
How to implement a
write once register?

The mapping is recorded in “Paxos register” at a set of state
machines called acceptors

A leader never proposes a map that may conflict with what is
stored in Paxos register

A leader, before attempting to create a new map between a slot
number for which it knows not a decision and a proposal, “reads”
the Paxos register to check whether such map may already exist

Once a leader learns that a new mapping has become permanent,
it informs the replicas

Note: Though state machines, acceptors
are NOT replicas of each other!

Each leader has an infinite supply of ballots

The set of ballots of different leaders are
disjoint

Ballots

5555856543210

555585654321

555585654321

555585654321

5555856543210000

Each leader has an infinite supply of ballots

The set of ballots of different leaders are
disjoint

Ballots are lexicographically ordered pairs

Ballots

5555856543210

555585654321

555585654321

555585654321

5555856543210000

hseq no, LIdi

Acceptors

Send messages only
when prompted

Can crash...

...but we assume no
more than a minority
will

Need at least
acceptors to tolerate
 faults

2f+1

f

Acceptors

Each acceptor maintains two
variables:

 , initially

 , a set of pvalues,
initially empty

↵

↵.ballot num ?

↵.accepted

A pvalue is a triple

 ballot number

 slot number

 a proposal

e=hb, s, pi
b :

s :

p :

 accepts

 adopts
↵ e ⌘ e 2 ↵.accepted

↵ b ⌘ ↵.ballot num :=b

...once it is accepted by a majority of
acceptors – it is then chosen

 accepts a pvalue only if it includes the
ballot most recently adopted by

To make mapping permanent, needs a
majority of acceptors to adopt the ballot of
the pvalue that contains

A mapping is forever...

↵
↵

hs, pi

hs, pi

�

Acceptor

On receiving <p1a >

adopts iff larger than

returns to all accepted pvalues

,�, b

ballot numb

�

Invariants

A1. An acceptor
can only adopt
strictly increasing
ballot numbers

A2. An acceptor
can only accept
 if hb, s, pi
b = ballot num

A3. An acceptor
can not remove
entries from
↵.accepted

↵

process

 var

 for ever

 switch

 case <p1a > :

 if then

 end if

 p1b

 case <p2a > :

 if then

 end if

 p2b

 end switch

 end for

end process

Acceptor()

ballot num := ?, accepted := ;;

receive();
,�, b

b > ballot num

send(�, h , self(), ballot num, acceptedi);
,�, hb, s, pi

ballot num := b;

ballot num := b;

accepted :=accepted [{hb, s, pi}

send(�, h , self(), ballot numi);

b � ballot num
On receiving <p2a >

adopts iff larger than

accepts if equal to

returns to the current

ballot numb

,�, hb, s, pi

� ballot num

ballot numbe

(i.e., “partially reads the Paxos register”)

Acceptor

On receiving <p1a >

adopts iff larger than

returns to all accepted pvalues

,�, b

ballot numb

�

Invariants

process

 var

 for ever

 switch

 case <p1a > :

 if then

 end if

 p1b

 case <p2a > :

 if then

 end if

 p2b

 end switch

 end for

end process

Acceptor()

ballot num := ?, accepted := ;;

receive();
,�, b

b > ballot num

send(�, h , self(), ballot num, acceptedi);
,�, hb, s, pi

ballot num := b;

ballot num := b;

accepted :=accepted [{hb, s, pi}

send(�, h , self(), ballot numi);

b � ballot num

A4. For a given and , at most one
proposal can be under consideration
by the acceptors:

b s

hb, s, pi 2 ↵.accepted^
hb, s, p0i 2 ↵0.accepted =) p = p0

A5. Suppose a majority of acceptors
has . . If
and , then hb0, s, p0i 2 ↵0.accepted

hb, s, pi 2 ↵.accepted b0 > b
p = p0

On receiving <p2a >

adopts iff larger than

accepts if equal to

returns to the current

ballot numb

,�, hb, s, pi

� ballot num

ballot numbe

? ?

