
Properties of
send(m) and receive(m)
Benign failures:

Validity If sends to , and , , and
the link between them are correct, then
eventually receives

Uniform* Integrity For any message ,
receives at most once from , and only if
sent to

* A property is uniform if it applies to both

 correct and faulty processes

m

m

m

m

m

p p

q

qq

q

q

pp

Properties of
send() and receive()

Arbitrary failures:

Integrity For any message , if and
are correct then receives at most once
from , and only if sent to

m qp

q

q m

mpp

mm

Questions, Questions…
Are these problems solvable at all?

Can they be solved independent of the failure
model?

Does solvability depend on the ratio between
faulty and correct processes?

Does solvability depend on assumptions about
the reliability of the network?

Are the problems solvable in both synchronous
and asynchronous systems?

If a solution exists, how expensive is it?

Plan
Benign Synchronous Systems

Consensus for synchronous systems with crash failures

Lower bound on the number of rounds

Benign Asynchronous Systems

Impossibility of Consensus for crash failures

Failure detectors

PAXOS

Byzantine (Synchronous and Asynchronous)

Reliable Broadcast for arbitrary failures

PBFT, Zyzzyva

Model

Synchronous Message Passing

Execution is a sequence of rounds

In each round every process takes a step

sends messages to neighbors

receives messages sent in that round

changes its state

Network is fully connected (an -clique)

No communication failures

n

A simple
Consensus algorithm

Initially

To execute propose()

1: send { } to all

decide() occurs as follows:

2: for all do

3: receive from

4: :=

5: decide min()

Process :pi

V = {vi}

pj

vi

vi

x

j, 0≤j≤n−1, j ̸= i

Sj

V ∪ SjV

V

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

An execution

p1 p2 p3 p4

p1 p2 p3 p4

v1

v2

v3

v4

v1

v4

v2

v1 v1

v4

v3v3

Suppose at the end of round 1

Can decide?

v1 = v3 = v4

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

Echoing values

A process that receives a proposal in round 1,
relays it to others during round 2.

Suppose hasn’t heard from at the end of
round 2. Can decide?

p3 p2

p3

p1 p2 p3 p4

p1 p2 p3 p4

p1 p2 p3 p4

round 1

round 2

What is going on

A correct process has not received all
proposals by the end of round . Can
decide?

Another process may have received the
missing proposal at the end of round and
be ready to relay it in round

p
∗

p
∗

i

i + 1

i

Dangerous Chains

Dangerous chain

The last process in the chain is correct, all
others are faulty

round 1

round 2

rounds

round

p
∗

p
∗

p
∗

p
∗

p0

p1

p2

pi−1

pi

3...i − 1

i

Living dangerously

How many rounds can a dangerous chain span?

 faulty processes

at most nodes in the chain

spans at most rounds

It is safe to decide by the end of round !

f

f+1

f

f+1

The Algorithm

Initially

To execute propose()

 round

1: send { has not already sent } to all

2: for all do

3: receive from

4: :=

decide() occurs as follows:

5:	 if then

6:	 	 decide min()

Code for process :pi

k=f+1

j, 0≤j≤n−1, j ̸= i

k, 1≤k≤f+1

V ={vi}

v∈V : pi v

V

V ∪ Sj

Sj pj

vi

x

V

Termination and
Integrity

Termination

Initially

To execute propose()

 round

1: send { has not already sent } to all

2: for all do

3: receive from

4: :=

decide(x) occurs as follows:

5: if then

6: decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j ̸= i

v∈V : pi v

Termination and
Integrity

Initially

To execute propose()

 round

1: send { has not already sent } to all

2: for all do

3: receive from

4: :=

decide(x) occurs as follows:

5: if then

6: decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j ̸= i

v∈V : pi v

Termination

Every correct process

reaches round

Decides on min(V) --- which is well
defined

f+1

Termination and
Integrity

Integrity

At most one value:

Only if it was proposed:

Initially

To execute propose()

 round

1: send { has not already sent } to all

2: for all do

3: receive from

4: :=

decide(x) occurs as follows:

5: if then

6: decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j ̸= i

v∈V : pi v

Termination

Every correct process

reaches round

Decides on min(V) --- which is well
defined

f+1

Termination and
Integrity

Integrity

At most one value:

 – one decide, and min(V) is unique

Only if it was proposed:

Initially

To execute propose()

 round

1: send { has not already sent } to all

2: for all do

3: receive from

4: :=

decide(x) occurs as follows:

5: if then

6: decide min()

V ={vi}

vi

Sj pj

V ∪ SjV

k=f+1

V

k, 1≤k≤f+1

j, 0≤j≤n−1, j ̸= i

v∈V : pi v

Termination

Every correct process

reaches round

Decides on min(V) --- which is well
defined

f+1

TRB for benign failures

Sender in round 1:

1: send m to all

Process p in round k, 1 ≤ k ≤ f+1

1: if delivered m in round k-1 then

2: if p ≠ sender then

3: send m to all

4: halt

5: receive round k messages

6: if received m then

7: deliver(m)

8: if k = f+1 then halt

9: else if k = f+1

10: deliver(SF)

11: halt

TRB for benign failures

Sender in round 1:

1: send m to all

Process p in round k, 1 ≤ k ≤ f+1

1: if delivered m in round k-1 then

2: if p ≠ sender then

3: send m to all

4: halt

5: receive round k messages

6: if received m then

7: deliver(m)

8: if k = f+1 then halt

9: else if k = f+1

10: deliver(SF)

11: halt

Terminates in rounds

 How can we do better?

