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Lecture 13: Tokens



Review: Authentication of humans
• Something you are

fingerprint, retinal scan, hand silhouette, a pulse
• Something you know

password, passphrase, PIN, answers to security questions
• Something you have

physical key, ticket, {ATM, prox, credit} card, token



Humans vs. machines
• At enrollment, human is issued a token

• Ranges from dumb (a physical key, a piece of paper) to a smart 
machine (a cryptographic processor)

• Token becomes attribute of human's identity
• Authentication of human reduces to authentication of 

token



Authentication tokens



Threat Model: Eavesdropper

• Adversary can read read and 
replay messages

• Adversary cannot change 
messages during protocol 
execution (not full Dolev-Yao)



Fixed codes (Keyless Entry)

• Token stores a secret value id_T (e.g., key, id,   
password)

• Reader stores list of authorized ids
• To enter:  T->M: id_T

• Attack:  replay:  thief sits in car nearby, records serial number, 
programs another token with same number, steals car

• Attack: brute force:  serial numbers were 16 bits, devices 
could search through that space in under an hour for a single 
car (and in a whole parking lot, could unlock some car in under 
a minute)

• Attack: insider:  serial numbers typically show up on many 
forms related to car, so mechanic, DMV, dealer's business 
office, etc. must be trusted



Fixed codes (RFIDs)

• Token stores a secret value id_T (e.g., key, id,   
password)

• Reader stores list of authorized ids
• To enter:  T->M: id_T

• Attack:  replay:  thief sits nearby, records serial number, 
programs another token with same number, authenticates

• Attack:  privacy:  adversary tracks token usage across system 
and learns user attributes and/or behaviors

• Countermeasure:  one-time passwords



“Rolling” codes
• There is a master key, mk, for the barrier
• Token stores:

• serial number T
• nonce N, which is a sequence counter
• shared key k, which is H(mk, T)

• Barrier stores:
• all those values for all authorized tokens
• as well as master key mk

• To enter:  T->B:  T, MAC(T, N; k)
• And T increments N
• So does B if MAC tag verifies

• Problem:  desynchronization of nonce
• Partial solution:  accept “rolling window” of nonces



Rolling window
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There are numerous algorithms available to use for generating the MAC, but for various reasons we have chosen the 
Advanced Encryption Standard (AES) algorithm, which is a symmetric block cipher. The AES algorithm supports key sizes of 
128, 192 and 256 bits. Its use as a MAC generator is discussed further under theheading Section 2.1.1 “Rolling Windows” on 
page 5.

Figure 2-3. Secure System with all Four Goals Satisfied 

2.1.1 Rolling Windows
The concept of simply ignoring messages having old sequential numbers leaves one problem: What if the counter value 
overflows and wraps back to 0? This section describes a solution.
Handling the sequential counter is best described by two examples, given in Figure 2-4. The first example shows a situation 
where the last received valid message had a counter value A. As there is always the possibility that the transmitter has been 
activated a number of times outside the receiver's range, the receiver must accept values up to some limit, labeled C in the 
figure. The simple approach of accepting all values larger than the last received value won't work, as is apparent in the 
second example where point A is close to the upper end of the counter value range. The dark segment from point A to C 
shows the window of acceptance for counter values. Point B is an example of a value that would be accepted while point D 
is a value that would be rejected. When a value is accepted, the window starting point moves to that point.

