
CS5412: DANGERS OF
CONSOLIDATION
Ken Birman

1

Lecture XXIII

Are Clouds Inherently Dangerous?
2

 Gene Spafford, famous for warning that the emperor
has no clothes fears
that moving critical information
to the cloud could be a catastrophe

 His concern?
 Concentration of key resources creates

a “treasure chest” that adversaries can
focus upon and attack

 Risk of a virus spreading like wildfire

 Core issue: Clouds create monocultures

3

What Constitutes a “Monoculture”?

monoculture: An environment in which the
predominance of systems run apparently identical
software components for some or all services.

 Such systems share vulnerabilities, hence they are at risk
to rapid spread of a virus or other malware vector.

Cloned plants

Cloned babies

Forms of monocultures
4

 Large numbers of instances of identical programs or
services (includes applications, not just the O/S)

 Wide use of the same programming language or
scripting tool

 Any standard defines a kind of monoculture

5

Taking the larger view

Three categories of attack

 Configuration attacks.
 Exploit aspects of the configuration. Vulnerability introduced by system

administrator or user who installs software on the target.
 Includes compiling SNDMAIL with the back door enabled

 Technology attacks.
 Exploit programming or design errors in software running on the target.

Vulnerability introduced by software builder.
 Here hacker breaks in via buggy code

 Trust attacks.
 Exploit assumptions made about the trustworthiness of a client or server.

Vulnerability introduced by system or network architect.
 Hacker abuses legitimate access, like a hospital worker who peeks at

Lindsey Lohan’s medical records

6

Monoculture: A defense for configuration attacks.

A carefully constructed, fixed, system configuration would be an
effective defense against configuration attacks.

 System configuration (today) is hard to get right and thus is best done by
experts. Having one or a small number of “approved” configurations
would allow that.

 Configuration attacks are considered “low hanging fruit” and thus likely
are the dominant form of attack today.

 Configurations change not only because a system administrator installs
software but also from a user visiting web sites or interacting with web
services that cause software downloads.

 To rule-out such downloads could be a serious limitation on system
functionality. Such downloads often bring vulnerabilities, though.

So monocultures help… for one case
7

 Question becomes: what percent of attacks
leverage configuration mistakes?

 … nobody knows!

 But gray-hat hackers assure us that things like standard
passwords are a very common problem

Viruses love monocultures
8

 Earliest Internet Worm was launched at Cornell!
 A brief episode of notoriety for us
 Worm exploited variety of simple mechanisms to break

into computer systems, then used them as a springboard
to find other vulnerable systems and infect them

 It had a simple trick to prevent itself from reinfecting an
already infected system: checked for a “lock” file
 But even if present, reinfected with a small probability
 Idea was to jump back onto systems that might have been

fixed by system admin team but who left the lock in place

Monocultures are a known risk
9

 Vast majority of computer viruses and worms
operate by exploiting software bugs
 For example, failure to check boundaries on arrays
 Very common in code written in C++ or C because

those languages check automated boundary checks
 Nothing stops an input from overrunning the end of the

array

 What lives beyond the end
of an array?

Beyond the end...
10

 Two cases to consider

 Array is on the stack (local to some active method)

 Array is in the program’s data or BSS area, or was
allocated from the heap

Stacks grow “downwards...”
11

Target array

registers, return PC

locals

registers, return PC

foo(1, 2, 3)

direction of
stack growthOther locals

Stacks grow “downwards...”
12

Target array

registers, return PC

locals

registers, return PC

foo(1, 2, 3)

Other locals

unreasonably long
input string

overwrites the
locals and registers
and the return PC

Stacks grow “downwards...”
13

registers, return PC

locals
foo(1, 2, 3)

PC points into data on
the stack

Compromised content
includes virus code

Attacker replaced
the return PC with
an address in the
middle of the
injected string

Why does this attack work?
14

 Attacker needs to be able to predict
 Where the target string lives in memory
 How the stack is arranged
 What the code that reads the string will do

 Trick is to get the code to jump into the data read
from the attacker

Bootstrapping concept
15

 The hacker doesn’t have much “room” for instructions

 So typically this logic is very limited: often just code
to read a longer string from the network and then
execute that longer code
 In effect, the initial attack is a bootstrap program
 It loads and launches a more serious program