Find a protocol whose round
complexity is proportional to
 –the number of failures
that actually occurred–
rather than to ..–the max
number of failures that may
occur

f

f+1

t

Early stopping:
the idea

Suppose processes can detect the set of
processes that have failed by the end of
round

Call that set

How large must be for a dangerous
chain to exist in round ?

faulty(p, i)

i

faulty(p, i)
i

Early stopping:
the idea

Suppose processes can detect the set of
processes that have failed by the end of
round

Call that set

If there can be no active
dangerous chains, and can safely deliver SF

faulty(p, i)

|faulty(p, i)| < i

p

i

Early Stopping:
The Protocol

 set of processes that failed to send a message to in some round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { | received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

|faulty(p, k)| < k

k, 1≤k≤f+1

p

p

k

p

v

k=f+1

k=f+1

v

k−1

m

pq q k

faulty(p, k)

faulty(p, k) := faulty(p, k − 1)∪

⌘

p

Termination
Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Termination

If in any round a process
receives a value, then it
delivers the value in that
round

If a process has received
only “?” for rounds,
then it delivers SF in
round

f+1

f+1

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Validity
Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Validity

If the sender is correct then
it sends to all in round 1

By Validity of the underlying
send and receive, every
correct process will receive
by the end of round 1

By the protocol, every correct
process will deliver by the
end of round 1

m

m

m

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Agreement - 1
Lemma 1:

 For any , if a process delivers
 ≠ SF in round r, then there exists a
sequence of processes such
that = sender, , and in each
round , sent and
received it. Furthermore, all processes
in the sequence are distinct, unless
and sender

Lemma 2:

 For any , if a process sets value

to SF in round , then there exist
some and a sequence of distinct
processes

 such that only receives “?” in
rounds 1 to , , and in
each round , sends
SF to and receives SF

p0, p1, . . . , pr

p0 pr = p

pk−1 pk

p0 = p1 =

m

m

qj , qj+1, . . . , qr = p

qj

qk qk

qk−1

|faulty(qj , j)| < j

k, j+1≤k≤r

j≤r

k, 1≤k≤r

r≥1 p

r=1

r≥1 p

r

j

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Agreement - 2

Lemma 3:

 It is impossible for and , not necessarily

correct or distinct, to set value in the same
round to and SF, respectively

qp

mr

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Agreement - 2
Proof

By contradiction

Suppose sets value = and sets
value = SF

By Lemmas 1 and 2 there exist

with the appropriate characteristics
Since did not receive from
process in round
 must conclude that are
all faulty processes
But then,

CONTRADICTION

p0, . . . , pr

qj , . . . , qr

|faulty(qj , j)| ≥ j

p0, . . . , pj−1

pk−1

qj

qj

mp q

Lemma 3:

 It is impossible for and , not necessarily

correct or distinct, to set value in the same
round to and SF, respectively

qp

m

m

1≤k≤j k

r

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Agreement - 3
Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Agreement - 3
Let be the earliest round in which a correct process
delivers value ≠ SF

By Lemma 3, no (correct) process can set value
differently in round

In round , that correct process
sends its value to all

Every correct process receives and delivers the
value in round

By Lemma 1, there exists a sequence
 of distinct processes

Consider processes

 processes; only faulty

one of is correct-- let it be

To send v in round must have set its
value to v and delivered v in round

CONTRADICTIONProof

If no correct process ever receives m, then every

correct process delivers SF in round

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

r+1  f+1

r+1  f+1

r  f

r = f+1
p0, ..., pf+1

p0, ..., pf

p0, ..., pf pc
c+1, pc

c < r

f+1

= pr

f+1 f

r

r

Integrity
Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

Integrity
At most one

Failures are benign, and
a process executes at
most one deliver event
before halting

If ≠ SF, only if
was broadcast

From Lemma 1 in the
proof of Agreement

m

mm

Let be the set of processes that have

failed to send a message to in any round

1: if = sender then value := else value:= ?

Process in round

2: send value to all

3: if delivered in round then halt

4: receive round values from all

5: { |

 received no value from in round }

6: if received value ≠ ? then

7: value :=

8: deliver value

9: if = sender then value := ?

10: else if or then

11: value := SF

12: deliver value

13: if then halt

k−1

1, . . . , k

p m

p k, 1≤k≤f+1

k=f+1 |faulty(p, k)|<k

k=f+1

v

v

k

q p

q k

p

faulty(p, k) := faulty(p, k − 1)∪

faulty(p, k)

p

What about the
asynchronous model?

 Theorem

There is no deterministic protocol that solves

Consensus in a message-passing
asynchronous system in which at most one
process may fail by crashing

(Fisher, Lynch, and Paterson. Impossibility of distributed
consensus with one faulty process. JACM, Vol. 32, no. 2, April
1985, pp. 374-382)FLP

Around FLP in 80 Slides

How can one get around
FLP?

Weaken the problem

Weaken termination

use randomization to terminate with arbitrarily high probability

guarantee termination only during periods of synchrony

Weaken agreement

ε - agreement

real-valued inputs and outputs

agreement within real-valued small positive tolerance ε

k-set agreement

Agreement: In any execution, there is a subset W of the set of input values, |
W| =k, s.t. all decision values are in W

Validity: In any execution, any decision value for any process is the input value
of some process

How can one get around
FLP?

Constrain input values

Characterize the set of input values for which
agreement is possible

Strengthen the system model

Introduce failure detectors to distinguish between
crashed processes and very slow processes