Commander

A leader holding and trying to
map slot to proposal spawns a new
commander thread for

A commander’s mission has two possible
outcomes:

success: the leader learns that the proposed
mapping has been permanently established

failure: the leader learns that may no longer be
acceptable to a majority of acceptors

ballot num = b
s p

hb, s, pi

b

Commander invariants

A4. For a given and , at
most one proposal can be
under consideration by the
acceptors

sb

C1. For any and , at
most one commander
is spawned

sb

Commander invariants

spawned for : , then

C2. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If a commander is

b0 > bhb0, s, p0i p = p0

, then

A5. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If and b0 > b
hb0, s, p0i 2 ↵0.accepted p = p0

?

process

 var

 p2a

 for ever

 switch

 case <p2b > :

 if then

 if then

 decision

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

, self (), hb, s, pi);

Commander(�, acceptors, replicas, hb, s, pi)
waitfor :=acceptors, pvalues :=;

8↵ 2 acceptors : send(↵, h

receive();
,↵, b0

b0 = b
waitfor :=waitfor � {↵};

|waitfor | < |acceptors|/2
8⇢ 2 replicas :
send(⇢, h , s, pi);

exit();

send(�, h , b0i)
exit();

Commander

R1. For any given slot, replicas
decide the same command

Must enforce

, then

A5. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If and b0 > b

hb0, s, p0i 2 ↵0.accepted p = p0

spawned for : , then

C2. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If a commander is

b0 > bhb0, s, p0i p = p0

process

 var

 p2a

 for ever

 switch

 case <p2b > :

 if then

 if then

 decision

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

, self (), hb, s, pi);

Commander(�, acceptors, replicas, hb, s, pi)
waitfor :=acceptors, pvalues :=;

8↵ 2 acceptors : send(↵, h

receive();
,↵, b0

b0 = b
waitfor :=waitfor � {↵};

|waitfor | < |acceptors|/2
8⇢ 2 replicas :
send(⇢, h , s, pi);

exit();

send(�, h , b0i)
exit();

Commander

A higher ballot is active: a
majority of acceptors may no
longer be willing to accept

b0

b

process

 var

 p2a

 for ever

 switch

 case <p2b > :

 if then

 if then

 decision

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

, self (), hb, s, pi);

Commander(�, acceptors, replicas, hb, s, pi)
waitfor :=acceptors, pvalues :=;

8↵ 2 acceptors : send(↵, h

receive();
,↵, b0

b0 = b
waitfor :=waitfor � {↵};

|waitfor | < |acceptors|/2
8⇢ 2 replicas :
send(⇢, h , s, pi);

exit();

send(�, h , b0i)
exit();

Commander

Notify the leader and exit

Scout
Before spawning commanders for ballot ,
leader invokes a scout

Scouts read the Paxos memory to help leaders
propose mappings that satisfy C2.

A scout’s mission has two possible outcomes:

success: the leader learns that the proposed ballot
has been adopted by a majority of acceptors and
receives all pvalues accepted by that majority

failure: the leader learns that may no longer be
acceptable to a majority of acceptors

b

b

process

 var

 p1a

 for ever

 switch

 case <p1b > :

 if then

 if then

 adopted

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

8↵ 2 acceptors : send(↵, h

receive();

b0 = b

waitfor :=waitfor � {↵};
|waitfor | < |acceptors|/2

exit();

send(�, h , b0i)
exit();

,↵, b0, r

pvalues :=pvalues [r;

send(�, h , b, pvaluesi);

, self (), b);

waitfor :=acceptors, pvalues :=;
Scout(�, acceptors, b) Scout

Scout

 gets a majority of
acceptors to adopt

 collects all pvalues
that acceptors have
accepted while
adopting ballots no
larger than

b

b

Scoutprocess

 var

 p1a

 for ever

 switch

 case <p1b > :

 if then

 if then

 adopted

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

waitfor :=acceptors, pvalues :=;
8↵ 2 acceptors : send(↵, h

receive();

b0 = b

waitfor :=waitfor � {↵};
|waitfor | < |acceptors|/2

exit();

send(�, h , b0i)
exit();

