Lecture 14: Authenticating Machines

CS 5430 3/19/2018

Where we were...

Authentication: mechanisms that bind principals e«
to actions

Authorization: mechanisms that govern whether j!u -
actions are permitted U S

Audit: mechanisms that record and review actions %
"~

Where we were...

Authentication: mechanisms that bind principals e«
to actions

Authenticating Humans
Authenticating Machines
Authenticating Programs

Authentication Techniques

123456
password
12345678
gwerty
12345

SSL/TLS Handshake

Version, cipher
suites, nonce

Compute
master secret

ClientHello

ServerHello
_

ServerKexExchange
CIientKexExchange

ChangeCiEherSEec
ChangeCiEherSEec

| Encrypted Messages :

Version, cipher
suite, nonce,
certificate

(optional)

Compute
master secret

SSL/TLS Handshake

Version, cipher
suites, nonce

Compute
ms p = gab
ms = PRF(ms_p,rC,rS)

rC, [ECDH,..]
I rS, ECDH, gért S

ChangeCiEherSEec
ChangeCiEherSEec

| Encrypted Messages :

Version, cipher
suite, nonce,
certificate

Compute
ms_p = g%
ms = PRF(ms_p,rC,rS)

Certificates

Digital certificate is a signature binding together:

identity of principal

public key of that principal (might be encryption or verification key)
Notation: Cert(S; |) is a certificate issued by principal | for
principal S

letb=id_S,K S

Cert(S; 1) = b, Sign(b; k_1)

Issuer | is certifying that K_S belongs to subject id S
Fingerprint: H(Cert(S; 1))

e ————————————
X.509 certificates

[RFC 5280]

Contents of certificate:
serial number (unique within certs issued by this issuer)
Issuer distinguished name
validity interval (start and end time)
subject distinguished name
subject public key (and the name of the algorithm)
extensions...

issuer's signature on the above (and the name of the
algorithm)

e ————_mmm—
X.209 distinguished names

Originally designed for general purpose directory services

As commonly used in X.509 certificates:

Common name (CN): e.g., a person's full name, a server's name
or domain name

Organizational unit (OU): e.g., Finance, HR, CS
(might be many nested OUs...)
Organization (O): e.g., Cornell, Google

Other fields: Street Address, Locality, State, Country, Postal Code,
etc.

Certificate examples

https://www.google.com
https://www.cs.cornell.edu

X.509 certificate extensions

Informational extensions: extra information about
certificate, issuer, subject

Constraint extensions: warn user of certificate about
what not to do with it

Critical flag: if set, software must process extension or
reject certificate

Some informational extensions

Key usage:
digital signature
encryption of session keys
encryption of data

verification of certificates (i.e., issuer key)
(others)

Alternative name: anything that doesn't fitin a
distinguished name, e.g., email address, URL, IP address

L ———
Public-key infrastructure (PKI)

System for managing distribution of certificates

Two main philosophies:
Decentralized: anarchy, no leaders
Centralized: oligarchy, leadership by a few elite

L —_uw—
PKI Example 1: PGP

Uses a decentralized PKI philosophy
"Pretty Good Privacy" [Zimmerman 1991]

toolset for PKI, encryption, signing of files and emails
OpenPGP is implemented by GNU Privacy Guard (GPG)
Users manage a keyring:

Alice has her own key in her keyring
When Alice meets up with Bob at a key-signing party...

HEY, I JuST GOT HOW WAS IT? | THERE WAS A GIRL. NO.
Hore. FROMTHEPRRIY | | NO Ll:')EA WHO SHE WAG. . SWED HER
CTHEONE | | T screweD I%O'SIASE‘T’;" %K”sgo‘;”’:? Peusuc KEY.
R ReRuE? e
YEAH. JHar O\ o
HAPPENED? AND WHET, YOU '
SLEPT WITH HER?

e ————__—_—_TT—
PKI Example 2: CAs

Uses a centralized PKI philosophy (at least as evolved in
marketplace)

Invented (?) by Digital [Gasser et al. 1989], used in early
Netscape browsers

Certificate authority (CA): principal whose purpose is to
issue certificates

Finding a useful certificate

Certificate chain: sequence of certificates that certify each
other

on one end, a certificate for the principal you want to
authenticate

on the other end, a certificate for a principal you already
know: the roof of trust

you must trust every issuer in the chain to issue
certificates

A constraint extension

"Basic constraint”: two values:

a Boolean: is this key permitted to be used to verify other
certificates? i.e., can it be an issuer's key?

