Lecture 11: Human Authentication

CS 5430 3/12/2018

Classes of Countermeasures

Authentication: mechanisms that bind principals to actions

Authorization: mechanisms that govern whether actions are permitted

Audit: mechanisms that record and review actions

Classes of Principals

Authentication: mechanisms that bind principals to actions

- Authenticating Humans
- Authenticating Machines
- Authenticating Programs

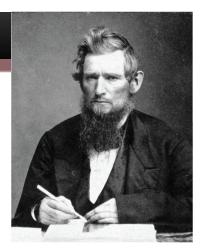
IDENTITY

Personal identity

- Major philosophical problem
 - People are not identical to themselves over time, but their identity persists throughout changes
 - cf. Ship of Theseus
- Intrinsic identity: continuation of consciousness
- Extrinsic identity: relationship to everything else
- Control: individual's, others', no one's?

Digital identity

- Digital identity: data that describes a person and its relationship to others
 - not the person itself; not a personal identity
- A person could have many digital identities, some overlapping, some contradictory
- Data could be incorrect, outdated, incomplete


Aspects of digital identity

- Name
- NetID
- Email address
- URL
- IP address
- Citizenship
- Political party

• ...

Identity

- Attribute: property of a principal
 - name is "Ezra Cornell", birthdate is 01/11/1807, mother's maiden name is Barnard
- Identity: set of attributes
 - each principal may have many identities of use in different scenarios (student, taxpayer, athlete)
- Identifier: an attribute that is unique within a population
- Verifier: an attribute that is hard to produce hence can be used as a basis for authentication

Identity

- Enrollment: establishing identity with a system
 - Create an account
 - Get an ID card, visa
 - Register a machine on a network
 - Get a signing key from a provider
- System might (not) verify claimed attributes during enrollment
 - Websites rarely do
 - Governments often do

HUMAN AUTHENTICATION

Authentication of humans

Categories: [IBM, TR G520-2169, 1970]

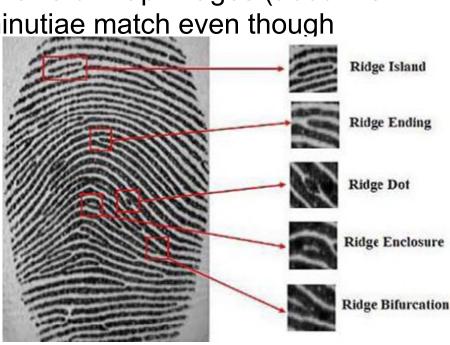
- Something you are fingerprint, retinal scan, hand silhouette, a pulse
- Something you know password, passphrase, PIN, answers to security questions
- Something you have physical key, ticket, {ATM, prox, credit} card, token

Authentication of humans

- Two-factor authentication: authenticate based on two independent methods
 - ATM card plus PIN
 - password plus registered mobile phone
- Multi-factor authentication: two or more independent methods
- Best to combine separate categories, not reuse categories
 - non-example: requiring two passwords from a single human: arguably not independent
 - non-example: requiring single password from each of two humans: authenticates two humans then makes authorization decision

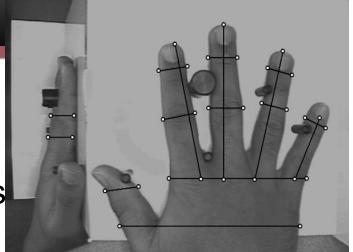
SOMETHING YOU ARE

Biometric

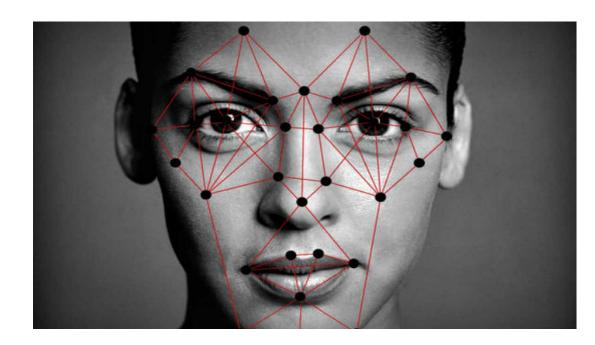

- Biometric: measurement of biological and behavioral attributes (something you are)
 - biological attributes can be confounded by behavior
 - biology and behavior is non-constant: variation from one measurement to the next

