
CS 5430 3/16/2018

Lecture 13: Tokens

Review: Authentication of humans
• Something you are

fingerprint, retinal scan, hand silhouette, a pulse
• Something you know

password, passphrase, PIN, answers to security questions
• Something you have

physical key, ticket, {ATM, prox, credit} card, token

Humans vs. machines
• At enrollment, human is issued a token

• Ranges from dumb (a physical key, a piece of paper) to a smart
machine (a cryptographic processor)

• Token becomes attribute of human's identity
• Authentication of human reduces to authentication of

token

Authentication tokens

Threat Model: Eavesdropper

• Adversary can read read and
replay messages

• Adversary cannot change
messages during protocol
execution (not full Dolev-Yao)

Fixed codes (Keyless Entry)

• Token stores a secret value id_T (e.g., key, id,
password)

• Reader stores list of authorized ids
• To enter: T->M: id_T

• Attack: replay: thief sits in car nearby, records serial number,
programs another token with same number, steals car

• Attack: brute force: serial numbers were 16 bits, devices
could search through that space in under an hour for a single
car (and in a whole parking lot, could unlock some car in under
a minute)

• Attack: insider: serial numbers typically show up on many
forms related to car, so mechanic, DMV, dealer's business
office, etc. must be trusted

Fixed codes (RFIDs)

• Token stores a secret value id_T (e.g., key, id,
password)

• Reader stores list of authorized ids
• To enter: T->M: id_T

• Attack: replay: thief sits nearby, records serial number,
programs another token with same number, authenticates

• Attack: privacy: adversary tracks token usage across system
and learns user attributes and/or behaviors

• Countermeasure: one-time passwords

“Rolling” codes
• There is a master key, mk, for the barrier
• Token stores:

• serial number T
• nonce N, which is a sequence counter
• shared key k, which is H(mk, T)

• Barrier stores:
• all those values for all authorized tokens
• as well as master key mk

• To enter: T->B: T, MAC(T, N; k)
• And T increments N
• So does B if MAC tag verifies

• Problem: desynchronization of nonce
• Partial solution: accept “rolling window” of nonces

Rolling window

5AVR411 [APPLICATION NOTE]
2600E–AVR–07/15

There are numerous algorithms available to use for generating the MAC, but for various reasons we have chosen the
Advanced Encryption Standard (AES) algorithm, which is a symmetric block cipher. The AES algorithm supports key sizes of
128, 192 and 256 bits. Its use as a MAC generator is discussed further under theheading Section 2.1.1 “Rolling Windows” on
page 5.

Figure 2-3. Secure System with all Four Goals Satisfied

2.1.1 Rolling Windows
The concept of simply ignoring messages having old sequential numbers leaves one problem: What if the counter value
overflows and wraps back to 0? This section describes a solution.
Handling the sequential counter is best described by two examples, given in Figure 2-4. The first example shows a situation
where the last received valid message had a counter value A. As there is always the possibility that the transmitter has been
activated a number of times outside the receiver's range, the receiver must accept values up to some limit, labeled C in the
figure. The simple approach of accepting all values larger than the last received value won't work, as is apparent in the
second example where point A is close to the upper end of the counter value range. The dark segment from point A to C
shows the window of acceptance for counter values. Point B is an example of a value that would be accepted while point D
is a value that would be rejected. When a value is accepted, the window starting point moves to that point.

Figure 2-4. Rolling Window of Acceptance for Counter Values

This scheme ensures that old messages are never accepted unless the head of the rolling window has reached the old
counter values. By choosing a large enough counter span and limiting the window size itself, this scheme effectively
prevents replay attacks with old messages.

Secret key

Ser.

Message:

Cmd MACSeq.
Transmitter

Receiver

Unique serial
number

Sequential
counter

List of last used
counter values

List of accepted
transmitter

List of secret keys

Secret keySecret key

Ser. CmdSeq.

Example 1

A - Value from last valid message C - End of window

B - Accepted counter values D - Rejected counter values

Example 2
0

...
n-2 n-1 1 ...

D

A

C B

0

...
n-2 n-1 1 ...

