
CS5412:  

TRANSACTIONS (II) 

Ken Birman 

CS5412 Spring 2012 (Cloud Computing: Birman) 1 

Lecture XVIII 



Today’s topic 

CS5412 Spring 2012 (Cloud Computing: Birman) 

2 

 How do cloud systems actually use transactions? 

 Last time we saw the basic transactional model.   

 But as we saw from reviewing Brewer’s CAP theorem 

and the BASE methodology, transactions are sometimes 

too expensive and not scalable enough 

 This has led to innovations on the transaction side 

 Snapshot isolation (related to serializability and ACID) 

 Business transactions (related to BASE) 



Snapshot Isolation 

CS5412 Spring 2012 (Cloud Computing: Birman) 

3 

 This idea started with discussion about lock-based 
(pessimistic) concurrency control in comparison with 
timestamp-based concurrency control 

 With locking we incur high costs to obtain one lock at a 
time.  In distributed settings these costs are prohibitive.  

 Deadlock is a risk, must use a deadlock avoidance scheme 

 With timestamped concurrency control, we just pick a 
time at which transactions will run.   

 If times are picked to be unique, progress guaranteed 
because some transaction will have the smallest TS and won’t 
abort.  But others may abort and be forced to retry 



Pros and cons 

CS5412 Spring 2012 (Cloud Computing: Birman) 

4 

 Each scheme attracted a following 

 Locking is easy to design and works well if transactions 

do a great deal of updates/writes 

 But 2PC can be costly if transactions are doing mostly 

reads and few writes 

 

 In contrast, timestamp schemes work very well for read-

mostly or pure-read workloads and do a lot of rollback 

if a workload has a mixture 



Snapshot isolation 

CS5412 Spring 2012 (Cloud Computing: Birman) 

5 

 Arose from database products that offered 

“multiversion” data 

 Popular in the cloud, because we sometimes don’t want 

to throw anything away 

 Each transaction can be seen as moving the database 

from a consistent state to a new consistent state 
time 

T1 T2 T3 T5 

10:02.421 10:03.006 10:04.521 

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99} 



A multiversion database 

CS5412 Spring 2012 (Cloud Computing: Birman) 

6 

 Instead of just keeping the value of the variables in 

the database, we track each revision and when the 

change was committed 

T1 T2 T3 T5 

10:02.421 10:03.006 10:04.521 

{A=2,B=7,C=4} {B=8,D=3} {C=0} {A=25,D=99} 

A 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 25 

B 0 0 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 

C 0 0 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 

D 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3 3 99 

10:08.571 



Snapshot isolation idea 

CS5412 Spring 2012 (Cloud Computing: Birman) 

7 

 For a read transaction, just pick a time at which the 

reads should be executed (ideally, a recent time 

corresponding to the commit of some transaction) 

 If transactions really take us from consistent state to 

consistent state, this will be a “safe” time to execute 

 Reads don’t change the state so execute without risk of 

needing to abort 

 Then use locking to execute transactions that need 

to perform update operations 



Fancier snapshot isolation 

CS5412 Spring 2012 (Cloud Computing: Birman) 

8 

 Often used for all reads, not just read-only 

transactions 

 Runs dynamically: Instead of picking just one time at 

which to run, pick a “range” of times and track it 

 A single window is used even if X accesses many 

variables 

 

 



Fancier snapshot isolation 

CS5412 Spring 2012 (Cloud Computing: Birman) 

9 

 ... pick a “range” of times and track it 

 E.g. transaction X might initially pick time range 

[0...NOW] 

 As X actually accesses variables, narrow the time 

window of the transaction [max(old start, new start), 

min(old end, new end)] 

 E.g. X tries to read variable A and because A is locked for 

update by transaction Y, reads A=2 

 A=2 was valid from time [10:02.421,10:08.57] 

 This narrows the window of validity for transaction X 

 

 



How can a window vanish? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

10 

 Occurs if there just isn’t any point in the serialization 

order at which this set of reads could have 

happened 

 

 Result of an update that invalidates some past read 

 

 Causes transaction to abort 



Complications 

CS5412 Spring 2012 (Cloud Computing: Birman) 

11 

 In fact, snapshot isolation doesn’t guarantee full 

serializability  

 An update transaction might “invalidate” a read by 

updating A at an unexpectedly early time 

 Unless we check the read-only transactions won’t know 

which ones to abort 

 Real issue: X may already have finished 

 If we use s.o. for reads in read/write transactions, 

we get additional “bad cases” 