Example: Fingerprint

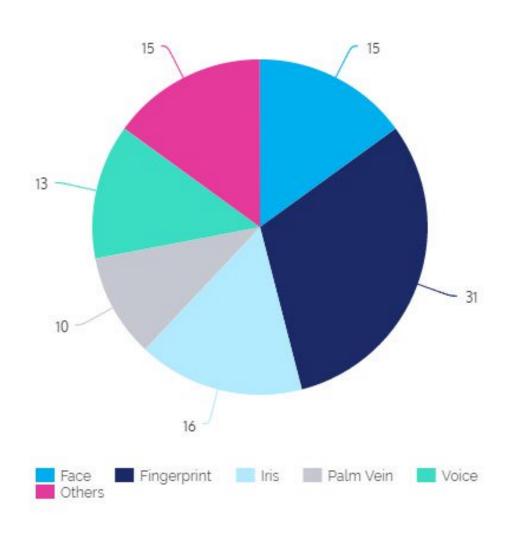
- Particular use: California social services
 - prevent applicants for welfare from defrauding state by receiving assistance under multiple identities
- Fingerprint stored as bitmap and as minutae
 - When user authenticates, computer compares minutiae


If they match, human additionally reviews bitmap images (about 15 out of 10000 authentications have minutiae match even though

fingerprints do not)


Example: Hand geometry

- Used in 2012 Olympic Games, Walt Dis nuclear facilities, data centers, ...
- Camera images palm and side of hand (no texture information)
- Images reduced to (e.g.) 31000 points then 90 measurements then 9 bytes of data
 - Final data not directly related to any source measurements
 - Data stored as a template for later comparison
- When user authenticates, another set of images taken
 - If data are close enough to stored template, user deemed authenticated
 - Can adjust threshold per-user, in case some users are difficult to authenticate
- Each time user is authenticated, template is updated to account for change over time



Example: Facial recognition

- Used in border control, Facebook, iPhone X
- Operates on 2D image or depth map
- Modern systems use ML classifiers to identify matches
 - Most systems perform poorly on profiles, low-res images
 - Most systems perform less well on women and minorities

Other Biometrics

Biometric attributes as verifiers

Advantages:

- Can't lose or forget a biometric
- Easy to use some biometrics (e.g., fingerprint scan vs. PIN on iPhone)

Disadvantages:

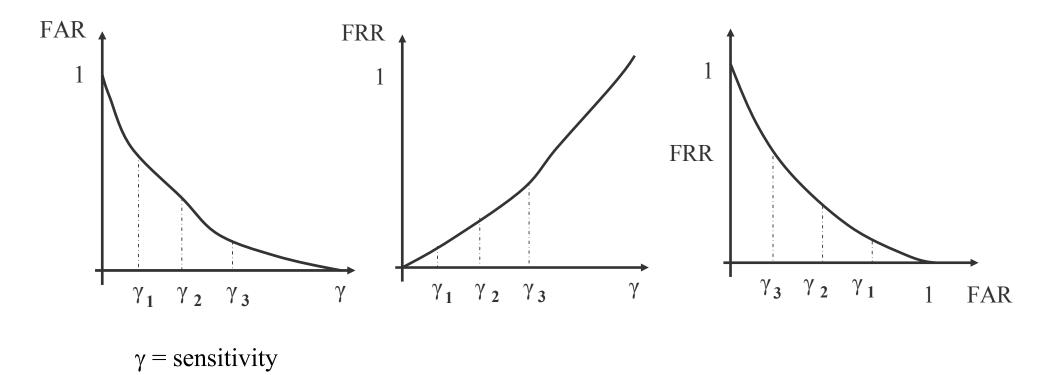
- Updating identities after disclosure is hard (new fingerprints? new retina?)
 - So enrolling a biometric identifier places permanent trust in receiver, even if they go bankrupt, retroactively change privacy policies, get taken over by new administration, ...
- Impossible to be application specific (your hand geometry is the same regardless of what system you use)
- Physical process with errors...
- Fear of negative implications for privacy...

