
CS5430 – System Security Spring 2018

Assignment 5
Due: May 7, 2018

Problem 1: Logging1

Your task in this problem is to design the logging system for an automated teller machine (ATM),

ATM functional requirements. An ATM comprises the following subsystems: (1) a processor,
which performs computation, (2) a magnetic card reader, (3) a keypad, (4) a monitor, (5) several bill
storage canisters, one per denomination, (6) a bill disburser, (7) a thermal printer for customer receipts,
(8) a system clock, (9) a slot through which customers can deposit envelopes, (10) a communication link
to a bank-operated network, and (11) a physical key-operated switch to enable an operator to start and
stop the machine. The ATM provides service to customers only if the key-operated switch is set to the
"on" position. When an operator turns the switch to that position, the operator is required to enter
into the keypad the amount of cash in each canister. (The denominations of the canisters are known to
the machine.) The switch can be turned to "off" only if there is no customer currently in the midst of
a series of transactions. When off, no customers will be served, and the operator can remove deposit
envelopes, reload the ATM with cash, and replenish the paper for receipts.

The ATM will not provide service to customers unless the communication link is active. If the link
ever is inactive, the ATM cancels any in-process transactions and refuses to begin any new transactions.

To receive service, a customer inserts their ATM card into the reader. The ATM reads the magnetic
stripe and returns the card to the customer. The customer then enters a PIN on the keypad. The ATM
authenticates the card and PIN, which requires using the communication link to the bank. If authenti-
cation fails, the ATM re-prompts for the PIN. After three incorrect attempts, the ATM communicates
to the bank that the card should be deactivated. If authentication succeeds, the bank retrieves a set
of accounts that are associated with the card. The customer can then perform a series of transactions
with those accounts, which continues until the customer indicates they are finished or until the ATM
detects that the customer has failed to respond to an input prompt within a period of one minute. At
any point a customer may abort a transaction in process by pressing a Cancel key on the keypad instead
of entering the next input requested by the ATM. If a transaction succeeds, the ATM prints a receipt
for the customer.

The following transactions are supported:

1. Withdraw cash from an associated account in any denominations supported by the ATM. If the
ATM does not have sufficient cash available, it cancels the transaction. Furthermore, the bank
must authorize the debit of funds. The ATM does not participate in that authorization decision.

2. Deposit funds into an associated account. The customer places cash or checks in an envelope and
enters the amount of the deposit on the keypad. The bank will later decide whether the claimed
amount is consistent with the funds available from the envelope and, if so, will credit the account.
The ATM does not participate in that decision.

3. Transfer funds between associated accounts.

4. Query the bank for the funds available in an associated account.
1adapted from [Wang et al., The formal design model of an automatic teller machine (ATM), IJSSCI 2(1):102–131,

Jan–Mar 2010], from Prof. Russell Bjork (Gordon University), and from Prof. Michael Clarkson (Cornell University)

5-1



What to do. Your design should answer the following questions:

• What log files will be kept, and where?

• What is the format of an entry in a log file?

• What are each of the possible entries that could be made into a file? Specify the information
contained in the entry and the conditions under which the entry will be made. The entries should
cover at least 10 different types of events.

You are permitted to propose modest hardware improvements to the ATM for the purpose of logging.

What to submit: a pdf file logging.pdf containing your solution

Problem 2: Tamper-proof Logs
Consider the following revisions of the tamper-proof log protocol discussed in class. In each, what new
attacks would be possible against the protocol? What attacks would still be impossible?

Part A
1. ek = H("encrypt", ak)
2. x = m, MAC(m; ak)
3. record x in log
4. ak = H("iterate", ak)

Part B
1. ek = H("encrypt", ak)
2. x = Enc(m; ek)
3. record x in log
4. ak = H("iterate", ak)

Part C
1. ek = H("encrypt", ak)
2. x = AuthEnc(m; ek; ak)
3. record x in log
4. ak = ak // i.e., no change to ak

What to submit: a pdf file tamperproof.pdf containing your solution

5-2



Problem 3: Auditing2

Write a program whose purpose is automated review of a Linux system log. Your program should
take as input the file /var/log/auth.log from Ubuntu 16.04. Then, your program should process the
log to determine whether an attacker has attempted to login to an account for which he is guessing the
password. Finally, your program should produce a single line of output that would be suitable to append
to /var/log/syslog—that is, the output should be consistent in format and information with other entries
in syslog. Somewhere in that line should be either the string "OK" or "INTRUSION" to indicate your
program’s determination. In case of "INTRUSION", the output should further estimate the number of
users whose accounts the attacker attempted to access.

Since what constitutes an attack depends in part on the expected workload of the system, assume
that the system is a server for a CS department at a small college: there are about 100 users, all of which
commonly login at least once per day. Be clear in your solution about any additional assumptions you
are making about the workload.

Hint: Here are some questions you need to address: What constitutes an attack? What evidence
is recorded in auth.log? How can you parse auth.log? How can a program recognize an attack based on
the evidence? What information should you put into syslog? How should you format that syslog entry?

Implementation: Your program should run on the same Ubuntu 16.04 virtual machine as in A3. As
in A3, you may use any programming or scripting language that can be installed on the virtual machine
you created according to the instructions above, as long as that language can be installed by apt-get.

Execution: Your program should accept the name (including path) of the file to be processed as a
command-line argument. Do not hardcode /var/log/auth.log as that filename: the course staff needs to
be able to test your program on many log files—as do you.

Design document: Provide a file named design.pdf containing an explanation of the design of your
automated reviewer, focusing on (i) what specific criteria you use to determine whether an attack oc-
curred and (ii) why you are using these criteria. Discuss false positives and false negatives in light of
points (i) and (ii). This design document will be worth about half the total points for this problem.

Usage: Provide a file named README.txt describing how to install and execute your program. If
you use any packages installed by apt-get, then you need to document at the beginning of your source
code how the grader can easily install those packages in their own virtual machine. Document the exact
command the grader should type in the virtual machine to run your program. It should not take more
than a couple of minutes (excepting whatever time apt-get itself consumes) for the grader to follow the
installation and execution instructions; if it does, your solution might be penalized.

What to submit: a zip file authlog.zip containing your source code, readme, and design document.

2adapted from Prof. Jim Martin (Clemson University)

5-3


