
CS 5430

MACs and Digital Signatures

Prof. Clarkson
Spring 2016

Review: Encryption

•  We can now protect confidentiality of messages
against Dolev-Yao attacker
– efficiently, thanks to hybrid of symmetric and

asymmetric encryption
– assuming existence of phonebook of public keys

•  But what about integrity...?

Protection of integrity

•  Threat: attacker who controls the network
–  Dolev-Yao model: attacker can read, modify, delete messages

•  Harm: information contained in messages can be
changed by attacker (violating integrity)

•  Vulnerability: communication channel between sender
and receiver can be controlled by other principals

•  Countermeasure: message authentication codes (MACs)
–  beware: not the same "MAC" as mandatory access control nor

media access control

MESSAGE AUTHENTICATION
CODES

MAC algorithms

•  Gen(len): generate a key of length len
•  MAC(m; k): produce a tag for message m with

key k
– message may be arbitrary size

–  tag is typically fixed length

MAC

Tag

Security of MAC

•  Must be hard to forge tag for a message without
knowledge of key
– message of attackers choice? vs.

– message that attacker cannot control

•  Even if in possession of multiple (message, tag)
pairs for that key

Protocol to exchange MAC'd message

0. k = Gen(len)
1. A: t = MAC(m; k)
2. A -> B: m, t
3. B: verify t = MAC(m; k)

•  Both principals use the same shared key: symmetric key

cryptography
•  Message is sent in plaintext: no protection of confidentiality
•  Goal is to detect modification not prevent
•  Both principals run same algorithm

–  unlike encryption scheme
–  though for some block ciphers Enc and Dec are effectively the same

Examples of MACs

•  CBC-MAC
– Parameterized on a block cipher
– Core idea: encrypt message with block cipher in CBC

mode, use very last ciphertext block as the tag

•  HMAC
– Parameterized on a hash function

– Core idea: hash message together with key
– Your everyday hash function isn't good enough...

HASH FUNCTIONS

Hash functions

•  Input: arbitrary size bit string
•  Output: fixed size bit string
– compression: many inputs map to same output,

hence creating collision

–  for use with hash tables, diffusion: minimize
collisions (and clustering)

Cryptographic hash functions

•  Aka message digest
•  Stronger requirements than (plain old) hash

functions
•  Goal: hash is compact representation of

original like a fingerprint
–  Hard to find 2 people with same fingerprint
–  Whether you get to pick pairs of people, or

whether you start with one person and find
another
 ...collision-resistant

–  Given person easy to get fingerprint
–  Given fingerprint hard to find person

 ...one-way

Real world hash functions

•  MD5: Ron Rivest (1991)
–  128 bit output
– Collision resistance broken 2004-8
– Can now find collisions in seconds
– Don't use it

•  SHA-1: NSA (1995)
–  160 bit output
– Theoretical attacks that reduce strength to less than 80

bits
– On its way out, yet many browsers continue to accept it

Real world hash functions

•  SHA-2: NSA (2001)
– Family of algorithms with output sizes

{224,256,385,512}
–  In principle, could one day be vulnerable to similar

attacks as SHA-1

•  SHA-3: public competition (won in 2012,
standardized by NIST in 2015)
– Same output sizes as SHA-2
– Plus a variable-length output called SHAKE

Strength of hash functions

•  Birthday attack: generic attack based
on...
–  Birthday paradox: probability of two people

in group sharing same birthday (a collision)
is much higher than intuition might suggest

–  So collisions are easier to find than you
might expect

•  Strength of hash function is thus (at
most) about half of output length
–  https://www.keylength.com/en/4/

CONFIDENTIALITY & INTEGRITY

Encryption and integrity

Encryption and integrity

NO!
•  Plaintext block might be random number, and recipient has no

way to detect change in random number
•  Attacker might substitute ciphertext from another execution

of same protocol
•  In some block modes (e.g., CTR), it's easy to flip individual bits

–  change "admin=0" to "admin=1"
•  In some block modes (e.g., CBC), it's easy to truncate blocks

from beginning of message
•  ...

So you can't get C+I solely from encryption

Authenticated encryption

•  Newer block cipher modes designed to provide
confidentiality and integrity
– OCB: Offset Codebook Mode

– CCM: Counter with CBC-MAC Mode
– GCM: Galois Counter Mode

•  Or, you could combine encryption schemes with
MAC schemes...