Figure 2-4. Rolling Window of Acceptance for Counter Values 

This scheme ensures that old messages are never accepted unless the head of the rolling window has reached the old 
counter values. By choosing a large enough counter span and limiting the window size itself, this scheme effectively 
prevents replay attacks with old messages.
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One-Time Passwords
• OTP may be deemed valid only once (the first time)
• Adversary cannot predict future OTPs, even with 

complete knowledge of what passwords have already 
been used



One-time passwords
• A one-time password (OTP) is valid only once, the first 

time used
• Similar to changing your password with every use
• Rules out replays entirely
• But man-in-the-middle could still succeed

• Use case:  login at untrusted public machine where you 
fear keylogger

• Use case: recovery 
• "main password" is lost
• phone is lost during two-factor authentication (e.g., Google backup 

codes)
• Older use case:  send cleartext password over network



One-time passwords
• Strawman implementation:  Pre-registered OTPs
• Solution: algorithmic generation of OTPs

• SecureID can be seen as an instantiation:  each code is a OTP 
valid for only 60 sec.

• Iterated hashing is another possibility...



Unique challenge: MACs
Assume:  M stores a MAC key for each token, 
i.e., a set of tuples (id_T, uid, k_T), and T stores k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T: t=MAC(N; k_T)
5. T->M: id_T, t
6. M: lookup (uid, kT) for id_T;

U is authenticated as uid if t=MAC(N; k_T)

Non-problem: key distribution:  already have to physically distribute 
tokens
Problem:  key storage at L:  what if key database is stolen?



EPC Gen2v2 RFID Cards



Unique challenge: Dig Sig
Assume:  M stores a verification key for each token, 
i.e., a set of tuples (id_T, uid, K_T), and T stores signing key k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T: s=Sign(N; k_T)
5. T->M: id_T, s
6. M: lookup (uid, K_T) for id_T;

U is authenticated as uid if Ver(N; s; K_T)

Quasi-problems: cost?  performance?  power?  patents?  



U2F



Two-factor with PIN
Assume:  M also stores a PIN for each token, i.e., a set of 
tuples (id_T, uid, k_T, pin), and T stores k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T->U: Enter PIN on my keyboard
5. U->T: pin
6. T: compute t=MAC(N, pin; k_T)
7. T->M: id_T, t
8. M: lookup (uid, pin, k_T) for id_T;

U is authenticated as uid
if t=MAC(N, pin); k_T)



Remote Authentication
• (Usually) No communication from server to token
• Usability considerations render challenge-response 

impractical



Hypothetical protocol
Assume:  S stores a set of tuples (id_T, uid, kT, pin), and T stores kT

1. U->L: I want to authenticate as uid to S
2. L and S: establish secure channel
3. L->U: Enter PIN and code on my keyboard
4. T->U: code = MAC(time@T, id_T; kT)
5. U->L: pin, code
6. L: compute h = H(pin, code)
7. L->S: uid, h
8. S: lookup (pin, id_T, kT) for uid;

id_Hu is authenticated 
if h=H(pin, MAC(time@S, id_T; kT))

Engineering challenge:  clock synchronization



Estimating clock value
• Each device D has a clock C_D

• model C_D as an non-decreasing, positive function of real time
• Server needs to estimate C_T(t_code): the time the token's 

clock displayed when the code was computed 
• Clocks run at different rates and thus drift apart

• we assume drift rate is bounded by a constant ρ
• If C_T(t) = C_S(t) then |C_T(t') – C_S(t')| <= 2𝜌(t'-t)

• Messages take time d_min – d_max to deliver
• Clock estimation:

• C_T(t_prev) <= C_T(t_code) 
• C_T(t_code) ∈ [C_S(t_curr) + Δ_prev + d_min - 2𝜌(t_curr - t_prev), 

C_S(t_curr) + Δ_prev + d_max + 2𝜌(t_curr - t_prev)]
• To authenticate: check all possible times in range
• On successful authentication, update t_prev



SecurID
• Token:  displays code that changes every minute

• LCD display
• Internal clock (1 minute granularity)
• No input channel
• Can compute hashes, MACs
• Stores a secret

• Ideas used: 
• replace nonce with current time
• use L to input PIN
• server checks ±10 minutes to allow for 

clock drift



Paper “token”
...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
45: SUN GENE LOU HARD ELY HOG
44: GET CANE SOY NOR MATE DUEL
43: LUST TOUT NOV HAN BACH FADE
42: HOLM GIN MOLL JAY EARN BUFF
41: KEEN ABUT GALA ASIA DAM SINK
...



