Properties of
send(m) and receive(m)

Benign failures:

Validity If psends m toq, and p ,q, and
the link between them are correct, then ¢
eventually receives m

Uniform™ Integrity For any message m, ¢
receives m at most once from p, and only if p
sent m to q

* A property is uniform if it applies to both
correct and faulty processes

Properties of
send(m) and receive(m)

Arbitrary failures:

Integrity For any message m , if pand q
are correct then q receives m at most once
from p, and only if p sent m to ¢

Questions, Questions...

@ Are these problems solvable at all?

@ Can they be solved independent of the failure
model?

@ Does solvability depend on the ratio between
faulty and correct processes?

@ Does solvability depend on assumptions about
the reliability of the network?

@ Are the problems solvable in both synchronous
and asynchronous systems?

@ If a solution exists, how expensive is it?

Plan

@ Benign Synchronous Systems

O Consensus for synchronous systems with crash failures

0 Lower bound on the number of rounds

@ Benign Asynchronous Systems
0 Impossibility of Consensus for crash failures

O Failure detectors
0 PAXOS

@ Byzantine (Synchronous and Asynchronous)
D Reliable Broadcast for arbitrary failures

0 PBFT, Zyzzyva

Model

@ Synchronous Message Passing
D Execution is a sequence of rounds

DIn each round every process takes a step
—sends messages to neighbors
—receives messages sent in that round
—changes ifs state

@ Network is fully connected (an n-clique)

@ No communication failures

A simple
Consensus algorithm

Process p;:

Initially V = {v;}

To execute propose(;)

1: send {v;} to all

decide(xz) occurs as follows:

2: forall j,0<j<n—1, 5 #ido
3 receive S; from p;

4: VISR

5: decide min(V)

Tolg
executio
An

O
O
O
O
O
% P4
) P3
2
; P
P1
V3 o
(] o

Tolg
executio
An

O
O
O
O
O
() >
' e
; P2
P1
(] o i

An execution

Suppose v; = v3 = v4 at the end of round 1
Can p3 decide?

P1 P2 P3 P4

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?
D1

P2 P3 P4
O °
o 6 o
P1 P2 P3 P4
U1 U1
(%)
v3

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?

P1 P2 p3 Pa

O

o o

P1 P2 P3 P4
(] (]
(%) Vo

v3

V4 Uy

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?

P1 P2 P3 P4
[°
ol -
P1 P2 P3 P4
U1 U1
U2 (%)
v3

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?

P1 P2 P3 P4
() o
\/ *
P1 P2 P3 P4
(O] U1 (0] (O]
(%) (%5)
U3
Vg Vg

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?

P1 P2 P3 P4

() o

\/ *
P1 P2 P3 P4
(O] U1 (0] (O]
(%) (%5)

U3

Vg Vg Vg

An execution

Suppose v; = v3 = v4 at the end of round 1
Can pdecide?

P1 P2 P3 P4
M\
\/ *
P1 P2 P3 P4
(O] U1 (0] (O]
(%) (%5)
U3 U3 U3
Vg Uy Vg

Echoing values

@ A process that receives a proposal in round 1,
relays it to others during round 2.

Echoing values

@ A process that receives a proposal in round 1,
relays it to others during round 2.

@ Suppose ps hasnt heard from p- at the end of
round 2. Can p3 decide?

Echoing values

@ A process that receives a proposal in round 1,
relays it to others during round 2.

@ Suppose ps hasnt heard from p- at the end of
round 2. Can p3 decide?

P1 P2 P3 P4
A :

p1ﬂt; ps. p4. round 1
-
round 2
g S 5

pr-’ P2’ p3 P4

What is going on

@ A correct process p* has not received all
proposals by the end of roundi. Canp”
decide?

@ Another process may have received the
missing proposal at the end of round i and
be ready to relay it in round ¢ + 1

Dangerous Chains

Dangerous chain

The last process in the chain is correct, all
others are faulty

\ D1 round 1
® *k
\p2 round 2 p

~ o rounds 3...7 — 1

\\\pi—l

O ® k
\pi round ; p

Living dangerously

How many rounds can a dangerous chain span?
0 f faulty processes
O at most f+1 nodes in the chain
O spans at most f rounds

It is safe to decide by the end of round f+1!

