CS5412: THE CLOUD VALUE PROPOSITION

Ken Birman

Lecture XXII

1

Cloud Hype

The cloud is cheaper

- The cloud business model is growing at an unparalleled pace without any limit in sight
- □ In the future everything will be on the cloud

... can we find evidence to support, or refute, such claims?

Crossing the Chasm

Insight from Geoff Moore

How does the revenue picture look?

4

One-time purchases

How does the revenue picture look?

□ "Recurring" revenue

A thought question

- Who pays for a "free" app?
 - Some games have advertising but many apps don't
 - So what's the interest in having the app?
- Even more extreme: Who pays for LinkedIn?
 Huge number of users so it must cost a lot to run
 Yet no advertising and the site is free

.... and the answer is?

- LinkedIn exists to either be acquired, or to eventually change its revenue model using ads
 In the eventual profit case, the company would be sustained by venture capital in the interim period
 Then an IPO lets the company cash in on its "value"
- But what does "value" ultimately mean if the company sells a product that doesn't really create revenue at all?

These aren't the only models

- What about a revenue-generating application
 Why might it ever live on the cloud?
 - Imagine that doctors pay "MedRecords4Us" a subscription fee
 - Would it make sense for the company to migrate their application to a cloud?

Managing Demand

Coping with Demand Bursts

IT Agility

How quickly can you

- Scale up the infrastructure and applications?
- Upgrade to the latest OS?
- Respond to a company merger with new requirements for business process and IT capacity?
- Respond to a divestiture

Cloud Computing

- Shared, multi-tenant environment
- Pools of computing resources
- Resources can be requested as required
- Available via the Internet
 - Private clouds can be available via private WAN
- Pay as you go

Technologies and monetization

- Fundamentally, a technology must be profitable to survive.
 - Better technologies often fail
 - The technology everyone buys wins. Then eventually it might acquire features from the losing solutions

Moreover, the income story needs to "scale"

Two more examples. Who wins?

- Company A has an amazing technology but you need to be an expert to use it.
 - So they hire and train experts of their own
 - When you buy their package they do the work for you
- Company B has a less amazing technology but it just installs itself and works
 - No need to hire experts
 - Just buy as many user accounts as you need

Theil (Stanford)

- In addition to incorrectly assuming that better technology wins over inferior technology, people often confuse <u>competition</u> with <u>competitive success</u>
 - Aggressive competition often drives pricing down
 - Much better to be the owner of a unique niche: sole provider of such-and-such a must-have application
 - You can charge higher prices (although not too high or competitors move in aggressively). So profit margins will be sharply higher
 - You become a must-be-there platform for advertising aimed at your class of clients, bringing you revenue
- In effect: the best position to be in is to create your own niche and operate it as a mini-monopoly!

Key insight

- Company A will eventually be limited by the number of experts it can actually hire & train
 - So after a period of growth it will stall
 - The revenue stream peaks and this chokes investment in the evolution of the product
 - Ultimately, company A will either fail or at least reach some sort of saturation point
- Company B sees no end in sight and the money pours in
 - This allows B to invest to improve its technology
 - Eventually it will catch up with A on features

Applied to cloud computing?

- We need to ask which stage of the cloud we've reached!
 - But one complication: it isn't just "one" cloud
 - The cloud is a "sum" of multiple business stories/models
 - Early business of the cloud was the initial Internet boom (it gave us pets.com and similar web sites)
 Only a few survived, like Amazon.com, Expedia
 Winning wasn't easy for them or much fun!

Waves of the cloud revolution

- Early web browser stage
 - Search and advertising (Google)
 - Social Networking (Facebook, Twitter)
 - Cloud as your "home": AOL, Yahoo!, MSN, Google
- Emergence of true web services model
 - Infrastructure as a service ("rent a VM") Apps (Apple)
 - Frames, full cross-site federation
 - Full-featured scripting languages (Javascript, Caja, Silverlight, Adobe Flash...)
- What next?

Each has its own revenue model!

- For each style of web solution need to ask what monetizes that model!
 - Google and Facebook make their money on advertising
 - Microsoft combines technology license revenue with advertising, but earns much more on technology
 - Apple earns money on every App
 - Amazon sells stuff but also runs massive data centers really well, and rents space on those
 - Infosys does rote tasks incredibly well and incredibly cheaply (because most of their employees earn \$6,500/yr)
- Following the money is the key to understanding what directions each will follow

So the cloud is a sum of stories

Many of these revenue stories "superimposed"

Inescapable Conclusion?