Encrypt and MAC

0. k_E = Gen_E(len)
 k_M = Gen_M(len)
1. A: c = Enc(m; k_E)
 t = MAC(m; k_M)
2. A -> B: c, t
3. B: m' = Dec(c; k_E)
 t' = MAC(m'; k_M)
 if t = t'
 then output m'
 else abort

m

c t

Encrypt and MAC

•  Pro: can compute Enc and MAC in parallel
•  Con: MAC must protect confidentiality

(not actually a requirement we ever stipulated)

•  Example: ssh (Secure Shell) protocol
–  recommends AES-128-CBC for encryption

–  recommends HMAC with SHA-2 for MAC

Aside: Key reuse

•  Never use same key for both encryption and
MAC schemes

•  Principle: every key in system should have
unique purpose

Encrypt then MAC

1. A: c = Enc(m; k_E)
 t = MAC(c; k_M)
2. A -> B: c, t
3. B: t' = MAC(c; k_M)
 if t = t'
 then output Dec(c; k_E)
 else abort

m

c t

Encrypt then MAC

•  Pro: provably most secure of three options
[Bellare & Namprepre 2001]

•  Pro: don't have to decrypt if MAC fails
–  resist DoS

•  Example: IPsec (Internet Protocol Security)
–  recommends AES-CBC for encryption and HMAC-

SHA1 for MAC, among others
– or AES-GCM

MAC then encrypt

1. A: t = MAC(m; k_M)
 c = Enc(m,t; k_E)
2. A -> B: c
3. B: m',t' = Dec(c; k_E)
 if t' = MAC(m'; k_M)
 then output m'
 else abort

m

c

MAC then encrypt

•  Pro: provably next most secure
– and just as secure as Encrypt-then-MAC for strong

enough MAC schemes
– HMAC and CBC-MAC are strong enough

•  Example: SSL (Secure Sockets Layer)
– Many options for encryption, e.g. AES-128-CBC
– For MAC, standard is HMAC with many options for

hash, e.g. SHA-256

MACs

•  We can now protect integrity of messages
against Dolev-Yao attacker
– MAC algorithms use efficient symmetric-key

cryptography
– but what about quadratic key-sharing problem?

•  Asymmetric cryptography for integrity...

DIGITAL SIGNATURES

Recall: Key pairs

•  Instead of sharing a key between pairs of
principals...

•  ...every principal has a pair of keys
– public key: published for the world to see

– private key: kept secret and never shared

Key pairs

Encryption Digital
signatures

Public key Encryption key Verification key

Private key Decryption key Signing key

Digital signature scheme

•  Sign(m; k): sign message m with key k, producing
signature s as output

•  Ver(m; s; K): verify signature s on message m
with key K

•  Gen(len): generate a key pair (K,k) of length len

Sign

Protocol to exchange signed message

1. A: s = Sign(m; k_A)
2. A -> B: m, s
3. B: accept if Ver(m; s; K_A)

•  Message is sent in plaintext: no protection of

confidentiality
•  Goal is to detect modification not prevent
•  Principals run different algorithms

...what if message is too long for asymmetric algorithms?

Signatures with hashing

1. A: s = Sign(H(m); k_A)
2. A -> B: m, s
3. B: accept if Ver(H(m); s; K_A)

So common a practice that I won't bother to write the
hashing from now on

Security of digital signatures

•  Must be hard to forge signature for a message
without knowledge of key
– message of attackers choice? vs.

– message that attacker cannot control
...like handwritten signatures

•  Even if in possession of multiple (message,
signature) pairs for that key
 ...unlike handwritten signatures

Examples of digital signatures

•  DSA: Digital Signature Algorithm [NIST 1991]
– Used for decades without any serious attacks
– Closely related to Elgamal encryption

•  RSA [Rivest, Shamir, Adleman 1977]
– Core ideas are the same as RSA encryption
– Common mistake: RSA sign = encrypt with your private

key
–  Truth (in real world, outside of textbooks):

•  there's a core RSA function R that works with either K or k
•  RSA encrypt = do some prep work on m then call R with K
•  RSA sign = do different prep work on m then call R with k

Upcoming events

•  [today] A2 due
•  [Mon] A3 out

Integrity without knowledge is weak and useless,
and knowledge without integrity is dangerous and

dreadful. – Samuel Johnson