The Algorithm

Code for process p;:

Initially V ={v;}
To execute propose(v;)
round k£, 1<k<f+1
1: send {v€V : p; has not already sent v} to all
2: for all j, 0=<j <n-—ladisi do
3: receive S; from p;
4: V=V US;
decide(r) occurs as follows:
B: if k=f+1 then
6: decide min(V)

Termination and
Integrity

Initially vV ={v;}

To execute propose(v:)
round k£, 1<k< f+1

1: send {ve€V :p; has not already sent v} to all
2: forall 5y 0<j<n1, j 480

3: receive S; from p;

4: Vi=VUS;

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

Termination and
Integrity

Initially vV ={v;}

To execute propose(v:)
round k£, 1<k< f+1

1: send {ve€V :p; has not already sent v} to all
2: forall 5y 0<j<n1, j 480

3: receive S; from p;

4: Vi=VUS;

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

Every correct process

@ reaches round f+1

@ Decides on min(V) --- which is well
defined

Termination and
Integrity

Initially vV ={v;}
At most one value:

To execute propose(v:)

round k, 1<k<f+1 it
Only if it was proposed:

1: send {ve€V :p; has not already sent v} to all
2: forall 5y 0<j<n1, j 480

3: receive S; from p;

4: Vi=VUS;

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

Every correct process

@ reaches round f+1

@ Decides on min(V) --- which is well
defined

Termination and
Integrity

Initially vV ={v;}
At most one value:

To execute propose(v:)

- one decide, and min(V) is unique
round k£, 1<k< f+1

Only if it was proposed:

1: send {ve€V :p; has not already sent v} to all
2: forall 5y 0<j<n1, j 480

3: receive S; from p;

4: Vi=VUS;

decide(x) occurs as follows:
5: if k=f+1 then
6: decide min(V)

Every correct process

@ reaches round f+1

@ Decides on min(V) --- which is well
defined

TRB for benign failures

Sender in round 1:
1: send m to all

Process p in round K, 1<K < f+l
1: if delivered m in round k-1 then
2: if p # sender then

3 send m tfo all

4: halt

5: receive round K messages
6: if received m then

7

8

9

deliver(m)
if k = f+l then halt
: elseif k = f+l
10: deliver(SF)
11: halt

TRB for benign failures

Terminates in f41 rounds

Sender in round 1:
1: send m to all

How can we do better?

Process p in round K, 1<K < f+l

1: if delivered m in round k-1 then F|nd a Pro-l-ocol Whose round
2: if p # sender then : i ‘

3.7 g U complexity is proportional to
4 halt t —the number of failures

5: receive round K messages

6: if received m then that actually occurred-

7 elVeuE rather than to f-the max

8 if k = f+l then halt ;

9: else if k = Fl number of failures that may
10: deliver(SF)

11: halt occur

Early stopping:
the idea

@ Suppose processes can detect the set of
processes that have failed by the end of
round ¢

@ Call that set faulty(p, i)

@ How large must faulty(p,i) be for a dangerous
chain to exist in round ¢ ?

Early stopping:
the idea

@ Suppose processes can detect the set of
processes that have failed by the end of
round ¢

@ Call that set faulty(p, i)

@ If|faulty(p,i)| < ithere can be no active
dangerous chains, and p can safely deliver SF

Early Stopping:
The Protocol

faulty(p, k) = set of processes that failed to send a message to p in some round
l: if p = sender then value :=m else value:= ?
Process pinround k,1<k<f+1

send value to all
if delivered in round k£ —1 then halt

receive round k values from all
faulty(p, k) := faulty(p,k — 1)U {q | p received no value from ¢ in round k}
if received value v # ? then

value = v

deliver value

O 00l o AGiEEE s ORE

if p= sender then value := ?