Hash chains
• Let Hi(x) be i iterations of H applied to x

• H0(x) = x
• Hi+1(x) = H(Hi(x))

• Hash chain:  H1(x), H2(x), H3(x), ..., Hn(x)



OTPs from hash chains
• Given a randomly chosen, large, secret seed s...
• Bad idea:  generate a sequence of OTPs as a hash 

chain:  H1(s), H2(s), ..., Hn(s)
• Suppose untrusted public machine learns Hi(s)
• From then on can compute next OTP Hi+1(s) by applying H, 

because hashes are easy to compute in forward direction
• But hashes are hard to invert...

• Good idea [Lamport 1981]:  generate a sequence of 
OTPs as a reverse hash chain:  Hn(s), ..., H1(s)
• Suppose untrusted public machine learns Hi(s)
• Next password is Hi-1(s)
• Computing that is hard!



Protocol (almost)
Assume:  S stores a set of tuples (uid, n_u, s_u)

1. U->L->S: uid
2. S: lookup (n_u, s_u) for uid;

let n = n_u;
let otp = Hn(s_u);
decrement stored n_u

3. S->L->U: n
4. U: p = Hn(s_u)
5. U->L->S: p
6. S: uid is authenticated if p = otp

Problem:  S has to compute a lot of hashes if authentication is 
frequent



Solution to S's hash burden
• S stores last:  last successful OTP for id_Hu, where last = 

Hn+1(s)
• S receives next:  next attempted OTP, where if all is well next

= Hn(s)
• S checks its correctness with a single hash:

H(next) = H(Hn(s)) = Hn+1(s) = last
• And if correct S updates last successful OTP:  last := next 

Next problem: what if Hu and S don't agree on what password 
should be used next?  i.e., become desynchronized
• network drops a message
• attacker does some online guessing (impersonating Hu) or 

spoofing (impersonating S)



Solution to desynchronization
• Hu and S independently store index of last used 

password from their own perspective, call them m_Hu and 
m_S
• Neither is willing to reuse old passwords (i.e., higher indexes)
• But both are willing to skip ahead to newer passwords (i.e., lower 

indexes)
• To authenticate:

• S requests index m_S
• Hu computes min(m_S, m_Hu), sends that along with OTP for it
• S and Hu adjust their stored index

Next problem:  running out of passwords:  have to bother 
sysadmin to get new printed passwords periodically; might run 
out while traveling
Solution:  replace system-chosen seed with user-chosen 



Salted passwords as seed
• Compute OTP as Hn(pass,salt)
• Whenever Hu wants to generate new set of OTPs:

• find a local machine Hu trusts (could be offline, phone, ...)
• request new salt from S
• enter pass
• generate as many new OTPs as Hu likes by running hash forward
• let S know how many were generated and what the last one was



Final protocol
Assume:  S stores a set of tuples (uid, n_S, salt, last), Hu stores (pass, n_u)

1. U->L->S: uid
2. S: lookup n_S for uid
3. S->L->U: n_S
4. U: n = min(n_u, n_S) – 1;

if n<=0 then abort
else let p = Hn(pass, salt); // lookup on paper

n_u := n  // cross off on paper
5. U->L->S: n, p
6. S: if n<n_S and Hn_S-n(p)=last

then n_S := n; 
last := p; 
uid is authenticated



S/KEY
[RFC 1760]:
• Instantiation of that protocol for particular hash algorithms 

and sizes
• But same idea works for newer hashes and larger sizes



Solution to human computation
Problem:  humans aren't good at typing long bit strings
Solution: represent bit strings as short words
i.e., divide hash output into chunks, use each chunk as index into 
dictionary, where each word in dictionary is fairly short

...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
...