- Some of today's cloud computing stories will probably fail as business models
- Wallstreet may not realize this, yet!

The terms have many meanings!

- Everyone talks about cloud computing but there is very little consensus on what cloud computing means
 - We've studied it all semester now
 - But the cloud brings together a lot of technologies that each do very different things
 - Best definition so far is basically:
 - A style of computing that makes extensive use of network access to remote data and remote data centers, presented through web standards.
 - But this is so general it says almost nothing!

What is a Cloud Platform? Some defining characteristics

- It lets developers create and run apps, store data, and more
- It provides self-service access to a pool of computing resources
- □ It allows granular, elastic allocation of resources
- It allows charging only for the resources an application uses

Public Clouds and Private Clouds Typical definitions

- Public cloud: A cloud platform run by a service provider made available to many end-user organizations
- Private cloud: A cloud platform run solely for a single end-user organization, such as a bank or retailer
 - The technology can be much like public clouds, but the economics are different
- Most organizations will probably use some hybrid of both

Cloud Platform Technologies

The most important today:

Computing

- Infrastructure as a Service (laaS)
- Platform as a Service (PaaS)
- Storage
 - Relational storage
 - Scale-out storage
 - Blobs
- □ There are many more
 - Messaging, identity, caching, ...

Computing Infrastructure as a Service (IaaS)

- Developers create virtual machines (VMs) on demand
 - They have full access to these VMs
- □ Strengths:
 - Can control and configure environment
 - Familiar technologies
 - Limited code lock-in
- Weaknesses:
 - Must control and configure environment
 - Requires administrative skills to use

Computing Platform as a Service (PaaS)

- Developers provide an application, which the platform runs
 - They don't work directly with VMs
- □ Strengths:
 - Provides higher-level services than laaS
 - Requires essentially no administrative skills
- Weaknesses:
 - Allows less control of the environment
 - Can be harder to move existing software

Computing What's the most popular approach?

IaaS is more widely used today than PaaS

- Gartner estimates that public laaS revenues are significantly greater than public PaaS revenues today
- Perspective:
 - IaaS is easier to adopt than PaaS
 - IaaS emulates your existing world in the cloud
 - Over time, PaaS is likely to dominate
 - PaaS should have an overall lower cost than laaS
 - It's typically a better choice for new applications

Storage Relational

Traditional relational storage in the cloud

- With support for SQL
- Strengths:
 - Familiar technologies
 - Many available tools, e.g., for reporting
 - Limited data lock-in
 - Can be cheaper than on-premises relational storage
- Weaknesses:
 - Scaling to handle very large data is challenging

Storage Scale-out

Massively scalable storage in the cloud

- No support for SQL
- □ Strengths:
 - Scaling to handle very large data is straightforward
 - Can be cheaper than relational storage
- Weaknesses:
 - Unfamiliar technologies
 - Few available tools
 - Significant data lock-in

Storage Blobs

Storage for Binary Large OBjects in the cloud

- Such as video, back-ups, etc.
- □ Strengths:
 - Globally accessible way to store and access large data
 - Can be cheaper than on-premises storage
- Weaknesses:
 - Provides only simple unstructured storage

CLOUD PLATFORMS: BUILDING A FRAMEWORK

Cloud Platforms

Representative technologies and vendors

		Comp	outing		Storage	
	laaS	IaaS	PaaS	Relationa	Scale-	Blobs
				I	Out	
Area						
Amazo						
Aug						
Google						
Salasta						
CONCERNENT						

Cloud Service or Cloud Software?

