
CS 5430 4/9/2018

Lecture 19: Information Flow

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
subject is authorized to perform

• Expressed as a relation 𝐴𝑢𝑡ℎ:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

subject
ebirrell r,w r,w
clarkson r r
student r

Who defines Policies?
• Discretionary access control (DAC)

• Philosophy: users have the discretion to specify policy
themselves

• Commonly, information belongs to the owner of object
• Access control lists, privilege lists, capabilities

• Mandatory access control (MAC)
• Philosophy: central authority mandates policy
• Information belongs to the authority, not to the individual users
• MLS and BLP, Chinese wall, Clark-Wilson, etc.

Access control for computed data

Doc

Can	read:
Alice
Bob

Doc’ Doc’’

computation

Can	read:
Alice
Bob

Can	read:
Alice
Bob

5

Scaling to many pieces of data…

6

Scaling to many users…

7

Scaling to many interactions…

?

?

?
?

?

8

Information Flows between Principals
• Channel: means to communicate information
• Storage channel: written by one program and read by

another
• Legitimate channel: intended for communication between

programs
• Covert channel: not intended for information transfer yet

exploitable for that purpose

Sometimes, we really want to restrict access to information

Information Flow (IF) Policies
• Focus on information not objects
• An IF policy specifies restrictions on the associated data,

and on all its derived data.
• IF policy for confidentiality:

• Value 𝑣 and all its derived values are allowed to be read only by
Alice

10

Different from the access control policy:
Value 𝑣 is allowed to be read at most by Alice.

• The enforcement mechanism automatically deduces the
restrictions for derived data.

Information flow policies

Doc

Can	flow	to:
Alice

Doc’ Doc’’

computation

Automatic
deduction
of policies!

Can	flow	to:
Alice

Can	flow	to:
Alice

11

Scaling to many interactions…

12

Scaling to many interactions…

13

Labels represent policies

Conf, {}

Secret, {}

Secret, {nuc, crypto}

Secret, {nuc} Secret, {crypto}Conf, {nuc,crypto}

Conf, {nuc} Conf, {crypto}

Labels represent policies

Low

High

Labels represent policies

16

Doc
H

Doc’ Doc’’
HH

Policy Granularity
• Objects can be system principles (files, programs, sockets…)
• Objects can be program variables

17

Noninterference
[Goguen and Meseguer 1982]

An interpretation of noninterference for a program:
• Changes on H inputs should not cause changes on L outputs.

18

H

L

H

L

Program
Inputs Outputs

Noninterference: Example

19

H

L

H

L

H

L

H

L

1

2

3

3

3

2

5

3

ℎ
ℎ, ≔ ℎ + 𝑙;
𝑙, ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

ℎ
ℎ, ≔ ℎ + 𝑙;
𝑙, ≔ 𝑙 + 1

𝑙

ℎ′

𝑙′

The program satisfies noninterference!

Noninterference: Example

20

H

L

H

L

H

L

H

L

1

2

3

6

ℎ

𝑙′
𝑙′ ≔ ℎ	 ∗ 2

ℎ

𝑙′
𝑙′ ≔ ℎ	 ∗ 2

The program does not satisfy noninterference!

2

2

Noninterference: Example

21

H

L

H

L

H

L

H

L

1

1

3

0

ℎ

𝑙′

if(ℎ == 1){
𝑙′ ≔ 1

} else {
𝑙′ ≔ 0

}

ℎ

𝑙′

The program does not satisfy noninterference!

2

2

if(ℎ == 1){
𝑙′ ≔ 1

} else {
𝑙′ ≔ 0

}

Noninterference
• Consider a program 𝐶.
• Consider two memories 𝑀; and 𝑀<, such that

• they agree on values of variables tagged with L:
• 𝑀; == 𝑀<.

22

𝑀; and 𝑀< may not agree on values of
variables tagged with H.

• 𝐶(𝑀?) are the observations produced by executing 𝐶 to
termination on initial memory 𝑀?:
• final outputs, or
• intermediate and final outputs.

• Then, observations tagged with L should be the same:
• 𝐶 𝑀; == 𝐶 𝑀< .

Noninterference

∀𝑀;, 𝑀<: if 𝑀; == 𝑀<, then 	𝐶 𝑀; == 𝐶 𝑀< .

23

For a program 𝐶 and a mapping from variables to labels in
L, H :

Less restrictive than necessary…

24

H

L

H

L

H

L

H

L

2

4

9

ℎ

𝑙′

while ℎ > 5 do
skip;

𝑙, ≔ 4

while ℎ > 5 do
skip;

𝑙, ≔ 4

ℎ

𝑙′

2

2

Termination sensitive noninterference
• If

• 𝑀; == 𝑀<,
• then

• 𝑪 terminates on 𝑴𝟏 iff 𝑪 terminates on 𝑴𝟐, and
• 𝐶 𝑀; == 𝐶 𝑀< .

25

Less restrictive than necessary…

26

m :=	Match(students;	grades)

Wanted	to	
be	H!

Required	
to	be	L.

L LL

More restrictive than necessary…

27

x	:=	maj(v1,	v2,	…,	vn)
H

Wanted to	
be	L!

Required	to	be	H.

HHH

More restrictive than necessary…

28

x	:=	Enc(v;	k)
Wanted	to	

be	L!

Required	to	be	H.

H HH

Declassification
• What: specify what information may be declassified

• e.g., LastFourDigits(credit card number) should be low
• Partial Equivalence Relation (PER) Model

• Who: specify who may declassify information
• e.g., high object owner can write to low objects
• Decentralized Label Model

• Where: specify which pieces of code may declassify
• e.g., encryption function can write to low objects
• Intransitive Noninterference, Reactive Noninterference

• When: specify when information may be declassified
• e.g., software key may be shared after payment has been received

Enforcement Mechanisms
• taint-tracking
• runtime monitoring
• type checking