Scout(�, acceptors, b)

, self (), hbi);

,↵, b0, r

pvalues :=pvalues [r;

send(�, h , b, pvaluesi);
A higher ballot is active: a
majority of acceptors may no
longer be willing to accept

b0

b

Scoutprocess

 var

 p1a

 for ever

 switch

 case <p1b > :

 if then

 if then

 adopted

 end if;

 else

 preempted

 end if

 end switch

 end for

end process

waitfor :=acceptors, pvalues :=;
8↵ 2 acceptors : send(↵, h

receive();

b0 = b

waitfor :=waitfor � {↵};
|waitfor | < |acceptors|/2

exit();

send(�, h , b0i)
exit();

Scout(�, acceptors, b)

, self (), hbi);

,↵, b0, r

pvalues :=pvalues [r;

send(�, h , b, pvaluesi);

Notify the leader and exit

Leader

Spawns a scout for
initial ballot number

Enters a loop waiting for
one of three messages:

 propose from a
replica

 adopted
from a scout

 preempted from a
commander or a scout

h , s, pi

h

h

, ballot num, pvalsi

, hr0,�0ii

Each leader maintains three
variables:

 , initially 0

 , boolean, initially false

 , an initially empty map

�

�.ballot num

�.active

�.proposals
hslot number , proposali

Leader moves between active
and passive mode

in passive mode is waiting for
adopted

in active mode spawns commanders
for each of the proposal it holds

h , ballot num, pvalsi

Suppose learns that a majority of acceptors
has adopted its ballot (adopted)

�
b , b, pvalsih

spawned for : , then

C2. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If a commander is

b0 > bhb0, s, p0i p = p0

How a leader enforces

CASE 1: if for some slot there is no value
in , then it is impossible that a permanent
mapping for a smaller ballot already exists or will
ever exist for : any proposal by will satisfy C2

s
pvals

s �

Suppose learns that a majority of acceptors
has adopted its ballot (adopted)

�
b , b, pvalsih

spawned for : , then

C2. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If a commander is

b0 > bhb0, s, p0i p = p0

How a leader enforces

Suppose learns that a majority of acceptors
has adopted its ballot (adopted)

CASE 2: let be the pvalue with the
maximum ballot number for .

by induction, no pvalue other than could have
been chosen for when was proposed

since a majority of acceptors has adopted ,
no pvalues between and can be chosen

by proposing with ballot , enforces C2

�
b , b, pvalsih

s
hb0, s, pi

p

p b �

b
bb0

hb0, s, pis

b0

How a leader enforces
spawned for : , then

C2. Suppose a majority of acceptors has
hb, s, pi 2 ↵.accepted . If a commander is

b0 > bhb0, s, p0i p = p0

receive(); Leader

Leader(acceptors, replicas)

ballot num := (0, self ()),active = , proposals :=;
spawn(Scout(self(), acceptors, ballot num);

, s, p
@p0 : hs, p0i 2 proposals
proposals :=proposals [{hs, pi}
active
spawn(Commander(self(), acceptors, replicas, hballot num, s, pi);

, ballot num, pvals
proposals=proposals � pmax(pvals)
8hs, pi 2 proposals : spawn(Commander(self(), acceptors, replicas, hballot num, s, pi);
active :=

, r0,�0

(r0,�0) > ballot num
 end case

 end switch

 end for

end process

active :=
ballot num := (r0 + 1, self());
spawn(Scout(self(), acceptors, ballot num);

pmax (pvals) ⌘ {hs, pi | 9b : hb, s, pi 2 pvals ^
8b0, p0 : hb0, s, p0i 2 pvals) b0  b}

x� y ⌘ {hs, pi | hs, pi 2 y _
(hs, pi 2 x ^ @p0 : hs, p0i 2 y)}

process

 var false

 for ever

 switch

 case <propose > :

 if then

 if then

 end if

 end if

 end case

 case <adopted >

 true

 end case

 case <preempted >

 if then

 false;

 end if

Implementing State
Machine Replication

Implement a sequence of separate instances of
consensus, where the value chosen by the
instance is the message in the sequence.