Example
16

 String loads code that simply allocates a much
bigger object, reads from the same input source into
it, and jumps to the start

 Allows the attacker to send a multi-GB program
that would be way too large to “fit” within the stack
 Trick is to take over but not trigger exceptions
 If the attack causes the program to throw an exception,

someone might notice

What about data/heap?
17

 Here attacker might be in a position to overwrite other
adjacent variables on which the program is dependent
 This does assume some “predictability” in memory layout!
 We could perhaps replace a filename it reads or one it

writes with filenames the attacker would prefer that it use
instead, or with network URLs

 Of course the program will now be a very sick puppy but it
might last just long enough to do the I/O for the attacker

 That I/O becomes a “point of leverage” that the attacker
exploits like the first domino in a long line...

Example “attack opportunity”
18

 Any program that works with strings in C or C++ is at risk
even if we length-check inputs

void unsafe(char *a, char *b)
{

char tmp[32];
strcpy(tmp, a);
strcat(tmp, b);
return(strcmp(tmp, “foobar”));

}

 Problem here isn’t with the input length per-se but with the
assumption in “unsafe” that the combined string fits in tmp

Why not just fix the compiler?
19

 People have modified C to check array bounds
 This only helps in limited ways

 C and C++ and Fortran are unsafe by design because
of pointer aliasing
 They let us treat an object of one type as if it was of some

other type
 And they impose no real boundary checking at all

 Fixing the language would break many programs that
are in wide use: we would need to fix them too

Broader problem
20

 We simply don’t have a good way to create things
that are correct, by construction, ground up
 Lacking those, trying to find problems in existing code is

like trying to plug a leak in a dam

 At best we can prove properties of
one thing or another but the
assemblage invariably has holes!
 Or they sneak in over time

Cloud “permissiveness”
21

 Anyhow, it makes no sense to imagine that we would tell
people how to build cloud applications

 With EC2 we just hand Amazon an executable
 How will it know if the binaries were compiled using the

right compiler?
 What if the version of the compiler matters?
 Generally not viewed as a realistic option

 In fact when C and C++ run on .NET many of these
overflow issues are caught, but “managed” C or C++
will reject all sorts of classic programs as buggy

How to attack a cloud
22

 A good firewall can block many kinds of attacks

 But something will get through eventually, we can’t
avoid every possible risk and close every possible
virus exploit

 And once the virus breaks in, it compromises every
single accessible instance of the same code

What can we do about these issues?
23

 Today: Focus on these kinds of viral attacks

 Thursday: Look at the bigger picture

First, let’s stop the stack attack...
24

 How can we do that?
 The attacker is taking advantage of knowledge of the

program behavior and flaws

 An “unpredictable” program would have crashed but
not been so easy to compromise

 Can we take a program written in C or C++ and make
it behave less predictably without causing it to crash?

Stack randomization
25

 Idea is simple:
 Modify the runtime to randomly allocate chunks of memory

(unpredictable size) between objects on stack
 We can also add a chunk of unpredictable size to the

bottom of the stack itself

 Attacker countermeasures?
 May be possible to use a “block” of jump instructions, no-

ops to create code that can run in a “position independent
manner”

 Or might guess the offset and try, try again... If the
datacenter doesn’t notice the repeated crashes a few
hundred tries might suffice to break in

.NET has automated diversity
26

 If enabled, a wide variety of randomization
mechanisms will be employed

 Just a bit in the runtime environment you can set

 But important to retest programs with stack
randomization enabled
 Some programs depend on bugs, other issues!

