CS 5412 - Cloud Computing
Recitation 02/19: Replication

Sagar Jha
Note: Requests, commands, operations, updates, etc. are used interchangeably
throughout. Also, “node” is used sometimes instead of replica.

Replication is for fault-tolerance: it helps with availability and consistency.

1 Benefits of replication

1. Fault tolerance: Replicas store the same state. This helps with avail-
ability and consistency. If some replicas fail, others can be used to access
the state (availability) and the state is not lost (consistency).

2. Performance: Since replicas stores the same state, they can answer
queries in parallel, independently. Updates can also benefit from par-
allelism, although it is complicated since each replica receiving updates
from clients simultaneously is at odds with the necessity to replicate these
updates.

2 Replication is non-trivial

Replication is challenging because we must guarantee that replicas continue to
store the same state through a series of updates.

To appreciate some of the challenges, we consider a naive approach where repli-
cas respond to requests separately and send the updates to each other.
Consider an airline ticketing system that supports the operation of booking
a ticket specified by a ticket id and a customer id, book(tid,cid). Suppose
that the system has two servers r1 and r2, and two requests s1 = book(t,c1)
and s2 = book(t, cy) simultaneously arrive at r1, 79, respectively. If ticket ¢ is
available for booking, then s; runs successfully at 1 and ss runs successfully at
ro, but when they are sent to the other replica, each returns an error because ¢
is already booked. This is a case of diverging replica states as replica r; thinks
that t is booked by c;, while replica 75 thinks that it is booked by cs.

What fundamentally goes wrong in this example? The replicas executed the
requests in different order that led to diverging states. Thus, we desire the
following property:



’* Replicas run the operations in the same order

3 State machine replication

Suppose Sy is the initial state every replica starts with. If each one of them
runs the commands ¢y, cg, ... in the same order and every command in every
state leads to a unique next state, then each replica will transition through the
same sequence of states.

This is the state machine replication (SMR) approach.

The state may be maintained in memory or on disk at the replicas. Alternatively,
a log of all the operations (commands) executed by the system can be stored
as an ordered list. Then the log can be exposed to the clients that can manage
the state themselves.

4

Challenges for SMR

. What is the replica set?

The replica set is not static because of failures. Failures also force us to
replenish the number of replicas by adding more of them. The information
of which nodes belong in the replica set is the group membership problem.

. How to decide on the same order of commands?

This is the distributed consensus problem. We need consensus on the order
of the commands, or equivalently, on the next command that should be
run. Thus SMR can be seen as solving a sequence of consensus problems,
each one deciding on the next command every replica should execute.

A distributed consensus problem, more generally, for a set of processes is
one in which every process starts with an input value, and has to decide
on an output value such that the following is satisfied:

e Safety/Agreement Every correct (non-failed) process must decide
on the same output value.

e Validity /Integrity The output value must be the input value to
some process. Equivalently, if every process receives the same input
value, the output should be that value.

e Progress/Termination Every correct (non-failed) process must even-
tually output a value (in other words, processes must decide on the
output value eventually).

Consensus requires coordination - replicas need to coordinate with each
other to communicate the requests they are receiving from the clients.

3. State transfer: How to synchronize state for a new joining replica?



We established that failures force us to add new members. We need to
synchronize state at the joining replicas before they can support user op-
erations.

SMR is a general approach to replication. Actual systems can implement it
in different ways. Some systems might decide on the commands to execute in
“batches”, meaning that instead of replicas deciding on the single next command
to execute, they decide on a sequence of commands instead. In some systems,
there is a designated leader replica, which decides on the sequence of updates
to be committed.

At any single point in time, replicas might differ in the actual state they have,
because some of them have not yet processed the next few commands. Real-
world processes and network work asynchronously - nodes can execute instruc-
tions at different rates, the network may have unbounded delays etc. This begs
the question: When is it safe for a replica to “commit” (or apply) an update
and change the state? One sample answer is: when a replica knows that the
next command has been received by everyone. This guarantees that even if a
replica fails immediately after it changes its state, the same state change will
be executed by every other replica.

5 Chain replication

Chain replication is an implementation of SMR. It is still not a complete system,
because it does not solve the membership problem.

In chain replication, the leader replica (or the head of the chain) receives all the
update commands. Each update propagates in a chain from the leader replica
all the way to the terminal replica which applies (or commits) the update. The
acknowledgements flow back in the chain and the update is applied in reverse
order. Note that it is not safe to apply an update in the forward pass, because
replicas down the chain are not aware of the update.

Queries are processed by the terminal replica. This guarantees that queries are
also well-ordered with respect to updates.

Chain replication is a very simple scheme to solve SMR. It forms bottlenecks at
the leader replica which initiates all updates and at the terminal replica which
answers all queries. Moreover, performance of chain replication is very sensitive
to slow links between any two replicas in the chain.

6 Sharding for scalability

Replication provides limited scalability. Increasing the number of replicas to
scale query processing slows down the updates, as the coordination costs mul-
tiply with the number of replicas. For example, suppose you are designing your
system to respond to 10'2 queries per second. If each server is capable of pro-
cessing 107 queries per second only, you might be tempted to have 1000 replicas.
In practice, the replication factor is very small, typically < 5.



A better approach is sharding your data. If you have 250 shards of 4 replicas
each, each replica of every shard will receive 10° queries per second on expecta-
tion. Even if the shards were to be co-located (meaning that they have nodes
in common), updates in a shard will nowhere be as expensive as for the 1000
replicas case.



