CS 5430

MACGCs and Digital Signatures

Prof. Clarkson
Spring 2016

Review: Encryption

* We can now protect confidentiality of messages
against Dolev-Yao attacker

— efficiently, thanks to hybrid of symmetric and
asymmetric encryption

— assuming existence of phonebook of public keys

* But what about integrity...?

Protection of integrity

* Threat: attacker who controls the network
— Dolev-Yao model: attacker can read, modify, delete messages

* Harm: information contained in messages can be
changed by attacker (violating integrity)

* Vulnerability: communication channel between sender
and receiver can be controlled by other principals
* Countermeasure: message authentication codes (MACs)

— beware: not the same "MAC" as mandatory access control nor
media access control

MESSAGE AUTHENTICATION
CODES

MAC algorithms

* Gen(len): generate a key of length len

* MAC(m; k): produce a tag for message m with
key k
— message may be arbitrary size

— tag is typically fixed length

Tag

Security of MAC

* Must be hard to forge tag for a message without
knowledge of key

— message of attackers choice? vs.
— message that attacker cannot control

* Even if in possession of multiple (message, tag)
pairs for that key

Protocol to exchange MAC'd message

k = Gen(len)

A: £t = MAC(m, k)

A ->B: m, t

B: verify t = MAC(m; k)

(VIR \ O B i e

Both principals use the same shared key: symmetric key
cryptography

* Message is sent in plaintext:

* Goalisto modification not prevent

* Both principals run same algorithm
— unlike encryption scheme
— though for some block ciphers Enc and Dec are effectively the same

Examples of MACs

* CBC-MAC

— Parameterized on a block cipher

— Core idea: encrypt message with block cipher in CBC
mode, use very last ciphertext block as the tag

* HMAC

— Parameterized on a hash function
— Core idea: hash message together with key

— Your everyday hash function isn't good enough...

HASH FUNCTIONS

Hash functions

* Input: arbitrary size bit string

* QOutput: fixed size bit string

— compression: many inputs map to same output,

hence creating collision

— for use with hash tables, diffusion: minimize

collisions (and clustering)

keys

John Smith
Lisa Smith
Sam Doe

Sandra Dee

Ted Baker

buckets entries

88(1) %/'|x| Lisa Smith | 521-8976 |
002 x|

P p | John Smith | 521-1234 |
151 [x '
EE | x| sandra Dee | 521-9655 |
154 | x|

: : x| ®dBaker | 4184165 |
253 [x|

;2: 7.\\l|x| Sam Doe | 521-5030 |

Cryptographic hash functions

* Aka message digest

* Stronger requirements than (plain old) hash
functions

* Goal: hash is compact representation of
original like a
— Hard to find 2 people with same fingerprint

— Whether you get to pick pairs of people, or
whether you start with one person and find
another

..collision-resistant
— Given person easy to get fingerprint
— Given fingerprint hard to find person
..one-way

Real world hash functions

 MD5: Ron Rivest (1991)
— 128 bit output
— Collision resistance broken 2004-8
— Can now find collisions in seconds
— Don't use it

 SHA-1: NSA (1995)
— 160 bit output

— Theoretical attacks that reduce strength to less than 80
bits
— On its way out, yet many browsers continue to accept it

Real world hash functions

« SHA-2: NSA (2001)

— Family of algorithms with output sizes
{224,256,385,512}

— In principle, could one day be vulnerable to similar
attacks as SHA-1

* SHA-3: public competition (won in 2012,
standardized by NIST in 2015)
— Same output sizes as SHA-2
— Plus a variable-length output called SHAKE

Strength of hash functions

* Birthday attack: generic attack based
on...
— Birthday paradox: probability of two people

in group sharing same birthday (a collision)
is much higher than intuition might suggest

— So collisions are easier to find than you .
might expect og

* Strength of hash function is thus (at 2¢:
most) about half of output length 822

0

— https://www.keylength.com/en/4/

=

SONNNNNNY] S
S50

ANNNMNMWNY, =

Q&\\\\\\\\» >

§
NS N8
®

> gy
NN, €=

NN =

;

N =

NN\

23 |
0 10 20 30 40 50 60 70 80 90 100
Number of people

CONFIDENTIALITY & INTEGRITY

Encryption and integrity

IELENCRYPT
MESSAGE

WOULDN:T{CHANGES DECRYPT{TO
N““SENSE? memegeneratornet

Encryption and integrity
NO'

Plaintext block might be random number, and recipient has no
way to detect change in random number

* Attacker might substitute ciphertext from another execution
of same protocol

* Insome block modes (e.g., CTR), it's easy to flip individual bits
— change "admin=0" to "admin=1"
* In some block modes (e.g., CBC), it's easy to truncate blocks
from beginning of message

Authenticated encryption

* Newer block cipher modes designed to provide
confidentiality and integrity

— OCB: Offset Codebook Mode
— CCM: Counter with CBC-MAC Mode
— GCM: Galois Counter Mode

* Or, you could combine encryption schemes with
MAC schemes...