Biometric attributes as verifiers

Requirements:

- Identifier
- Easy to measure
- Small variation over time and measurement
- Difficult to spoof
- Acceptable to users

EVALUATING BIOMETRICS


Accuracy

- False accept: authenticate a principal with wrong identity (fraud)
- False reject: fail to authenticate a principal under right identity (insult)
- Hypothesis testing:
 - null hypothesis: human being authenticated has claimed identity
 - false accept = type II error
 - false reject = type I error
- Tunable trade off of sensitivity between which error is more likely
 - False acceptance rate (FAR): percentage of attempts in which imposters are authenticated (with wrong identity)
 - False reject rate (FRR): percentage of attempts in which legitimate users are denied authentication

Sensitivity

Receiver operating characteristics (ROC) curve: graph of FRR vs. FAR (or perhaps 1-

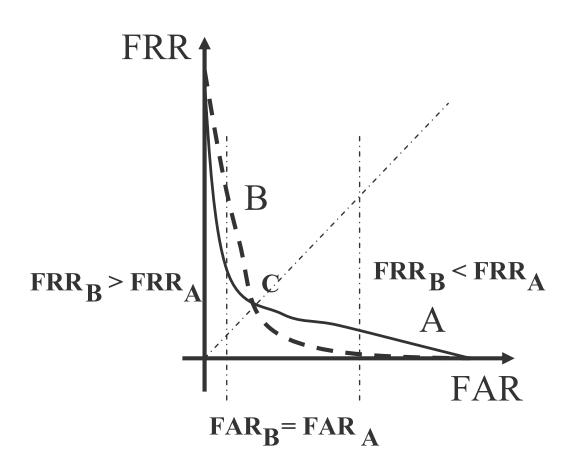
FAR, perhaps nonlinear axes)

Graph source: http://www.csee.wvu.edu/~natalias/biom426/performance_fall09.pdf

ROC comparison

- Crossover error rate (CER): value on ROC at which FAR=FRR (aka equal error rate, ERR)
- Many other statistics for comparison possible
 - Anytime a graph is reduced to a single number, we lose information
 - What matters most for biometrics is the use case/threat model

Use cases


Entry to military facility:

- letting imposters in might be worse than (temporarily) delaying entry of personnel
- so prefer low false accept rate

Entry to hotel lobby:

- letting non-guests in might be better than (temporarily) delaying entry of guests
- so prefer low false reject rate

ROC comparison

- Two matchers (A=solid; B=dashed)
- At point C, matchers have same FAR and FRR
- To the left of C, matcher A has lower FRR for same FAR
- To the right, matcher B has lower FRR for same FAR

Graph source: http://www.csee.wvu.edu/~natalias/biom426/performance_fall09.pdf

Spoofing

- Active adversary fools sensor with artificial object
- Solution:
 - better sensors
 - better biometrics
 - multi-factor authentication

Gummy Bear Attack

Face ID Attack

Privacy concerns

- Humans might have concerns about measurements (have photo taken, parts of body scanned)
- Humans might not want to disclose attributes during enrollment (SSN, political party)
- Humans might not want action bound to their identity (buying medication)
- Humans might not want their actions linked to other actions, exposing them to inference about what they thought were unrelated activities.

Principles for privacy

- Seek consent: get permission to authenticate and store identity
- Select minimal identity: use the smallest possible set of attributes
- Limit storage: don't save information about identity or authentication without need, and delete when no longer needed
- Avoid linking: don't reuse identifiers across systems

Privacy and biometrics

- Biometrics can violate intrinsic privacy by requiring submission to bodily contact or measurement
 - Fear of germs
 - Religious prohibitions
- Biometrics can violate informational privacy
 - Biometric identifiers might effectively become a standard, universal identifier, enabling linking

Comparing Biometrics

6 4 - 2 - 3 3 2 0.01 Voice Fingerprint Palm Vein

False Acceptance Rate

False Rejection Rate

Biometric Technology	Accuracy	Cost	Devices required	Social acceptability
ADN	High	High	Test equipment	Low
Iris recognition	High	High	Camera	Medium-low
Retinal Scan	High	High	Camera	Low
Facial recognition	Medium-low	Medium	Camera	High
Voice recognition	Medium	Medium	Microphone, telephone	High
Hand Geometry	Medium-low	Low	Scanner	High
Fingerprint	High	Medium	Scanner	Medium
Signature recognition	Low	Medium	Optic pen, touch panel	High