Understanding the alternatives

Cloud platform service

- A hardware/software combination
- Typically provided by organizations that run Internetscale services, e.g., Microsoft, Amazon, and Google
 - They write their own software

Cloud platform software

- Provided by software vendors and open source projects
 - Hosters can use this software to offer a public cloud service
- The same software can also be used in private clouds

Applying Public Cloud Platforms (1)

Some characteristics of typical applications

- Apps that need high reliability
 - Example: A SaaS application
- Apps that need massive scale
 - Example: A Web 2.0 application
- Apps with variable load
 - Example: An on-line ticketing application
- Apps that do parallel processing
 - Example: A financial modeling application

Applying Public Cloud Platforms (2)

Some characteristics of typical applications

- Apps with a short or unpredictable lifetime
 - Example: An app created for a marketing campaign
- Apps that must fail fast or scale fast
 - Example: Start-ups
- Apps that don't fit well in an organization's data center
 - Example: A business unit that wishes to avoid its IT department
- Apps that can benefit from external storage
 - Example: An application that archives data

CLOUD PLATFORMS: APPLYING THE FRAMEWORK

From Server Virtualization to Private Clouds

IaaS allows allocating, managing, and charging for VMs in a more effective way

- This idea first appeared in a public cloud platform
 If it makes sense there, why not use it in your own data center?
- Private clouds provide laaS in your data center
 Although they can also offer more application-oriented services

Microsoft

Private and public cloud platform software

		Compu	uting	Storage		
	IaaS	laaS	PaaS	Relationa	Scale-	Blobs
	Hyper-V Cloud	For Hosters: Hyper-V Cloud		1	Out	
Amazo						
Google						
Salesfor						

Cloud Platform Service

VMware

Private and public cloud platform software

		Computing		Storage		
_	IaaS	laaS	PaaS	Relationa	Scale-	Blobs
	Hyper-V Cloud	For Hosters: Hyper-V Cloud		1	Out	
	vCloud	For Hosters: vCloud				
Amazo						
Google						
Salesfor						

Cloud Platform Service

Windows Azure Platform Public cloud platform

Computing Storage Relational Scale-Out laaS laaS PaaS **Blobs** Windows Windows SQL Windows Azure Azure Azure Azure **Tables** Blobs

Key

Cloud Platform Service

Windows Azure Platform Pricing examples (in US dollars)

Compute: \$0.05/hour to \$0.96/hour for each instance (depending on instance size)

Storage:

Blobs and tables:

Data: \$0.15/GB per month

Access: \$0.01/10,000 operations

Relational:

\$9.99/GB per month

Bandwidth:

Inbound: Free

Outbound: \$0.15/GB

VMware Cloud Foundry

Public cloud platform software

		Comp	outing	Storage			
_	laaS	IaaS	laaS PaaS l		al Scale-Out Blobs		
	Hyper-V Cloud	For Hosters: Hyper-V Cloud	Windows Azure	SQL Azure	Windows Azure Tables	Windows Azure Blobs	
	vCloud	For Hosters: vCloud	Cloud Foundry Frameworks	Cloud Foundry Storage			
Amazo							
Google							
alesfor							

Key

Cloud Platform Service

VMware Cloud Foundry Essentials

- Cloud Foundry is an open source PaaS platform
 Led by VMware
- Designed to support diverse technologies:
 - Frameworks: Spring, Rails, etc.
 - Storage: MySQL, MongoDB, etc.
- Not yet available as a service
 - VMware provides a public dev/test service
 - Partners will provide commercial public platforms

Amazon Web Services

Public cloud platform

	Computing			Storage		
	IaaS IaaS PaaS			Relational	Scale-Out	Blobs
	Hyper-V Cloud	For Hosters: Hyper-V Cloud	Windows Azure	SQL Azure	Windows Azure Tables	Windows Azure Blobs
	vCloud	For Hosters: vCloud	Cloud Foundry Frameworks	Cloud Foundry Storage		
Amazo		Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB	Simple Storage Service (S3)
Google						_
Salesfor						

Key

Cloud Platform Service

A Broader View of IaaS/Paas An aside

- More than cloud compute can be viewed through the laaS/PaaS lens
- Example: Cloud options for relational storage
 - Run a database server in an AWS EC2 VM
 - An laaS storage service
 - Use a managed database server with AWS RDS
 - Use a managed database service with SQL Azure
 - A PaaS storage service

Amazon Web Services

Pricing examples

- Compute: \$0.02/hour to \$3.68/hour for each VM (depending on size and OS)
- Storage (blobs):
 - Data: \$0.14/GB per month to \$0.037/GB per month (depending on data size and redundancy)
 - Access: \$0.01/1,000 PUT, COPY, POST, LIST operations, \$0.01/10,000 GET operations
- Bandwidth: Free inbound, \$0.12/GB to \$0.05/GB out (depending on volume)

