CS 5430
Certificate Authorities

Prof. Clarkson
Spring 2016

Review: Certificates

* Digital certificate is a signature binding together:
— identity of principal
— public key of that principal (might be encryption or
verification key)

* Notation: Cert(S; 1) is a certificate issued by
principal | for principal S
—letb=1id_S, K_S
— Cert(S; 1) = b, Sign(b; k_1)
— Issuer I is certifying that K_S belongs to subject id_S

Review: PKI

* System for managing distribution of certificates
* Two main philosophies:
— Decentralized: anarchy, no leaders (PGP)

— Centralized: oligarchy, leadership a few elite (CAs)

Recap of PGP

PGP offers

dentity is that of a human
Private key is part of human's identity
Private key is stored on trusted machine

Need the machine to handle storage and
computation

So line is blurred between which we're really
authenticating

PKI Example 2: CAs

* Uses a centralized PKI philosophy (at least as
evolved in marketplace)

* Invented (?) by Digital [Gasser et al. 1989], used
in early Netscape browsers

* Certificate authority (CA): principal whose
purpose is to issue certificates

Using a CA

* Everyone enrolls with the CA to get a certificate
— E.g, Alice enrolls and gets Cert(Alice; CA)

* Your system comes pre-installed with CA's self-
signed certificate Cert(CA; CA)

* When you receive a message signed by Alice:
— you contact CA to get Cert(Alice; CA)

— or Alice just includes that certificate with her
message

Many CAs

* There can't be only one THERE GAN-BE 0”“‘-0“?
— No single CA is going to be trusted by all the world's

governments, militaries, businesses
— Though within an organization such trust might be possible

* So there are many
— Around 1500 observed on public internet
— Your OS and/or browser comes with some pre-installed

* Organizations act as their own CA, e.g....
— Company issues certificates to employees for VPN
— Bank issues certificates to customers
— Central bank issues certificates to other banks
— Manufacturer issues certificates to sensing devices

Demo: OS X Keychain Access

00 Keychain Access
é Click to unlock the System Roots keychain. Q
Keychains
& login Cortifeats AAA Certificate Services
a . o Root certificate authority
'f‘ iCloud ‘.| Expires: Sunday, December 31, 2028 at 6:59:59 PM Eastern Standard Time
(= System @ This certificate is valid
Name ~ Kind Expires Keychain
= AAA Certificate Services certificate Dec 31, 2028, 6:59:58 PM System Roots
] Actalis Authentication Root CA certificate Sep 22, 2030, 7:22:02 AM System Roots
5] AddTrust Class 1 CA Root certificate May 30, 2020, 6:38:31 AM System Roots
Category] AddTrust External CA Root certificate May 30, 2020, 6:48:38 AM System Roots
2 Allitems] AddTrust Public CA Root certificate May 30, 2020, 6:41:50 AM System Roots
/. . Passwords] AddTrust Qualified CA Root certificate May 30, 2020, 6:44:50 AM System Roots
] Admin-Root-CA certificate Nov 10, 2021, 2:51:07 AM System Roots
—— N?tes] AffirmTrust Commercial certificate Dec 31, 2030, 9:06:06 AM System Roots
EJ My Certificates [5] AffirmTrust Networking certificate Dec 31, 2030, 9:08:24 AM System Roots
Keys [E] AffirmTrust Premium certificate Dec 31, 2040, 9:10:36 AM System Roots
LJ Certificates [E] AffirmTrust Premium ECC certificate Dec 31, 2040, 9:20:24 AM System Roots
] ANF Global Root CA certificate Jun 5, 2033, 1:45:38 PM System Roots
] Apple Root CA certificate Feb 8, 2035, 4:40:36 PM System Roots
] Apple Root CA - G2 certificate Apr 30, 2039, 2:10:09 PM System Roots
] Apple Root CA - G3 certificate Apr 30, 2039, 2:19:06 PM System Roots
] Apple Root Certificate Authority certificate Feb 9, 2025, 7:18:14 PM System Roots
] ApplicationCA certificate Dec 12, 2017, 10:00:00 AM System Roots
] ApplicationCA2 Root certificate Mar 12, 2033, 10:00:00 AM System Roots
] Autoridad de...nal CIF A62634068 certificate Dec 31, 2030, 3:38:15 AM System Roots
& f i : 177 items

Certificate chains with CAs

Conflicting goals:
* CA private signing key must be kept

— the public verification key is pre-installed on user
systems; hard to update

— if ever leaked, signing key could be used to forge
certificates

— easy way to realize goal: keep it in cold storage

* CA private signing key must be for use
— to sign new certificates when users request them
— easy way to realize goal: keep it in computer's memory

Certificate chains with CAs

Solution: use root and intermediate CAs

* root CA: the certificate at root of trust in a
chain; pre-installed; key kept in highly secure
storage

* intermediate CA(s): certified by root CA,

themselves certify user keys; might be run by a
different organization than root

* example: https://www.facebook.com

Enrollment with a CA

* You create a key pair: you do this so that CA
doesn't learn your private key

* You generate a certificate signing request (CSR); it
contains the identity you are claiming

* You send the CSR to a CA, perhaps along with
payment

* The CA verifies your identity (maybe)

* The CA signs your key, creating a certificate, and
sends certificate to you

EV certificates

e Extended validation (EV):
— CA does extra checking of your identity
— Certificate marked as having received EV
— Web browser reflects EV mark in Ul

* Examples of extra checking:

— Verify legal existence of organization including some sort of
registration number

— Verify physical operation of organization by a site visit
— Verify phone number as listed by a public phone company
* CArrecord all those data in the certificate as part of
subject’s identity
* Example: https://www.paypal.com

Recap of CAs (as used in web)

* Browser authenticates web server

— Server possesses private key associated with
organization

— Certificate states website's domain name as part of
identity

— Browser verifies that matches

Authentication

Humans Faces, passwords Secure attention
authenticating... key, visual secrets

Machines Passwords, Tokens, CAs as
authenticating..: Rle]nldgles used in web

Success!