D

A C
B

Image source: Atmel

One-Time Passwords
• OTP may be deemed valid only once (the first time)
• Adversary cannot predict future OTPs, even with

complete knowledge of what passwords have already
been used

One-time passwords
• A one-time password (OTP) is valid only once, the first

time used
• Similar to changing your password with every use
• Rules out replays entirely
• But man-in-the-middle could still succeed

• Use case: login at untrusted public machine where you
fear keylogger

• Use case: recovery
• "main password" is lost
• phone is lost during two-factor authentication (e.g., Google backup

codes)
• Older use case: send cleartext password over network

One-time passwords
• Strawman implementation: Pre-registered OTPs
• Solution: algorithmic generation of OTPs

• SecureID can be seen as an instantiation: each code is a OTP
valid for only 60 sec.

• Iterated hashing is another possibility...

Unique challenge: MACs
Assume: M stores a MAC key for each token,
i.e., a set of tuples (id_T, uid, k_T), and T stores k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T: t=MAC(N; k_T)
5. T->M: id_T, t
6. M: lookup (uid, kT) for id_T;

U is authenticated as uid if t=MAC(N; k_T)

Non-problem: key distribution: already have to physically distribute
tokens
Problem: key storage at L: what if key database is stolen?

EPC Gen2v2 RFID Cards

Unique challenge: Dig Sig
Assume: M stores a verification key for each token,
i.e., a set of tuples (id_T, uid, K_T), and T stores signing key k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T: s=Sign(N; k_T)
5. T->M: id_T, s
6. M: lookup (uid, K_T) for id_T;

U is authenticated as uid if Ver(N; s; K_T)

Quasi-problems: cost? performance? power? patents?

U2F

Two-factor with PIN
Assume: M also stores a PIN for each token, i.e., a set of
tuples (id_T, uid, k_T, pin), and T stores k_T

1. U->M: I want to authenticate with T
2. M: invent unique nonce N
3. M->T: N
4. T->U: Enter PIN on my keyboard
5. U->T: pin
6. T: compute t=MAC(N, pin; k_T)
7. T->M: id_T, t
8. M: lookup (uid, pin, k_T) for id_T;

U is authenticated as uid
if t=MAC(N, pin); k_T)

Remote Authentication
• (Usually) No communication from server to token
• Usability considerations render challenge-response

impractical

Hypothetical protocol
Assume: S stores a set of tuples (id_T, uid, kT, pin), and T stores kT

1. U->L: I want to authenticate as uid to S
2. L and S: establish secure channel
3. L->U: Enter PIN and code on my keyboard
4. T->U: code = MAC(time@T, id_T; kT)
5. U->L: pin, code
6. L: compute h = H(pin, code)
7. L->S: uid, h
8. S: lookup (pin, id_T, kT) for uid;

id_Hu is authenticated
if h=H(pin, MAC(time@S, id_T; kT))

Engineering challenge: clock synchronization

Estimating clock value
• Each device D has a clock C_D

• model C_D as an non-decreasing, positive function of real time
• Server needs to estimate C_T(t_code): the time the token's

clock displayed when the code was computed
• Clocks run at different rates and thus drift apart

• we assume drift rate is bounded by a constant ρ
• If C_T(t) = C_S(t) then |C_T(t') – C_S(t')| <= 2𝜌(t'-t)

• Messages take time d_min – d_max to deliver
• Clock estimation:

• C_T(t_prev) <= C_T(t_code)
• C_T(t_code) ∈ [C_S(t_curr) + Δ_prev + d_min - 2𝜌(t_curr - t_prev),

C_S(t_curr) + Δ_prev + d_max + 2𝜌(t_curr - t_prev)]
• To authenticate: check all possible times in range
• On successful authentication, update t_prev

SecurID
• Token: displays code that changes every minute

• LCD display
• Internal clock (1 minute granularity)
• No input channel
• Can compute hashes, MACs
• Stores a secret

• Ideas used:
• replace nonce with current time
• use L to input PIN
• server checks ±10 minutes to allow for

clock drift

Paper “token”
...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
45: SUN GENE LOU HARD ELY HOG
44: GET CANE SOY NOR MATE DUEL
43: LUST TOUT NOV HAN BACH FADE
42: HOLM GIN MOLL JAY EARN BUFF
41: KEEN ABUT GALA ASIA DAM SINK
...