Eucalyptus Private cloud software

		Comp	outing	Storage		
	IaaS	IaaS	PaaS	Relationa	Scale-	Blobs
	Hyper-V Cloud	For Hosters: Hyper-V	Windows Azure	 SQL Azure	Out Windows Azure Tables	Windows Azure Blobs
	vCloud	Cloud For Hosters: vCloud	Cloud Foundry Framework	Cloud Foundry Storage		
Amazo	Eucalyptus	Elastic Compute Cloud	s Elastic Beanstalk	Relational Database Service	SimpleDB	Simple Storage Service
Google		(EC2)		(RDS)		(\$3)
Salesfor						

Кеу

Cloud Platform Service

The Commoditization of IaaS An aside

Public laaS compute service is widely available today

- Providers include:
 - GoGrid Cloud Hosting
 - Terremark vCloud Express
 - IBM SmartCloud Enterprise
 - Rackspace Cloud Servers
 - A leader in creating OpenStack, open source laaS private/public cloud platform software

Google App Engine Public cloud platform

		Comp	outing		Storage		
	IaaS	laaS	PaaS	Relational	Scale-Out	Blobs	
	Hyper-V Cloud	For Hosters: Hyper-V Cloud	Windows Azure	SQL Azure	Windows Azure Tables	Windows Azure Blobs	
	vCloud	For Hosters: vCloud	Cloud Foundry Frameworks	Cloud Foundry Storage			
Amazo	Eucalyptus	Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB	Simple Storage Service (S3)	
Google			App Engine		Datastore	Blobstore	
Salesfor							

Key

Cloud Platform Service

Google App Engine

Pricing examples (today)

□ Compute: \$0.10/CPU hour

Storage:

Datastore: \$0.15/GB per month

Blobstore: \$0.15/GB per month

□ Bandwidth: \$0.10/GB in, \$0.12/GB out

App Engine also allows some free usage every day
 Other platforms have a free tier as well

Salesforce.com Force.com Public cloud platform

R

		Comp	outing	Storage		
	laaS	laaS	PaaS	Relational	Scale-Out	Blobs
	Hyper-V Cloud	For Hosters: Hyper-V Cloud	Windows Azure	SQL Azure	Windows Azure Tables	Windows Azure Blobs
	vCloud	For Hosters: vCloud	Cloud Foundry Frameworks	Cloud Foundry Storage		
mazo	Eucalyptus	Elastic Compute Cloud (EC2)	Elastic Beanstalk	Relational Database Service (RDS)	SimpleDB	Simple Storage Service (S3)
oogle			App Engine		Datastore	Blobstore
plestor			AppForce VMForce	Data .co	base om	

Кеу

Cloud Platform Service

Salesforce.com Force.com

Pricing examples

- One (small) application is free
- Enterprise Edition: \$50/user per month
 - Compute: up to 10 applications
 - Storage: up to 200 database objects
 - Bandwidth: No extra charge
- Unlimited Edition: \$75/user per month
 - Compute: unlimited applications
 - Storage: up to 2,000 database objects
 - Bandwidth: No extra charge

Challenges to Adoption

		Owne	Ownership Dimension		
Area	Specific Challenge	Private Cloud	Public Cloud		
Understanding of the Paradigm	Agreement on Definition	Low	Medium		
	Confusion on What Provided	High	High		
	Multi-Tenancy Concerns	Low to NA	Medium		
	Unrealistic Vendor Claims	Medium	High		
	CIO Role Changes	Low	Low		
	Cloud Lock-In	Low to NA	High		
Implementation/Operations	Architecture Immaturity	High	High		
	Manageability	High	High		
	VM Memory Limits	Low	Low		
	WAN Performance	Low	Medium		
	Potential Loss of Control	Low	Medium		
	Provisioning	Medium	Medium		
	Licensing Models	Medium	Medium		
	Governance	High	High		
	Confidence	Low	Medium		
	Service Provider Motivation	Low	High		
	Provider SLAs	Low	High		
Security/Compliance	Adequate Threat Models	Medium	High		
	Workable Cross-Domain Security	Low	Medium		
	Data-at-Rest Security	Low	High		
	Auditability	Medium	High		
	Accepted Accreditation Processes	Medium	High		
	Accepted Compliance Processes	Medium 56	High		
	Physical Location	Low to NA	Medium		