At best redundant w.r.t key usage extension, which itself is more precise

an integer: number of intermediate certificates permitted to follow
this one in a chain

ought to be marked critical

Using a CA

Everyone enrolls with the CA to get a certificate

E.g., Alice enrolls and gets Cert(Alice; CA)
Your system comes pre-installed with CA's self-signed
certificate Cert(CA; CA)

When you receive a message signed by Alice:

you contact CA to get Cert(Alice; CA)
or Alice just includes that certificate with her message

CAs and web browsers

Web server has certificate Cert(server; CA) installed

Server’s identity is its URL
CA is a root for which Cert(CA; CA) is installed in browser

Browser authenticates web server
Using server’s URL and public key from certificate

Machines are authenticating machines

Many CAs e

. THERE CAN BE ONLY.ONE.

There can't be only one e :
No single CA is going to be trusted by all the world's governments,

militaries, businesses
Though within an organization such trust might be possible

So there are many
Around 1500 observed on public internet
Your OS and/or browser comes with some pre-installed

Organizations act as their own CA, e.g....
Company issues certificates to employees for VPN
Bank issues certificates to customers
Central bank issues certificates to other banks
Manufacturer issues certificates to sensing devices

Enrollment with a CA

You create a key pair. you do this so that CA doesn't
learn your private key

You generate a certificate signing request (CSR); it
contains the identity you are claiming

You send the CSR to a CA, perhaps along with payment
The CA verifies your identity (maybe)

The CA signs your key, thus creating a certificate, and
sends certificate to you

Enrollment with a CA

You create a key pair. you do this so that CA doesn't
learn your private key

You generate a certificate signing request (CSR); it
contains the identity you are claiming

You send the CSR to a CA, perhaps along with payment
The CA verifies your identity (maybe)

The CA signs your key, thus creating a certificate, and
sends certificate to you

Identity verification

Extended validation (EV) certificate:
CA does extra checking of your identity
Certificate marked as having received EV
Web browser reflects EV mark in Ul

Examples of extra checking:

Verify legal existence of organization including some sort of
registration number; record legal business number as part of
subject’s identity in certificate

Verify physical operation of organization by a site visit

Verify phone number as listed by a public phone company
CA record all those data in the certificate as part of
subject's identity
Example: htips://www.paypal.com

Issuing certificates

Conflicting goals:
CA private signing key must be kept

the public verification key is pre-installed on user systems; hard to
update

if ever leaked, signing key could be used to forge certificates
easy way to realize goal: keep it in cold storage

CA private signing key must be available for use
to sign new certificates when users request them
easy way to realize goal: keep it in computer's memory

Issuing certificates

Solution: use root and intermediate CAs

root CA: the certificate at root of trust in a chain; pre-
installed; key kept in highly secure storage

intermediate CA(s): certified by root CA, themselves
certify user keys; might be run by a different organization
than root

example: htips://www.facebook.com

Authentication

Humans
authenticating.

Machines
authenticating.

Faces, tickets,
passwords

Passwords,
biometrics

Secure
attention key,
visual secrets

Tokens, CAs as
used in web

Problem 1: Revocation

Keys (subject's, issuer's) get compromised
Or subject leaves an organization
...certificates therefore need to be revoked

There's no perfect solution
Fast expiration
Certificate revocation lists (CRLs)
Online certificate validation

Revocation

Fast expiration

Idea:
Validity internal is short, e.g. 10 min to 24 hr
A kind of revocation thus happens automatically
Any compromise is bounded

Problem:

CAs have to issues new certificates frequently, including checking
iIdentities
Machines have to update certificates frequently

Revocation

Certificate revocation lists (CRLS)

Idea:
CA posts list of revoked certificates

Clients download and check every time they need to validate
certificate

Problems:

Clients don't (because usability)
Or they cache, leading to TOCTOU attack
CRL must always be available (so an attractive DoS target)

Chromium does this, with a CRL limited to 250kb

Revocation

Online certificate validation

Idea:
CA runs validation server
Clients contact it each time to validate certificate

Problems:
Clients don't

Server must always be available (so an attractive DoS target)
Reveals to CA which websites you want to access

Revocation

Online certificate validation

Follow-on solution: stapling

Certificates must be accompanied by fresh assertion from CA that
certificate is still valid

Whoever presents certificate to client is responsible for acquiring
assertion
Firefox does this but doesn't hard fail because "[validation
servers] aren't yet reliable enough”

Unless web site has previously served up a certificate to browser
with Must Staple extension set

L ———
Problem 2: Authority

CAs go rogue, get hacked, issue certificates that they
should never have issued

e.g., Dutch CA DigiNotar (2011), which was included in many root
sets: 500 bogus certificates issued, including for Google, Yahoo,
Tor

Missing a means for authorization of who may issue

certificates for which principals

Authority

There's no perfect solution

Key pinning: upon first connection to a server, client
learns a set of public keys for server; in future
connections, certificate must contain one of those keys

Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to be in that
log; monitor log to notice misbehavior

Certificate Authority Authorization (CAA): piggyback on
DNS system; DNS record for entity specifies allowed CAs;
a good CA won't issue cert unless they are authorized

DNS-based Authentication of Named Entities (DANE):
piggyback like CAA; client checks whether cert comes
from authorized CA