Snapshot isolation is widely used 

CS5412 Spring 2012 (Cloud Computing: Birman) 

12 

 Works well with multitier cloud computing 
infrastructures 

 Caching structures that track validity intervals for 
cached variables are common 

 Several papers have shown how to make snapshot 
isolation fully serializable, but methods haven’t been 
widely adopted (and may never be) 

 Fits nicely with BASE: Basically available, soft state 
replication with eventual consistency 

 Often we don’t worry about consistency for the client 



Consistency: Two “views” 

CS5412 Spring 2012 (Cloud Computing: Birman) 

13 

 Client sees a snapshot of the database 

that is internally consistent and “might” be valid 

 

 Internally, database is genuinely serializable, but 

the states clients saw aren’t tracked and might 

sometimes become invalidated by an update 

 

 Inconsistency is tolerated because it yields such big 

speedups, although some clients see “wrong” results 



Do clients need perfect truth? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

14 

 If so, one recent idea is to “validate” at commit time 

 Many systems have a core transactional system that does updates 

 Collections of read-only cached replicas are created at the edge where 
clients reside 

 Read-only transactions run on these (true) replicas, with no risk of error 

 Read/write transactions track the versions read and the changes they 
“want” to make (intentions list) 

 Then package these intended changes as ultra-fast transactions to 
be sent to the core system 

 It checks that these versions are still current,and if so, applies the 
updates, like in the Sinfonia system (discussed in class) 

 If not, transaction “aborts” and must be retried 

 Effect is to soak up as much hard work as possible at the edge 



A picture of how this works 

CS5412 Spring 2012 (Cloud Computing: Birman) 

15 

Core 

Cached 

replica 

Cached 

replica 

read only transaction 

can safely execute 

on cache 

(1) update 

transaction runs 

on cache first 

(2) simplified transaction 

lists versions to validate, 

then values to write for 

updates 

(3) If successful, 

Core reports commit 



Core issue: How much contention? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

16 

 Root challenge is to understand 

 How many updates will occur 

 How often those updates conflict with concurrent reads 

or with concurrent updates 

 

 In most of today’s really massive cloud applications 

either contention is very rare, in which case 

transactional database solutions work, or we end up 

cutting corners and relaxing consistency 



Tradeoff: Scale versus consistency 

CS5412 Spring 2012 (Cloud Computing: Birman) 

17 

 With a core system we can impose strong 

consistency, but doing so limits scalability 

 It needs to “validate” every update 

 At some point it will get overloaded 

 

 But if we don’t use a core system we can’t 

guarantee consistency 

 We may be able to design the application to tolerate 

small inconsistencies.  Many web systems work this way 



Are there other options? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

18 

 How does this approach compare with scalable 

replication using Paxos or Virtual Synchrony? 

 

 In those systems the “contention” related to the 

order in which multicasts were delivered 

 Virtual synchrony strives to find ways of weakening 

required ordering to gain performance 

 Paxos is like serializability: One size fits all.  But this is 

precisely why Brewer ended up proposing CAP! 



Business transactions 

CS5412 Spring 2012 (Cloud Computing: Birman) 

19 

 The Web Services standards introduces (yet) 

another innovation in the space 

 

 They define a standard transactional API for cloud 

computing, and this is widely supported by 

transactional products of all kinds 

 

 But they also define what are called “business 

transactions” 



Think of Expedia 

CS5412 Spring 2012 (Cloud Computing: Birman) 

20 

 You book a trip to Costa Rica 

 Flight down involves two separate carriers 

 Fourteen nights in a total of three hotels 

 Rental car for six days, bus tours for the rest 

 Two rainforest tours, one with “zip line experience” 

 Dinner reservation for two on your friend’s birthday at 

the Inka Grill restaurant in San Jose 

 Travel insurance covering stomach ailiments (costs extra) 

 Special “babysit your dog” service in Ithaca 



Should this be one transaction? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

21 

 Traditionally the transactional community would 

have argued that cases like these are precisely 

what transactions were invented for 

 

 In practice... it makes little sense to use transactions 

 Multiple services, perhaps with very distinct APIs (e.g. 

may just need to phone the Inka Grill directly) 

 Many ways to roll back if something goes wrong, like 

just cancelling the car reservation 



Concept of a business transaction 

CS5412 Spring 2012 (Cloud Computing: Birman) 

