𝑐𝑡𝑥, command
c is type correct.

30

Assignment rule
G, 𝑐𝑡𝑥 ⊢ x:=e
if G ⊢ e : ℓ
and ℓ ⊔ 𝑐𝑡𝑥	 ⊑ G(x)

31

G, 𝑐𝑡𝑥 ⊢ x:=e

G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥	 ⊑ G(x)

If-rule

32

G, 𝑐𝑡𝑥 ⊢ if e then c1 else c2

G ⊢ e : ℓ G, ℓ ⊔ 𝑐𝑡𝑥 ⊢ c1 G, ℓ ⊔ 𝑐𝑡𝑥 ⊢ c2

If-rule (example)

33

G, L ⊢ if z>0 then x:=1 else x:=0

G ⊢ z>0 : Γ(z) G, Γ(z) ⊔ L ⊢ x:=0G, Γ(z) ⊔ L ⊢ x:=1

G ⊢ 1 : ⊥ ⊥ ⊔ Γ(z) ⊔ L ⊑ Γ(x)
G ⊢ 0 : ⊥,

⊥ ⊔ Γ(z) ⊔ L ⊑ Γ(x)

Static type system

G , 𝑐𝑡𝑥 ⊢ x:=e
G ⊢ e : ℓ ℓ ⊔ 𝑐𝑡𝑥	 ⊑ G(x)

G , 𝑐𝑡𝑥 ⊢ if e then c1 else c2

G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c1 G , ℓ ⊔ 𝑐𝑡𝑥 ⊢ c2

G , 𝑐𝑡𝑥 ⊢ while e do c
G ⊢ e : ℓ G , ℓ ⊔ 𝑐𝑡𝑥⊢ c

G , 𝑐𝑡𝑥 ⊢ c1;c2
G , 𝑐𝑡𝑥 ⊢ c1 G , 𝑐𝑡𝑥 ⊢ c2

34

Assignment-Rule:

If-Rule:

While-Rule:

Sequence-Rule:

Soundness of type system

G,𝑐𝑡𝑥 ⊢ c ⇒ c satisfies NI

35

Limitations of the type system

36

This type system does not prevent leaks
through covert channels.
Example of covert channel:
while s != 0 do { //nothing };
p:=1

where s is a secret variable (i.e., 	Γ(s)=Η) and p is a
public variable (i.e., 	Γ(p)=L).

37

A solution
• To prevent covert channels due to infinite loops,
• strengthen the typing rule for while-statement, to allow only

low guard expression:

• Now, type correctness implies termination sensitive NI.
• But, the enforcement mechanism becomes overly

conservative.
• Another solution? Research!

38

G , 𝑐𝑡𝑥⊢ while e do c
G ⊢ e :⊥ G , 𝑐𝑡𝑥⊢ c

This type system is not complete.

• c satisfies noninterference ⇏ G , 𝑐𝑡𝑥 ⊢ c
• There is a command c, such that noninterference is satisfied, but c

is not type correct.
• Example 1:

• Γ x = H, Γ y = L
• c is if x>0 then y:=1 else y:=1
• c satisfies noninterference, because x does not leak to y.
• c is not type correct, because Γ(x) ⋢ Γ(y).

39

This type system is not complete.
• Example 2:

• Γ x = H, Γ y = L
• c is if 1=1 then y:=1 else y:=x
• c satisfies noninterference, because x does not leak to y.
• c is not type correct, because Γ(x) ⋢ Γ(y).

• So, this type system is conservative. It has false negatives:
• There are programs that are not type correct, but that satisfy

noninterference.

40

Can we build a complete mechanism?
• Is there an enforcement mechanism for information flow

control that has no false negatives?
• A mechanism that rejects only programs that do not satisfy

noninterference?
• No! [Sabelfeld and Myers, 2003]

• “The general problem of confidentiality for programs is undecidable.”
• The halting problem can be reduced to the information flow control

problem.
• Example:

if h>1 then c; l:=2 else skip
• If we could precisely decide whether this program is secure, we could

decide whether c terminates!

41

Can we build a mechanism with fewer
false positives?

Switch from static to dynamic mechanisms!

42