			Ownership D	imension	
 🗆 Un	Area	Specific Challenge	Private Cloud	Public Cloud	
	Understanding of the Paradigm <u>Definition</u> : Lack of	Agreement on Definition	Low Lig exactly const	Medium Atutes "cloud	$\overline{}$
	computing"	Multi-Tenancy Concerns	Low to NA	Medium	
	Confusion: Over w	Unrealistic Vendor Claims NOT Denetits cloud coi CIO Role Changes	nputing will pr	ovide, and t	e
	trade-otts	Cloud Lock-In	Low to NA	Figh	
	Implementation/Operations	Architecture Immaturity	High	High	
		Manageability	High	High	
	How comfortable	vis namoenterprise in stori	ng its data in ar	Lenvironment	hared
	with other custome	WASS Performance	Low	Medium	
	What is the risk a	Potential Loss of Control na the mitigation for do Provisioning	a <mark>ta leakage?</mark> Medium	Medium Medium	
	How does this diff	iæðnsifigamelswhat we did in	Mthe mainframe	NOR GINA	
	<u>Outrageous Vendo</u>	Governmence Claims and Obfusc confidence	ation of Challe	High HIGES: Medium	
	Hinder understand	sling polideleudide politics	Low	High	
	M/bat oxactly are	Provider 645 vina?	Low	High	
	Security/Compliance	Adequate Threat Models	Medium	High	
	Io what is the ven	dokrbcommittingur(especie	ally true tor a ho	sting vendor)	
		Data-at-Rest Security	Low	High	
		Auditability	Medium	High	
		Accepted Accreditation Processes	Medium	High	
		Accepted Compliance Processes	Medium	High	
		Physical Location	Low to NA 57	Medium	

Understanding of the Paradigm (continued)

- Role changes: The CIO (or equivalent) may need to evolve to a general contractor in many areas.
- Lock-In:
 - How difficult would it be to move large volumes of data to a different cloud (cloud provider)?
 - This is both a procedural and a technical issue (format, bandwidth)

			Ownership D	imension	
	Area	Specific Challenge	Private Cloud	Public Cloud	
l Imp	Understanding of the Paradigm	🕼 🕇 🕐 🐴 🕲 On Definition	Low	Medium	
		Confusion on What Provided	High	High	
	<u>Architecture</u> :	Multi-Tenancy Concerns	Low to NA	Medium	
	There is much disagreem	enteasuervatuermanaessary elemer	ntseafionn a cloud techni	eagharchitecture, a	nd the
	elements are not mature.	CIO Role Changes	Low	Low	
	In addition, SOA is the t	synapproach for interface to	endels yer culture to	HistOA success is in	mature
	Implementation/Operations	Architecture Immaturity	High	High	
	There is much discussion (Manageability	High	High	
		VM Memory Limits	Low	Low	
	<u>Manageability</u> : from the	usereporspective:	Low	Medium	
	Existing management too	ls ^t entiahlofsséentreb be able to t	rack metrics for app	Meditions that may	reside
	on a varying number of	มีเข้ายักยักซี systems (not a proble	Mi ^d Where solution is	ୁ କଣ୍ଳାଞାe ∨M))
	How does asset manage	Licensing, Models	Medium	Medium	
		Governance	High	High	
	Distributed Management	confidence (DMIF) has initiate	dwa working group	Mediandress	
	(http://www.dmff.org/al	Bevité floude-manyagtor)	Low	High	
	Memory limits within VM-	evilaelloav: VMs, which ar	wapproaching be	ling a requisite	design
	escurity/Compliance	Admented by the physica	MOST. The latest p	Föduct releases	-
	largely obviate this limite	Workable Cross-Domain Security	Low	Medium	
		Data-at-Rest Security	Low	High	
	WAN performance: Man	နှစ်မှုအစိုးaphies still are lim	the clunin their backb	ome capacity.	
		Accepted Accreditation Processes	Medium	High	
		Accepted Compliance Processes	Medium	High	
		Physical Location	Low to NA 59	Medium	

Implementation and Operations (continued)

Loss of control: Will business elements of the enterprise bypass the enterprise's IT organization?