Each server assumes all roles in each instance
of the algorithm.

Assume that the set of servers is fixed

<latexit sha1_base64="2TYoS8J77XXpTsy7YSJRSlsXahQ=">AAAB7XicjVDJSgNBEK2JW4xb1KOXxiB4ChNxO3gIePEYwSyQjKGn05O06ekeumuEMOQfvHhQxKv/482/sbMcVBR8UPB4r4qqemEihUXf//ByC4tLyyv51cLa+sbmVnF7p2F1ahivMy21aYXUcikUr6NAyVuJ4TQOJW+Gw8uJ37znxgqtbnCU8CCmfSUiwSg6qSFuMxyMu8VSpexPQf4mJZij1i2+d3qapTFXyCS1tl3xEwwyalAwyceFTmp5QtmQ9nnbUUVjboNseu2YHDilRyJtXCkkU/XrREZja0dx6DpjigP705uIv3ntFKPzIBMqSZErNlsUpZKgJpPXSU8YzlCOHKHMCHcrYQNqKEMXUOF/ITSOypXT8sn1cal6MY8jD3uwD4dQgTOowhXUoA4M7uABnuDZ096j9+K9zlpz3nxmF77Be/sE6CaPWA==</latexit>

ith

<latexit sha1_base64="2TYoS8J77XXpTsy7YSJRSlsXahQ=">AAAB7XicjVDJSgNBEK2JW4xb1KOXxiB4ChNxO3gIePEYwSyQjKGn05O06ekeumuEMOQfvHhQxKv/482/sbMcVBR8UPB4r4qqemEihUXf//ByC4tLyyv51cLa+sbmVnF7p2F1ahivMy21aYXUcikUr6NAyVuJ4TQOJW+Gw8uJ37znxgqtbnCU8CCmfSUiwSg6qSFuMxyMu8VSpexPQf4mJZij1i2+d3qapTFXyCS1tl3xEwwyalAwyceFTmp5QtmQ9nnbUUVjboNseu2YHDilRyJtXCkkU/XrREZja0dx6DpjigP705uIv3ntFKPzIBMqSZErNlsUpZKgJpPXSU8YzlCOHKHMCHcrYQNqKEMXUOF/ITSOypXT8sn1cal6MY8jD3uwD4dQgTOowhXUoA4M7uABnuDZ096j9+K9zlpz3nxmF77Be/sE6CaPWA==</latexit>

ith

The role of the leader

In normal operation, elect a single server to be
a leader. The leader acts as a distinguished
proposer in all instances of the consensus
algorithm.

Clients send commands to the leader, which decides
where in the sequence each command should appear.

If the leader, for example, decides that a client
command is the kth command, it tries to have the
command chosen as the value in the kth instance of
consensus.

What if a new 		is elected?

Since				serves also as a replica in all instances of
consensus, it should know most of the commands that
have already been chosen. For example, it might
know commands for slots 1-10, 13, and 15.

It executes phase 1 for slots 11, 12, and 14 and of
all slots 16 and larger.

may find that some value was already accepted
for slots 14 and 16 and that slots 11, 12 and all
slots after 16 have accepted no command.

 then executes phase 2 of 14 and 16, using the
value with the highest ballot it retrieved for
those slots

λ

λ

λ

λ

Stop-gap measures

All replicas now can execute commands 1-10, but not
13-16 because 11 and 12 haven't yet been chosen.

 can either take the next two commands it receives
by clients to be commands 11 and 12, or can propose
immediately that 11 and 12 be no-op commands.

this is what happens on “Olive Day”!

 runs phase 2 of consensus for slots 11 and 12.