To publish public key, user can:
* distribute it as part of web of trust
* or engage CA to provide certificate

PROBLEMS WITH PKI

Problem 1: Revocation

* Keys (subject’s, issuer's) get compromised

* Or subject leaves an organization

* There's no perfect solution
— Certificate revocation lists (CRLs)

— Online certificate validation

— Fast expiration

Revocation

Fast expiration

* Idea: Validity internal is short, e.g. 10 min to 24
hr; any compromise is bounded

 Problem:

— CAs have to issues new certificates frequently,
including checking identities

— Machines have to update certificates frequently

Revocation

Certificate revocation lists (CRLs)

* Idea: CA posts list of revoked certificates; clients
download and check every time they need to
validate certificate

* Problems:

— Clients don't (because usability)
— Or they cache leading to TOCTOU
— CRL must always be available (so an attractive target)

e Chromium currently does this, with a CRL limited to
250kb

Revocation

Online certificate validation

Idea: CA runs validation server; clients contact it each time to
validate certificate

Problems:
— Clients don't
— Server must always be available (so an attractive target)
— Reveals to CA which websites you want to access

Follow-on solution: stapling, in which certificates must be
accompanied by fresh assertion from CA that certificate is still
valid; whoever presents certificate to client is responsible for
acquiring assertion

Firefox currently does this but doesn't hard fail because
"[validation servers] aren't yet reliable enough”

Problem 2: Authority

* CAs go rogue, get hacked, issue certificates that
they should never have issued

— e.g., Dutch CA DigiNotar, which was included in

many root sets: 500 bogus certificates issued,
including for Google, Yahoo, Tor

* Missing a means for of who may
issue certificates for which principals

Authority

There's no perfect solution

* Key pinning: upon first connection to a server, client
learns a set of public keys for server; in future connections,
certificate must contain one of those keys

* Certificate transparency: maintain a public log of issued
certificates; require any presented certificate to provably
be in that log; monitor log to notice misbehavior

* Certificate Authority Authorization (CAA): piggyback on
DNS system; DNS record for entity specified allowed CAs

USING CAs IN SSL

SSL

Secure Sockets Layer (SSL)
* aka Transport Layer Security (TLS)
e SSL3.1=TLS 1.0(1999)

— Broken by attack in 2011 based on improper choice
of IVs for CBC mode

e SSL3.2 = TLS 1.1 (2006)

— Fixes IVs

e SSL3.3=TLS 1.2 (2008)
* Upgrades crypto primitives (AES, SHA-256, etc.)

Network stack

Llayer ____leg ____Comnmects

Application HTTP processes
Transport TCP hosts
Internet IP networks

Link WiFi devices

Network stack

Llayer ____leg ____Comnmects

Application HTTP processes
SSL

Transport TCP hosts

Internet IP networks

Link WiFi devices

* SSL provides secure channel atop underlying guarantees of transport layer
e HTTPS =HTTP + SSL

SSL terminology

* Record: message sent during session

e Session:
— communication channel
— between client and server

— logical

— bi-directional (and direction matters)

— optionally secured for confidentiality and/or
integrity against Dolev-Yao attacker

SSL protocols

* Handshake protocol: initial channel setup

* Record protocol: exchange of messages

Caveats:

* what follows is common way of configuring those
protocols, not the only way

* no official rationale for the protocol

Record protocol

Connection state:

* cmk: client HMAC key

* smk: server HMAC key

* cek: client symmetric encryption key
* sek: server symmetric encryption key
* civ: client IV

* siv:server |V

* c¢seq: client sequence number

* sseq: server sequence number

Record protocol

Directional communication:

 both client and server are meant to know the
entire state, but...

* from client to server uses cXX state

* from server to client uses sXX state

.. defends against reflection attacks

Record protocol

For client to send record to server:

1. C:. t = MAC(r, cseq; cmk);
c = Enc(r, t; civ,; cek);
cseq++; [//if overflow, re-key
civ = rand()
2. C -> S: c

Server to client is the same with sXX part of connection state

Handshake protocol

* Purpose:
— Establish ciphersuite
— Then establish connection state
* Ciphersuite: triple of cryptographic choices...
1. Protocol for key establishment
2. Block cipher and mode
3. PRF (typically a hash function for HMAC)

Example ciphersuites:

— RSA, AES128/CBC, SHA-256
— DH _anon, 3DES/CBC, SHA-1
— null, null, null

Henceforth assume RSA key establishment...

Handshake protocol

Warning:
e attacks on SSL sometimes involve rollback to

deprecated algorithms that your crypto library
still supports

* YOUR responsibility to make sure only current
algorithms are enabled

Handshake protocol

l. C->S: Suites C, N C
2. S->C: Suite S, Cert(S; CA), N S
3. C: PS = rand(); // premaster secret
ePS = Enc(PS; K S)
4. C->S: ePS
5. S: PS = Dec(ePS; k S)
6. C and S:
MS = PRF (PS, "master secret"; N C+N S);
derive connection state from MS
by splitting into bits

Handshake protocol

See online notes for some omitted details:

* Verify that client and server have agreed on same
keys

* Unilateral vs. mutual authentication:

— unilateral: server authenticates to client

— mutual: server authenticates to client and client
authenticates to server

Upcoming events

* [today] Clarkson office hours cancelled

* [today or tomorrow] A5 out

* [next week] Schneider subs for Clarkson

