
CS 5430 3/05/2018

Lecture 9: Public-Key Cryptography

Crypto Thus Far…

Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

Protocol to exchange encrypted message
1. A: c = Enc(m; K_B)
2. A -> B: c
3. B: m = Dec(c; k_B)

key pair: (K_B, k_B)
• public key written with uppercase letter
• private key written with lowercase letter

Public keys
0. B: (K_B, k_B) = Gen(len)
1. ...

• All public keys published in "phonebook"
• So A can lookup B's key to send message
• Length of phonebook is O(n)
• So quadratic problem reduced to linear!
• Eliminates key distribution problem!

RSA
[Rivest, Shamir, Adleman 1977]
Shared Turing Award in 2002: ingenious
contribution to making public-key crypto

• Pick primes 𝑝, 𝑞
• Choose 𝑒, 𝑑 such that 𝑒𝑑 = 1	mod	(𝑝 − 1)(𝑞 − 1)
• 𝑃𝐾 = (𝑛, 𝑒)
• 𝑆𝐾 = (𝑝, 𝑞, 𝑑)

𝑐 = 𝑚5	mod	𝑛
𝑚 = 𝑐6	mod	𝑛

Textbook RSA is insecure
• Deterministic: given same plaintext and key, always

produces the same ciphertext
• Several other attacks, too
• Solution: incorporate a nonce in the message before

encrypting
• Called padding but encoding might be a better term
• Don’t implement yourself; use OAEP implementation in your crypto

library (Optimal Asymmetric Encryption Padding)

Problems of length
• Asymmetric encryption uses big integers, not byte arrays

• all messages must be encoded as integers
• modulus dictates maximum integer that can be encrypted
• big integer operations are slow

• say, 1 to 3 orders of magnitude slower than block ciphers

• So the problems we had before crop up again...
• what if message length is too short?

• actually that's okay: a small integer is still an integer
• what if message length is too long?

• in theory could use block modes like with symmetric encryption
• in practice, that's too inefficient...

HYBRID ENCRYPTION

Hybrid encryption
• Assume:

• Symmetric encryption scheme (Gen_S, Enc_S, Dec_S)
• Asymmetric encryption scheme (Gen_A, Enc_A, Dec_A)

• Use asymmetric encryption to establish a shared session
key
• Avoids quadratic problem, assuming existence of phonebook
• Session key will be short, so avoids inefficiency

• Use symmetric encryption to exchange long plaintext
encrypted under session key
• Gain efficiency of block cipher and mode

Protocol to exchange encrypted message
0. B: (K_B, k_B) = Gen_A(len_A)
1. A: k_s = Gen_S(len_S)

c1 = Enc_A(k_s; K_B)
c2 = Enc_S(m; k_s) //mode

2. A -> B: c1, c2
3. B: k_s = Dec_A(c1; k_B)

m = Dec_S(c2; k_s)

Session keys
• If key compromised, only those messages encrypted

under it are disclosed
• Used for a brief period then discarded

• cryptoperiod: length of time for which key is valid
• in this case, for a single (long) message
• not intended for reuse in future messages
• only intended for unidirectional usage:

• A->B, not B->A
• why? A chose the key, not B

Encryption
• We can now protect confidentiality of messages against

Dolev-Yao attacker
• efficiently, thanks to hybrid of symmetric and asymmetric

encryptionhonebook of public keys

• But what about integrity...?

DIGITAL SIGNATURES

Recall: Key pairs
• Instead of sharing a key between pairs of principals...
• ...every principal has a pair of keys

• public key: published for the world to see
• private key: kept secret and never shared

Key pair terminology

Encryption Digital
signatures

Public key Encryption key Verification
key

Private key Decryption key Signing key

Digital signature scheme
• Sign(m; k): sign message m with key k, producing

signature s as output
• Ver(m; s; K): verify signature s on message m with key K
• Gen(len): generate a key pair (K,k) of length len

Sign

Protocol to exchange signed message
0. A: (K_A,k_A) = Gen(len)
1. A: s = Sign(m; k_A)
2. A -> B: m, s
3. B: accept if Ver(m; s; K_A)

• Message is sent in plaintext: no protection of
confidentiality

• Goal is to detect modification not prevent

...what if message is too long for asymmetric algorithms?

Security of digital signatures
• Must be hard to forge signature for a message without

knowledge of key
...like handwritten signatures

• Even if in possession of multiple (message, signature)
pairs for that key

...unlike handwritten signatures

RSA
• Core ideas are the same as RSA encryption
• Common mistake: “RSA sign = encrypt with private key”
• Truth (in real world, outside of textbooks):

• there's a core RSA function R that works with either K or k
• RSA encrypt = do some prep work on m then call R with K
• RSA sign = do different prep work on m then call R with k
• Prep work: recall “textbook RSA is insecure”

• (For encryption: OAEP)
• For signatures: PSS (probabilistic signature scheme)
• Also need to handle long messages…

Signatures with hashing
1. A: s = Sign(H(m); k_A)
2. A -> B: m, s
3. B: accept if Ver(H(m); s; K_A)

So common a practice that I won't bother to write the
hashing from now on

DSA
DSA: Digital Signature Algorithm [Kravitz 1991]
• Standardized by NIST and made available royalty-free in

1991/1993
• Used for decades without any serious attacks
• Closely related to Elgamal encryption

Blind signatures
[Chaum 1983]
• Purpose: signer doesn’t know what they are signing
• Two additional algorithms: Blind and Unblind
• Unblind(Sign(Blind(m); k)) = Sign(m; k)
• Uses: e-cash, e-voting

Group signatures
[Chaum and van Heyst 1991]
• Purpose: one member of group signs anonymously on

behalf of group
• Introduces a group manager who controls membership
• Two new protocols: Join and Revoke, to manage

membership
• One new algorithm: Open, which manager can run to

reveal who signed a message