Once consensus is achieved, all replicas can execute
all commands through 16.

λ

λ

To infinity, and beyond

 can efficiently execute phase 1 for infinitely
many instances of consensus! (e.g. command 16
and higher)

 just sends a message with a sufficiently high
proposal number for all instances

An acceptor replies non trivially only for instances for
which it has already accepted a value

λ

λ

Paxos and FLP

Paxos is always safe–despite asynchrony

Once a leader is elected, Paxos is live.

“Ciao ciao” FLP?

To be live, Paxos requires a single leader

“Leader election” is impossible in an
asynchronous system (gotcha!)

Given FLP, Paxos is the next best thing:
always safe, and live during periods of synchrony

Atomic Commit

The objective

Preserve data consistency for distributed
transactions in the presence of failures

Model

For each distributed transaction T:

one coordinator

a set of participants

Coordinator knows participants; participants
don’t necessarily know each other

Each process has access to a Distributed
Transaction Log (DT Log) on stable storage

The setup

Each process has an input value :

 Yes, No

Each process has output value :

 Commit, Abort

votei

decisioni

decisioni ∈ { }

pi

pi

votei ∈ { }

AC Specification
AC-1: All processes that reach a decision reach the
same one.

AC-2: A process cannot reverse its decision after it has
reached one.

AC-3: The Commit decision can only be reached if all
processes vote Yes.

AC-4: If there are no failures and all processes vote
Yes, then the decision will be Commit.

AC-5: If all failures are repaired and there are no
more failures, then all processes will eventually decide.

Comments
AC1:

We do not require all processes to
reach a decision

We do not even require all correct
processes to reach a decision
(impossible to accomplish if links fail)

AC4:

Avoids triviality

Allows Abort even if all processes
have voted yes

NOTE:

A process that does not vote Yes
can unilaterally abort

AC-1: All processes that reach a
decision reach the same one.

AC-2: A process cannot reverse its
decision after it has reached one

AC-3: The Commit decision can only
be reached if all processes vote
Yes

AC-4: If there are no failures and
all processes vote Yes, then the
decision will be Commit

AC-5: If all failures are reported
and there are no more failures,
then all processes will eventually
decide

Liveness & Uncertainty

A process is uncertain if it has voted Yes but
does not have sufficient information to commit

While uncertain, a process cannot decide
unilaterally

Uncertainty + communication failures =
blocking!

Liveness & �
Independent Recovery

Suppose process fails while running AC.

If, during recovery, can reach a decision
without communicating with other processes,
we say that can independently recover

Total failure (i.e. all processes fail) -
independent recovery = blocking

p

p

p

A few character-building
facts

Proposition 1

If communication failures or total failures are
possible, then every AC protocol may cause
processes to become blocked

Proposition 2

No AC protocol can guarantee independent
recovery of failed processes

2-Phase Commit
cCoordinator

I. sends VOTE-REQ to all participants

piParticipant

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

cCoordinator

I. sends VOTE-REQ to all participants

votei

piParticipant

III. votes

if all vote YES then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

decidec

decidec

c

III. votes

if all vote YES then

 := COMMIT

send COMMIT to all

else

 := ABORT

send ABORT to all who voted YES

halt

II. sends to Coordinator

 if = NO then

 := ABORT

halt

2-Phase Commit

votei

decidei

pi

decidec

decidec
decidei

decidei

cCoordinator Participant

I. sends VOTE-REQ to all participants

votei

IV. if received COMMIT then

:= COMMIT

else

:= ABORT

halt

c

Notes on 2PC

Satisfies AC-1 to AC-4

But not AC-5 (at least “as is”)

i. A process may be waiting for a message that

may never arrive

Use Timeout Actions

ii. No guarantee that a recovered process will
reach a decision consistent with that of
other processes

Processes save protocol state in DT-Log

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

pi

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

Timeout actions
Processes are waiting on steps 2, 3, and 4

Step 2 is waiting for VOTE-
REQ from coordinator

Step 3 Coordinator is waiting
for vote from participants

Since it is has not cast its vote
yet, can decide ABORT and
halt.

pi

pi

Coordinator can decide ABORT,
send ABORT to all participants

which voted YES, and halt.

