
CS 5430 3/19/2018

Lecture 14: Authenticating Machines

Where we were…

• Authentication: mechanisms that bind principals
to actions

• Authorization: mechanisms that govern whether
actions are permitted

• Audit: mechanisms that record and review actions

Where we were…

• Authenticating Humans
• Authenticating Machines
• Authenticating Programs

• Authentication: mechanisms that bind principals
to actions

Authentication Techniques

1. 123456
2. password
3. 12345678
4. qwerty
5. 12345

SSL/TLS Handshake

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

Version, cipher
suites, nonce

Version, cipher
suite, nonce,
certificate

Compute
master secret

Compute
master secret

(optional)

ChangeCipherSpec

ChangeCipherSpec

Encrypted Messages

SSL/TLS Handshake

rC, [ECDH,…]

rS, ECDH, cert_S

𝑔"

Version, cipher
suites, nonce

Version, cipher
suite, nonce,
certificate

Compute
ms_p = 𝑔"#
ms = PRF(ms_p,rC,rS) ChangeCipherSpec

ChangeCipherSpec

Encrypted Messages

Compute
ms_p = 𝑔"#
ms = PRF(ms_p,rC,rS)

rS, ECDH, 𝑔#

Certificates
• Digital certificate is a signature binding together:

• identity of principal
• public key of that principal (might be encryption or verification key)

• Notation: Cert(S; I) is a certificate issued by principal I for
principal S
• let b = id_S, K_S
• Cert(S; I) = b, Sign(b; k_I)
• Issuer I is certifying that K_S belongs to subject id_S

• Fingerprint: H(Cert(S; I))

X.509 certificates
[RFC 5280]
Contents of certificate:
• serial number (unique within certs issued by this issuer)
• issuer distinguished name
• validity interval (start and end time)
• subject distinguished name
• subject public key (and the name of the algorithm)
• extensions...
• issuer's signature on the above (and the name of the

algorithm)

X.509 distinguished names
• Originally designed for general purpose directory services
• As commonly used in X.509 certificates:

• Common name (CN): e.g., a person's full name, a server's name
or domain name

• Organizational unit (OU): e.g., Finance, HR, CS
• (might be many nested OUs...)
• Organization (O): e.g., Cornell, Google
• Other fields: Street Address, Locality, State, Country, Postal Code,

etc.

Certificate examples
• https://www.google.com
• https://www.cs.cornell.edu

X.509 certificate extensions
• Informational extensions: extra information about

certificate, issuer, subject
• Constraint extensions: warn user of certificate about

what not to do with it
• Critical flag: if set, software must process extension or

reject certificate

Some informational extensions
• Key usage:

• digital signature
• encryption of session keys
• encryption of data
• verification of certificates (i.e., issuer key)
• (others)

• Alternative name: anything that doesn't fit in a
distinguished name, e.g., email address, URL, IP address

Public-key infrastructure (PKI)
• System for managing distribution of certificates
• Two main philosophies:

• Decentralized: anarchy, no leaders
• Centralized: oligarchy, leadership by a few elite

PKI Example 1: PGP
• Uses a decentralized PKI philosophy
• "Pretty Good Privacy" [Zimmerman 1991]

• toolset for PKI, encryption, signing of files and emails
• OpenPGP is implemented by GNU Privacy Guard (GPG)

• Users manage a keyring:
• Alice has her own key in her keyring
• When Alice meets up with Bob at a key-signing party...

• She copies his key into her keyring
• She marks Bob as fully or marginally trusted as an introducer
• And she copies other keys he might have collected, too

PKI Example 2: CAs
• Uses a centralized PKI philosophy (at least as evolved in

marketplace)
• Invented (?) by Digital [Gasser et al. 1989], used in early

Netscape browsers
• Certificate authority (CA): principal whose purpose is to

issue certificates

Finding a useful certificate
Certificate chain: sequence of certificates that certify each
other
• on one end, a certificate for the principal you want to

authenticate
• on the other end, a certificate for a principal you already

know: the root of trust
• you must trust every issuer in the chain to issue

certificates

A constraint extension
• "Basic constraint": two values:

• a Boolean: is this key permitted to be used to verify other
certificates? i.e., can it be an issuer's key?
• At best redundant w.r.t key usage extension, which itself is more precise

• an integer: number of intermediate certificates permitted to follow
this one in a chain

• ought to be marked critical

Using a CA
• Everyone enrolls with the CA to get a certificate

• E.g., Alice enrolls and gets Cert(Alice; CA)
• Your system comes pre-installed with CA's self-signed

certificate Cert(CA; CA)
• When you receive a message signed by Alice:

• you contact CA to get Cert(Alice; CA)
• or Alice just includes that certificate with her message

CAs and web browsers
• Web server has certificate Cert(server; CA) installed

• Server’s identity is its URL
• CA is a root for which Cert(CA; CA) is installed in browser