But this can’t stop all attacks
27

 For example, database “code injection” attacks have a
similar approach and yet don’t rely on array overflow:
 Intended code
 SELECT * FROM users WHERE name = '" + userName + "';"
 Limits query to data for this user

 Attacker sends a “faulty” name argument:
 ' or '1'='1
 SELECT * FROM users WHERE name = ` ’ or ‘1’=1;

 There are many examples of this kind because many
programs exchange messages that involve application-
specific programming languages

Blocking SQL query injection?
28

 This is easy:
 Read the input
 Then “clean it up”
 Then pass it in to the application

 As long as the developer uses the right tools these
issues don’t arise
 But not every developer cooperates

Other ideas: Castro and Costa
29

 One project at Microsoft monitors program crashes
 Each time a crash happens they look to see what input

caused the program to fail
 In one project they create virus “signatures”
 In another they automatically combine these to create a

pattern, more and more selective, for blocking the input
strings that cause the problem

 Use gossip, rapidly and robustly disseminate the fix
together with a “proof” of the bug that triggers it

Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao
Zhang, and Paul Barham, Vigilante: End-to-End Containment of Internet Worms, in
ACM Symposium on Operating Systems Principles (SOSP), Brighton, UK, Oct 2005

What kind of “proof”?
30

 Before installing a patch, verify that problem is real
 Proof: Example of an input that will cause a crash or

some other form of compromise
 Verification: Try it inside a virtual machine

 One issue: if the filter is too broad, it might block
legitimate inputs that wouldn’t cause a crash

 We want to block the attack but not legitimate users

Back door attacks
31

 Some attacks don’t actually compromise a program
 For example, the early Internet worm operated by

exploiting a feature in the original SNDMAIL program
 Code was written by Eric Allman and was unstable for

the first few years
 So he needed ways to see what the problem was
 Included a debug feature allowing him to use SNDMAIL as a

kind of remote FTP program to access files on remote
system… and SNDMAIL runs with elevated priority…

 Internet worm used this “feature” as one of its attack vectors

Stack diversity doesn’t stop these…
32

 Backdoor attacks use legitimate features of a
program, or perhaps debug features, to ask
program to do things it was programmed to do!
 The program isn’t really malfunctioning or compromised
 But it still does things for us that allow breakin
 For example, can use SNDMAIL to copy a modified

program on top of /etc/init in Linux
 This modified program might work normally, but always

allow logins from Evil.Hacker with password “Gotcha”
 Better compiler won’t help…

Neither would better checking tools
33

 A back door is a problem with the specification
 The program shouldn’t have functionality that replaces

arbitrary files with code downloaded from the network,
or copied from other places, or even with code
“created” within the program itself

 Yet it is very hard to pin down the rules we need to
check to achieve confidence!

The ultimate back door
34

 Ken Thompson discussed hidden back doors in a
famous Turing Award lecture
 He considered the Unix login program
 Showed how a macro substitution could insert a back

door
 Then pointed out that the macro preprocessor could

have a back door that does the macro substitution
 Then he applied this to the macro preprocessor itself
 Ended up with a vanilla-looking Unix system that would

always allow him to log in but where those lines of code
could only be discovered by examining the byte code

The ultimate back door
35

 In general, covert “virtualized” platforms lurk in many
settings
 Virus could virtualize your machine
 Attacker with serious resources could sneak a monitoring

component into your printer or the disk drive itself
 Even the network could potentially “host” a covert computing

device and its own stealth network!

 Very hard to really secure modern computing systems.
Cloud actually helps because many operators have
resources to build their own specialized hardware

What about virtualization as a tool?
36

 By running the user’s code in a virtual machine the
cloud gives us a way to firewall the user from other
users
 We share a machine but I can’t see your work and you

can’t see mine
 Virtualization code needs to block things like putting the

network into promiscuous mode (“monitoring” mode)
 Forces us to trust the VM hypervisor and the hardware

that supports virtualization, but gives “containment”
 Now a virus can only harm the user that “let it in”

Other forms of diversity
37

 Run different products that offer equivalent
functionality, like two versions of an email server
 Strange finding: researchers have shown that for many

applications, even versions created separately share bugs!

 Consider morphing the system calls: code would need to
be compiled on a per-instance basis but would protect
against attacks that require attacker to know local
system call numbering

 Vary thread scheduling order dynamically

Combining multiple methods
38

 This is sometimes called “defense in depth”

 The first line of defense is the dynamically
managed firewall: ideally, attack won’t get in
 But if it does, randomization has some chance of

defeating the attack one step later
 Each new obstacle is a hurdle for the attacker

 Will this stop attacks? Only simple ones... but most
attacks use simple methods!

Defense in depth
39

… but even so a talented attacker can
usually win

40