Governance:

- In which deployment models and use-cases does this play?
- Is governance antithetical to the concept of cloud?
- Will lack of governance aggravate problems already associated with lack of SOA governance?
- Provisioning: For SaaS, how will applications and application components be provisioned?
- Licensing: Vendors have been slow to develop appropriate models.
- <u>Confidence</u>: As to reliability, scalability, and security in public clouds (economics will also drive cloud vendors to minimize costs)

Implementation and Operations (continued)

- Motivation for the Provider:
 - Ideally, providers keep just ahead of demand
 - May provide motivation for providers to federate and sell capacity to each other as do utility companies. Are there lessons from the power utility companies?
 - Aggravates manageability problem
 - Is the capacity really there for surge levels? Will another tenant's surge impede your ability to do the same?
- Service-Level Agreements: There have been effectively no substantive guarantees from public cloud providers.

				Ownership D	imension	
Г	⊐ Se	Area	Specific Challenge	Private Cloud	Public Cloud	
-		Understanding of the Paradigm	Agreement on Definition	Low	Medium	
		Threat Models: V	Whatonewromodels a	rise in the clo	wd? Have	we
		further agaravate	Multi-Tenency Concerns Iroady p	here within	$\mathbb{R}^{\mathbb{R}}$	/ith
			Unrealistic Vendor Claims	Medium	High	
		standard computi	ag.vulnerabilities?	Low	Low	
			Cloud Lock-In	Low to NA	High	
		Implementation/Operations	Architecture Immaturity	High	High	
		Dynamic virtuo	Manageability – How much	control to the use	rç High	
		Resource isola	wome for prinopriate isolation	nwmeasures are	næeded):	
		VM-to-V	WANPerformance	Low	Medium	
			Potential Loss of Control	Low	Medium	
		Data lea	KAGE Provisioning	Medium	Medium	
		Weakened pe	nimator Firewall ports	anglaling user ac	Mesismare a	
		vulnerability	Governance	High	High	
		Patch and secu	fritidencontrol management	Low Becomes the u	seir's responsib	ility:
		agaravated b	Servie A Provider Mativation	Low	High	,,
				LOW	High	1
		Security/Compliance	Adequate Threat Models	ensuring the Use	High	vnere
		their data resi	Qes Workable Cross-Domain Security	Low	Medium	
		Administrative	Dରାଇରେକରେ ଏସାରେ networks -	to A vulnerability	also inconsisten	t with
(some security	policies	Medium	High	
			Accepted Accreditation Processes	Medium	High	
			Accepted Compliance Processes	Medium	High	
			Physical Location	Low to NA 62	Medium	
				- 02		

Security and Compliance (continued)

- <u>Cross-Domain Security</u>: How does an organization extend or federate its authentication and authorization mechanisms into the cloud?
- Data-at-Rest Security: What encryption and segregation mechanisms are provided?

<u>Auditability</u>: Can access to the data be audited?

- Are data storage formats even amenable to auditing (more of an issue for chunking types of storage that lose the concept of a file)?
- Forensics, as applications are not linked to physical infrastructure and the number of physical assets in play may vary

Accreditation in the Cloud:

- How can you tell a cloud is "secure"?
- Is there governing policy and procedures to accredit a cloud?
- What processes and controls must be in place? (Pre-accredited clouds may actually simplify this process)

Security and Compliance (continued)

- <u>Compliance</u>: May preclude cloud paradigm in some cases due to:
 - Physical chain of custody requirements
 - Regulatory requirements
- Physical Location:
 - Do you know what country your cloud resides in?
 - Would you know if it changed?
 - What compliance requirements change?
 - Is there governing law that recognizes the paradigm?
- □ Conclusions:
 - There are many challenges to adoption of the cloud paradigm
 - Public clouds and private clouds have different sets of challenges, with some overlap

The last word

Joni Mitchell summed it up best:

I've looked at clouds from both sides now From up and down, and still somehow It's cloud illusions I recall... I really don't know clouds at all

- The cloud is a very complex marketplace and evolving rapidly.
 - Economics are the key
 - But nobody really understands cloud economics
 - There are many barriers to entry