Encrypt and MAC

0. k E = Gen E(len)
k M = Gen M(len)

l. A: ¢ = Enc(m; k _E)
t = MAC(m; k M)

2. A -> B: ¢, t

3. B: m' = Dec(c; k _E)
t' = MAC(m'; k M)
if t = t'

then output m'
else abort

Encrypt and MAC

* Pro: can compute Enc and MAC in parallel
* Con: MAC must protect confidentiality

(not actually a requirement we ever stipulated)

* Example: ssh (Secure Shell) protocol
— recommends AES-128-CBC for encryption
— recommends HMAC with SHA-2 for MAC

Aside: Key reuse

* Never use same key for both encryption and
MAC schemes

* Principle: every key in system should have
unique purpose

Encrypt then MAC

1. A: c Enc(m; k E)
t = MAC(c; k M)
2. A -> B: ¢, t
3. B: t' = MAC(c; k M)
if t = t!
then output Dec(c; k _E)

else abort

Encrypt then MAC

* Pro: provably most secure of three options
[Bellare & Namprepre 2001]
* Pro: don't have to decrypt if MAC fails

— resist DoS

* Example: IPsec (Internet Protocol Security)

— recommends AES-CBC for encryption and HMAC-
SHA1 for MAC, among others

— or AES-GCM

MAC then encrypt

1. A: t MAC (m; k M)
c = Enc(m,t; k E)
2. A -> B: c
3. B: m',t' Dec(c; k _E)
if t' MAC(m'; k M)
then output m'

else abort

MAC then encrypt

* Pro: provably next most secure

— and just as secure as Encrypt-then-MAC for strong
enough MAC schemes

— HMAC and CBC-MAC are strong enough

* Example: SSL (Secure Sockets Layer)
— Many options for encryption, e.g. AES-128-CBC

— For MAC, standard is HMAC with many options for
hash, e.g. SHA-256

MACs

* We can now protect integrity of messages
against Dolev-Yao attacker

— MAC algorithms use efficient symmetric-key
cryptography

* Asymmetric cryptography for integrity...

DIGITAL SIGNATURES

Recall: Key pairs

* Instead of sharing a key between pairs of
principals...

* ..every principal has a pair of keys
— public key: published for the world to see

— private key: kept secret and never shared

Key pairs

Encryption

Digital
signatures

Private key

Decryption key

Signing key

Digital signature scheme

* Sign(m; k): sign message m with key k, producing
signature s as output

* Ver(m;s; K): verify signature s on message m
with key K

* Gen(len): generate a key pair (K,k) of length len

=

Protocol to exchange signed message

l. A: s = Sign(m; k A)
2. A ->B: m, s
3. B: accept if Ver(m; s; K A)

* Message Is sent in plaintext:

* Goalisto modification not prevent
* Principals run different algorithms

Signatures with hashing

A: s = Sign(H(m); k A)
. A ->B: m, s
B: accept if Ver(H(m); s; K A)

w NN =

So common a practice that | won't bother to write the
hashing from now on

Security of digital signatures

* Must be hard to forge signature for a message
without knowledge of key

— message of attackers choice? vs.

— message that attacker cannot control

* Even if in possession of multiple (message,
signature) pairs for that key

Examples of digital signatures

* DSA: Digital Signature Algorithm [NIST 1991]

— Used for decades without any serious attacks
— Closely related to Elgamal encryption

* RSA [Rivest, Shamir, Adleman 1977]

— Core ideas are the same as RSA encryption
— Common mistake: RSA sign = encrypt with your private
key
(in real world, outside of textbooks):
* there's a core RSA function R that works with either K or k

* RSA encrypt = do some prep work on m then call R with K
* RSA sign = do different prep work on m then call R with k

Upcoming events

* [today] A2 due
* [Mon] A3 out