Hash chains
• Let Hi(x) be i iterations of H applied to x

• H0(x) = x
• Hi+1(x) = H(Hi(x))

• Hash chain: H1(x), H2(x), H3(x), ..., Hn(x)

OTPs from hash chains
• Given a randomly chosen, large, secret seed s...
• Bad idea: generate a sequence of OTPs as a hash

chain: H1(s), H2(s), ..., Hn(s)
• Suppose untrusted public machine learns Hi(s)
• From then on can compute next OTP Hi+1(s) by applying H,

because hashes are easy to compute in forward direction
• But hashes are hard to invert...

• Good idea [Lamport 1981]: generate a sequence of
OTPs as a reverse hash chain: Hn(s), ..., H1(s)
• Suppose untrusted public machine learns Hi(s)
• Next password is Hi-1(s)
• Computing that is hard!

Protocol (almost)
Assume: S stores a set of tuples (uid, n_u, s_u)

1. U->L->S: uid
2. S: lookup (n_u, s_u) for uid;

let n = n_u;
let otp = Hn(s_u);
decrement stored n_u

3. S->L->U: n
4. U: p = Hn(s_u)
5. U->L->S: p
6. S: uid is authenticated if p = otp

Problem: S has to compute a lot of hashes if authentication is
frequent

Solution to S's hash burden
• S stores last: last successful OTP for id_Hu, where last =

Hn+1(s)
• S receives next: next attempted OTP, where if all is well next

= Hn(s)
• S checks its correctness with a single hash:

H(next) = H(Hn(s)) = Hn+1(s) = last
• And if correct S updates last successful OTP: last := next

Next problem: what if Hu and S don't agree on what password
should be used next? i.e., become desynchronized
• network drops a message
• attacker does some online guessing (impersonating Hu) or

spoofing (impersonating S)

Solution to desynchronization
• Hu and S independently store index of last used

password from their own perspective, call them m_Hu and
m_S
• Neither is willing to reuse old passwords (i.e., higher indexes)
• But both are willing to skip ahead to newer passwords (i.e., lower

indexes)
• To authenticate:

• S requests index m_S
• Hu computes min(m_S, m_Hu), sends that along with OTP for it
• S and Hu adjust their stored index

Next problem: running out of passwords: have to bother
sysadmin to get new printed passwords periodically; might run
out while traveling
Solution: replace system-chosen seed with user-chosen

Salted passwords as seed
• Compute OTP as Hn(pass,salt)
• Whenever Hu wants to generate new set of OTPs:

• find a local machine Hu trusts (could be offline, phone, ...)
• request new salt from S
• enter pass
• generate as many new OTPs as Hu likes by running hash forward
• let S know how many were generated and what the last one was

Final protocol
Assume: S stores a set of tuples (uid, n_S, salt, last), Hu stores (pass, n_u)

1. U->L->S: uid
2. S: lookup n_S for uid
3. S->L->U: n_S
4. U: n = min(n_u, n_S) – 1;

if n<=0 then abort
else let p = Hn(pass, salt); // lookup on paper

n_u := n // cross off on paper
5. U->L->S: n, p
6. S: if n<n_S and Hn_S-n(p)=last

then n_S := n;
last := p;
uid is authenticated

S/KEY
[RFC 1760]:
• Instantiation of that protocol for particular hash algorithms

and sizes
• But same idea works for newer hashes and larger sizes

Solution to human computation
Problem: humans aren't good at typing long bit strings
Solution: represent bit strings as short words
i.e., divide hash output into chunks, use each chunk as index into
dictionary, where each word in dictionary is fairly short

...
50: MEND VOTE MALE HIRE BEAU LAY
49: PUG LYRA CANT JUDY BOAR AVON
48: LOAM OILY FISH CHAD BRIG NOV
47: RUE CLOG LEAK FRAU CURD SAM
46: COY LUG DORA NECK OILY HEAL
...