10: else if k= f+1 or |faulty(p, k)| < k then
11: value := SF

12: deliver value

13: if k=f+1 then halt
e

Termination

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value tfo all

3: if delivered in round k—1 then halt

4: receive round k values from all

5. faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £}

6: if received value v# ? then

7. value := v

8: deliver value

9: if p= sender then value :=?

10: else if k=f+1 or |faulty(p, k)| <k then

11: value := SF

12: deliver value

13: if k=f+1 then halt

Termination

Let faulty(p,k) be the set of processes that have

failed to send a message to pin any round 1,... .k

i

if p= sender then value := m else value:= ?

Process p inround k,1<k<f+1

00 SR

9:

10:
11:
12:
13:

send value to all
if delivered in round k—1 then halt
receive round k£ values from all
faulty(p, k) = faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v # ? then

value := v

deliver value

if p= sender then value :=?
else if k=f+1 or |faulty(p, k)| <k then

value := SF

deliver value

if k= f+1 then halt

@ If in any round a process
receives a value, then it
delivers the value in that
round

@ If a process has received
only “?” for f41 rounds,
then it delivers SF in
round f+1

Validity

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value tfo all

3: if delivered in round k—1 then halt

4: receive round k values from all

5. faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £}

6: if received value v# ? then

7. value := v

8: deliver value

9: if p= sender then value :=?

10: else if k=f+1 or |faulty(p, k)| <k then

11: value := SF

12: deliver value

13: if k=f+1 then halt

Validity

Let faulty(p,k) be the set of processes that have :
failed to send a message to pin any round 1,... k& (% IF the sender is correct then

1: if p=sender then value := m else value:= ? it sends m to all in round 1

Process p inround k,1<k<f+1

@ By Validity of the underlying

2: §end .value f9 ll send and reCeive, every
3: if delivered in round k—1 then halt : \
4: receive round k values from all correct prOCQSS will receive m
5. faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £} bY fhe end OF rOUnd 1
6: if received value v# ? then
7: value := v
o ML T @ By the protocol, every correct
9: if p=sender then value := ? process will deliver m by the
10: else if k=f+1 or |faulty(p, k)| <k then
11: value := SF end of round 1
12: deliver value
13: if k= f+1 then halt

Agreement - 1

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?
Process p inround k,1<k<f+1

send value to all

if delivered in round k—1 then halt
receive round k£ values from all
faulty(p, k) = faulty(p,k — 1)U {q|p
received no value from ¢in round k}
if received value v # ? then

value := v

deliver value

if p= sender then value :=?
0: else if k=f+1 or |faulty(p, k)| <k then
11: value := SF
12: deliver value
13: if k=f+1 then halt

20 200 RO

—

Lemma 1

For any r>1, if a process p delivers
m = SF in round r, then there exists a
sequence of processes po, D1, - -, Pr Such
that pg = sender, p,, = p, and in each
round k,1<k<r, pr—1 sent m and pg
received it. Furthermore, all processes
in the sequence are distinct, unless r=1
and py = p; =sender

Lemma 2:

For any r>1, if a process p sets value
to SF in round 7, then there exist
some j<r and a sequence of distinct
processes ¢;,qj+i,.--,qr =P

such that ¢, only receives "?” in
rounds 1 to j, |faulty(q;,7)| < j, and in
each round k,j+1<k<r, qx_1 Sends

SF to gx and qi receives SF

Agreement - 2

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value to all

3: if delivered in round k—1 then halt

4: receive round k values from all

5: faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £}

6: if received value v# ? then

7 value := v

8: deliver value

9: if p= sender then value := ?

10: else if k=f+1 or |faulty(p, k)| <k then

11: value := SF

12: deliver value

13: if k=f+1 then halt

Lemma 3:
It is impossible for p and ¢, not necessarily
correct or distinct, to set value in the same

round r to m and SF, respectively
I

Agreement - 2

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value fo all

3: if delivered in round k—1 then halt

4: receive round k values from all

5: faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round k}

6: if received value v# ? then

7 value := v

8: deliver value

9: if p= sender then value := ?

