
CS 5430 3/23/2018

Lecture 16: Capabilities

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted
• Discretionary Access Control
• Mandatory Access Control

Access Control Policy
• An access control policy specifies which of the

operations associated with any given object each
principal is authorized to perform

• Expressed as a relation 𝐴𝑢𝑡ℎ:

𝑨𝒖𝒕𝒉
Objects

dac.tex dac.pptx

principals
ebirrell r,w r,w
clarkson r r
student r

Access Control Lists

Capability
lists

Capability Lists
• The capability list for a principal 𝑃 is a list

⟨𝑂,, 𝑃𝑟𝑖𝑣𝑠,⟩, ⟨𝑂3, 𝑃𝑟𝑖𝑣𝑠3⟩, …	, ⟨𝑂6, 𝑃𝑟𝑖𝑣𝑠6⟩	
• e.g., ⟨dac.tex, {r,w}⟩ ⟨dac.pptx, {r,w}⟩

• Capabilities carry privileges.
1) Authorization: Performing operation 𝑜𝑝 on object 𝑂9 requires a

principal 𝑃 to hold a capability 𝐶9 = ⟨𝑂9, 𝑃𝑟𝑖𝑣𝑠9⟩ such that 𝑜𝑝 ∈
𝑃𝑟𝑖𝑣𝑠9

2) Unforgeability: Capabilities cannot be counterfeited or
corrupted.

• Note: Capabilities are (typically) transferable

Capabilities
• Advantages:

• Eliminates confused deputy problems
• Natural approach for user-defined objects

• Disadvantages:
• Review of permissions?
• Delegation?
• Revocation?
• Privacy?

C-Lists
• OS maintains and stores

stores list of capabilities
𝐶9 = ⟨𝑂9, 𝑃𝑟𝑖𝑣𝑠9⟩ for each
principal (process)
1) Authorization: OS mediates

access to objects, checks
process capabilities

2) Unforgeability: capabilities
are stored in protected
memory region (kernel
memory)

Example: File Descriptor Table
• In Unix etc, a file

descriptor is a handle used
to reference files and I/O
resources

• File descriptors have
modes (read, write) and
are stored in per-process
file descriptor table

• File descriptors can be
passed between
processes using
sendmsg()

Example: Google Fuchsia

• new OS in development by
Google

• possibly intended as a
universal across-platform
OS for the IoT era (lots of
speculation)

• capability-based
microkernel embraces
capabilities (handles) for
all kernel objects
• socket, port, virtual

memory region, process,
thread, etc.

Cryptographically-protected capabilities
• Object owner creates capabilities using a digital signature

scheme
• Capabilities are triples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠; 𝑘)⟩
• Authorization: P is permitted to perform op on O if P

produces a capability for O with 𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠 and a valid
signature

• Unforgeability: digital signatures are unforgeable to
adversaries who don't know private key k

• Note: assumes PKI

Example: OAuth2
• Industry standard

authorization protocol
• Used for single sign-on by

major IDPs
• Facebook, Google

• The token may denote an
identifier or data +
signature

• Facebook tokens confer
permissions for various
user date (e.g.
public_profile,
user_friends, user_posts,
user_likes)

Restricted Delegation?

Revocation
• Revocation Tags

• Capabilities are tuples 𝐶 = ⟨𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡D, Sig(𝑂, 𝑃𝑟𝑖𝑣𝑠, 𝑟𝑡E; 𝑘)⟩
• Access to object O is guarded by a reference monitor; monitor

maintains a list of revoked tags 𝑟𝑡D
• Capability Chains

• Objects can be other capabilities!
• 𝑃	is authorized to perform 𝑜𝑝	on 𝑂	if 𝑃 holds a capability 𝐶9 and
𝑜𝑝 ∈ 𝑃𝑟𝑖𝑣𝑠F	 holds for every capability 𝐶F in the chain from 𝐶9 to 𝐶,

Keys as capabilities
• Encrypt object
• Decryption method functions as reference monitor:

• Authorization: correct key will decrypt object -> allow access
• Unforgeability: incorrect key will not decrypt

• Note: no notion of separate privileges

Example: Mac keychains

• OSX/iOS password
manager

• uses password-based
encryption (AES-256) to
store username/password
credentials

• supports multiple
keychains

Example: CryptDB

• Encrypted database
system. Inspiration for
several application-grade
encrypted database
systems

• Processes database
queries on encrypted data

• Uses chains of keys
(starting with user
password) to decrypt
values/authorize users
• onion encryption

Attribute-based encryption
• Type of public-key encryption in which secret keys

depend on user attributes
• Users can only decrypt a ciphertext if they hold a key for

appropriate attributes
• A KDC creates secret keys for users based on attributes

What about privacy?