Step 4 (who voted YES) is waiting
for COMMIT or ABORT

pi

 cannot decide: it must run a
termination protocol

pi

Termination protocols

I. Wait for coordinator to recover

It always works, since the coordinator is
never uncertain

may block recovering process unnecessarily

II. Ask other participants

Cooperative Termination

 appends list of participants to VOTE-REQ

when an uncertain process times out, it
sends a DECISION-REQ message to every
other participant

if has decided, then it sends its decision
value to , which decides accordingly

if has not yet voted, then it decides
ABORT, and sends ABORT to

What if is uncertain?

c

p

q

q

p

q

p

q

Logging actions
1. When sends VOTE-REQ, it writes START-2PC to its DT

Log

2. When is ready to vote YES,

i. writes YES to DT Log

ii. sends YES to (writes also list of participants)

3. When is ready to vote NO, it writes ABORT to DT Log

4. When is ready to decide COMMIT, it writes COMMIT
to DT Log before sending COMMIT to participants

5. When is ready to decide ABORT, it writes ABORT to DT
Log

6. After receives decision value, it writes it to DT Log

pi

c

c pi

pi

pi

pi

pi

c

c

 recovers p

1. When coordinator sends VOTE-REQ,

 it writes START-2PC to its DT Log

2. When participant is ready to vote

 Yes, writes Yes to DT Log before

 sending yes to coordinator (writes

 also list of participants)

 When participant is ready to vote No,

 it writes ABORT to DT Log

3. When coordinator is ready to decide

 COMMIT, it writes COMMIT to DT Log

 before sending COMMIT to participants

 When coordinator is ready to decide

 ABORT, it writes ABORT to DT Log

4. After participant receives decision

 value, it writes it to DT Log

 recovers
if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly

else decide ABORT

p

p = c

1. When coordinator sends VOTE-REQ,

 it writes START-2PC to its DT Log

2. When participant is ready to vote

 Yes, writes Yes to DT Log before

 sending yes to coordinator (writes

 also list of participants)

 When participant is ready to vote No,

 it writes ABORT to DT Log

3. When coordinator is ready to decide

 COMMIT, it writes COMMIT to DT Log

 before sending COMMIT to participants

 When coordinator is ready to decide

 ABORT, it writes ABORT to DT Log

4. After participant receives decision

 value, it writes it to DT Log

 recovers
if DT Log contains START-2PC,
then :

if DT Log contains a decision
value, then decide accordingly

else decide ABORT

otherwise, is a participant:

if DT Log contains a decision
value, then decide accordingly

else if it does not contain a
Yes vote, decide ABORT

else (Yes but no decision)
run a termination protocol

p

p = c

p

1. When coordinator sends VOTE-REQ,

 it writes START-2PC to its DT Log

2. When participant is ready to vote

 Yes, writes Yes to DT Log before

 sending yes to coordinator (writes

 also list of participants)

 When participant is ready to vote No,

 it writes ABORT to DT Log

3. When coordinator is ready to decide

 COMMIT, it writes COMMIT to DT Log

 before sending COMMIT to participants

 When coordinator is ready to decide

 ABORT, it writes ABORT to DT Log

4. After participant receives decision

 value, it writes it to DT Log

2PC and blocking

Blocking occurs whenever the progress of a
process depends on the repairing of failures

No AC protocol is non blocking in the presence
of communication or total failures

But 2PC can block even with non-total
failures and no communication failures among
operating processes!

	Week8.1
	Week8.2