10: else if k=f+1 or |faulty(p, k)| <k then
11: value := SF

12: deliver value

13: if k=f+1 then halt

Lemma 3:

It is impossible for p and ¢, not necessarily
correct or distinct, to set value in the same

round r to m and SF, respectively

Proof

By contradiction

Suppose p sets value = m and ¢ sets
value = SF

By Lemmas 1 and 2 there exist
Po, ..., Pr
qjy---,qr

with the appropriate characteristics

Since ¢; did not receive m from
process pp_1 1<k<j inround k

q; must conclude that py,...,p;_1 are
all faulty processes

But then, |faulty(q;,j)| > j

Agreement - 3

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value to all

3: if delivered in round k—1 then halt

4: receive round k values from all

5: faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £}

6: if received value v# ? then

7 value := v

8: deliver value

9: if p= sender then value := ?

10: else if k=f+1 or |faulty(p, k)| <k then

11: value := SF

12: deliver value

13: if k=f+1 then halt

Agreement - 3

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value fo all

3: if delivered in round k—1 then halt

4: receive round k values from all

5: faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round k}

6: if received value v# ? then

7 value := v

8: deliver value

9: if p= sender then value := ?

10: else if k=f+1 or |faulty(p, k)| <k then
11: value := SF

12: deliver value
13: if k=f+1 then halt
Proof

If no correct process ever receives m, then every

correct process delivers SF in round f+1

Let r be the earliest round in which a correct process
delivers value = SF
i
O By Lemma 3, no (correct) process can set value
differently in round r
D In round r+1 < f41, that correct process
sends its value to all
O Every correct process receives and delivers the
value in round r41 < f+1
r=f+1
D By Lemma 1, there exists a sequence po,...,pri1
= p, of distinct processes
D Consider processes py, ..., ps
@ f+1 processes; only f faulty
@ one of po,...,ps is correct-- let it be p,
@ To send v in round c+1,p. must have set its
value to v and delivered v in round ¢ < r

Integrity

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value tfo all

3: if delivered in round k—1 then halt

4: receive round k values from all

5. faulty(p, k) := faulty(p,k — 1)U {q|p
received no value from ¢ in round £}

6: if received value v# ? then

7. value := v

8: deliver value

9: if p= sender then value :=?

10: else if k=f+1 or |faulty(p, k)| <k then

11: value := SF

12: deliver value

13: if k=f+1 then halt

Integrity

@ At most onem

Let faulty(p,k) be the set of processes that have
failed to send a message to pin any round 1,... .k

O Failures are benign, and
a process executes at

most one deliver event

1: if p=sender then value := m else value:= ?

Process p inround k,1<k<f+1

2: send value to all beFor‘e ha|-|-|ng

3: if delivered in round k—1 then halt

4: receive round k values from all

5. faulty(p, k) := faulty(p,k — 1)U {q|p :
received no value from ¢ in round £} 6 IF m = SF’ Only |F m

6: if received value v ? then

e was broadcast

8: deliver value -

9: if p= sender then value := ? O From Lemma 1l in the

10: else if k=f+1 or |faulty(p, k)| <k then

0 SR RN proof of Agreement

12: deliver value

13: if k=f+1 then halt

What about the
asynchronous model?

Theorem

Inistic prote
essage-pas. g

stem in whi¢ at most
| by crashi

listributed
JAC ol. 32, no. 2, April

Around FLP in 80 Slides

How can one get around
FLP?

Weaken the problem

@ Weaken termination
M use randomization fo terminate with arbitrarily high probability
D guarantee termination only during periods of synchrony

@ Weaken agreement

n€e - agreement
p real-valued inputs and outputs
p» agreement within real-valued small positive tolerance ¢

n k-set agreement

p» Agreement: In any execution, there is a subset W of the set of input values, |
WI =k, s.t. all decision values are in W

p Validity: In any execution, any decision value for any process is the input value
of some process

How can one get around
FLP?

Constrain input values

@ Characterize the set of input values for which
agreement is possible

Strengthen the system model

@ Introduce failure detectors fo distinguish between
crashed processes and very slow processes