• Browser authenticates web server
• Using server’s URL and public key from certificate

• Machines are authenticating machines

Many CAs
• There can't be only one

• No single CA is going to be trusted by all the world's governments,
militaries, businesses

• Though within an organization such trust might be possible
• So there are many

• Around 1500 observed on public internet
• Your OS and/or browser comes with some pre-installed

• Organizations act as their own CA, e.g....
• Company issues certificates to employees for VPN
• Bank issues certificates to customers
• Central bank issues certificates to other banks
• Manufacturer issues certificates to sensing devices

Enrollment with a CA
• You create a key pair: you do this so that CA doesn't

learn your private key
• You generate a certificate signing request (CSR); it

contains the identity you are claiming
• You send the CSR to a CA, perhaps along with payment
• The CA verifies your identity (maybe)
• The CA signs your key, thus creating a certificate, and

sends certificate to you

Enrollment with a CA
• You create a key pair: you do this so that CA doesn't

learn your private key
• You generate a certificate signing request (CSR); it

contains the identity you are claiming
• You send the CSR to a CA, perhaps along with payment
• The CA verifies your identity (maybe)
• The CA signs your key, thus creating a certificate, and

sends certificate to you

Identity verification
• Extended validation (EV) certificate:

• CA does extra checking of your identity
• Certificate marked as having received EV
• Web browser reflects EV mark in UI

• Examples of extra checking:
• Verify legal existence of organization including some sort of

registration number; record legal business number as part of
subject’s identity in certificate

• Verify physical operation of organization by a site visit
• Verify phone number as listed by a public phone company

• CA record all those data in the certificate as part of
subject's identity

• Example: https://www.paypal.com

Issuing certificates
Conflicting goals:
• CA private signing key must be kept secret

• the public verification key is pre-installed on user systems; hard to
update

• if ever leaked, signing key could be used to forge certificates
• easy way to realize goal: keep it in cold storage

• CA private signing key must be available for use
• to sign new certificates when users request them
• easy way to realize goal: keep it in computer's memory

Issuing certificates
Solution: use root and intermediate CAs
• root CA: the certificate at root of trust in a chain; pre-

installed; key kept in highly secure storage
• intermediate CA(s): certified by root CA, themselves

certify user keys; might be run by a different organization
than root

• example: https://www.facebook.com

Authentication

Humans Machines
Humans
authenticating.
..

Faces, tickets,
passwords

Secure
attention key,
visual secrets

Machines
authenticating.
..

Passwords,
biometrics

Tokens, CAs as
used in web

PROBLEMS WITH PKI

Problem 1: Revocation
• Keys (subject's, issuer's) get compromised
• Or subject leaves an organization

...certificates therefore need to be revoked
• There's no perfect solution

• Fast expiration
• Certificate revocation lists (CRLs)
• Online certificate validation

Revocation
Fast expiration
• Idea:

• Validity internal is short, e.g. 10 min to 24 hr
• A kind of revocation thus happens automatically
• Any compromise is bounded

• Problem:
• CAs have to issues new certificates frequently, including checking

identities
• Machines have to update certificates frequently

Revocation
Certificate revocation lists (CRLs)
• Idea:

• CA posts list of revoked certificates
• Clients download and check every time they need to validate

certificate
• Problems:

• Clients don't (because usability)
• Or they cache, leading to TOCTOU attack
• CRL must always be available (so an attractive DoS target)

• Chromium does this, with a CRL limited to 250kb

Revocation
Online certificate validation
• Idea:

• CA runs validation server
• Clients contact it each time to validate certificate

• Problems:
• Clients don't
• Server must always be available (so an attractive DoS target)
• Reveals to CA which websites you want to access

Revocation
Online certificate validation
• Follow-on solution: stapling

• Certificates must be accompanied by fresh assertion from CA that
certificate is still valid

• Whoever presents certificate to client is responsible for acquiring
assertion

• Firefox does this but doesn't hard fail because "[validation
servers] aren't yet reliable enough”
• Unless web site has previously served up a certificate to browser

with Must Staple extension set

Problem 2: Authority
• CAs go rogue, get hacked, issue certificates that they

should never have issued
• e.g., Dutch CA DigiNotar (2011), which was included in many root

sets: 500 bogus certificates issued, including for Google, Yahoo,
Tor

• Missing a means for authorization of who may issue
certificates for which principals

Authority
There's no perfect solution
• Key pinning: upon first connection to a server, client

learns a set of public keys for server; in future
connections, certificate must contain one of those keys

• Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to be in that
log; monitor log to notice misbehavior

• Certificate Authority Authorization (CAA): piggyback on
DNS system; DNS record for entity specifies allowed CAs;
a good CA won’t issue cert unless they are authorized

• DNS-based Authentication of Named Entities (DANE):
piggyback like CAA; client checks whether cert comes
from authorized CA