22 

 Instead of a single transaction, models something like 

this as a whole series of separate transactions 

 Maybe in a few cases done as true transactions 

 But others might be done in business-specific ways 

 

 The standard assumes that each has its own 

specialized rollback technology available 

 

 It also requires a “reliable message queuing” system 



Reliable message queuing  

CS5412 Spring 2012 (Cloud Computing: Birman) 

23 

 Basically, email for programs 

 Like with normal email, can send messages to addresses 

and they will be held until read/deleted 

 Spooler is assumed to be highly available and reliable 

 Generally has some kind of multi-stage structure: spools 

messages near the sender until handed off to the 

server, and only deleted once safely logged 



How this works 

CS5412 Spring 2012 (Cloud Computing: Birman) 

24 

 Application “sends” a set of requests, like one email 

each 

 Spooler accepts the set and executes them one by 

one, restarting any that are disrupted by crashes 

 Handling of other kinds of failures (“Sorry sir, the 

restaurant is fully booked that night”) is under 

programmatic control 

 You need to add details to tell the system what to do 

 It won’t know that the Mexicali Cafe is a fallback 



Business transactions 

CS5412 Spring 2012 (Cloud Computing: Birman) 

25 

 We create a sequence of transactions and of the 

associated undo actions for each 

 Spool the series of transactions, linked by a business-

transaction-identifier 

 As each is executed, the undo action is spooled but in a 

“disabled” state 

 On commit of the final transaction in the sequence, the 

undo actions are deleted 

 On abort, the undo actions are enabled and run as a 

kind of reverse business transaction 



Business transactions and BASE 

CS5412 Spring 2012 (Cloud Computing: Birman) 

26 

 If our reservations go part-way through but then the 

dog-sitter step fails, we end up leaving the world in 

a kind of inconsistent state 

 But soon after we run the undo actions and this reverses 

the problems we created 

 Even if someone failed to get a reservation at Inka 

Grill because of your temporarily booked table, they 

won’t be so surprised when they try again in a few 

days and now a table is free 



“Consistency is much overrated” 

CS5412 Spring 2012 (Cloud Computing: Birman) 

27 

 We hear this a lot lately 

 

 But you also need to wonder... what about 

 Medical care systems that run on the Internet? 

 Google’s self-driving cars? 

 The smart power grid 



If eBay (BASE) ran the power grid 
28 

 With BASE, control system could have “two voices” 

 In physical infrastructure settings, consequences can 

be very costly 

“Switch on the 50KV Canadian bus” 

“Canadian 50KV bus going offline” 

Bang! 

March 30, 2012 Computational Challenges for Wind Prediction 



The big problem 

CS5412 Spring 2012 (Cloud Computing: Birman) 

29 

 Scalable consistency is hard! 

 Not impossible... but harder than weak consistency, or 

no consistency 

 

 Today’s most profitable web ventures manage quite 

well with weak models like BASE 

 Run a lot of stuff in parallel 

 Replicate data when you get a chance, but no rush 

 Sweep any errors under the rug 



What happens tomorrow? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

30 

 Nobody can compete with the cloud “price point” 

 In modern technology, the cheapest solution always wins 

 It becomes the only option available 

 So everything migrates to the winner 

 

 We’ve seen this again and again 

 

 The cloud will win.  You guys will build the winning 

solutions, and they will be cloud based! 



Why is it hard to cloudify high assurance? 

CS5412 Spring 2012 (Cloud Computing: Birman) 

31 

 Let’s look at Isis2 

 

 A cloud-based high assurance story... 

 

 Can we view it as a blueprint for cloud-scale 

resiliency of a kind the masses might adopt? 



High assurance: Different perspectives 

CS5412 Spring 2012 (Cloud Computing: Birman) 

32 

 A single platform has many kinds of “users” 

 

Programmer: Depends on platform properties 

but treats implementation as a black box. 

End user: Seeks confidence that the system is safe 

and that if it goes offline, a warning will appear 

Protocol designer: Uses formal specification and 

logic to prove implementation of protocols correct.   
 Each brings different objectives 

and requires different methods 

 

Datacenter operator: Requires scalability, 

xxxelasticity, and guarantees that applications 

xxxxxxwon’t disrupt shared resources 

http://images.google.com/imgres?imgurl=http://meetthetaylors.com/images/puzzled-man.jpg&imgrefurl=http://neverknewthat.wordpress.com/category/sql/&usg=__Kv_M1kmsrsSOuzcB8QkApJOty4c=&h=268&w=447&sz=81&hl=en&start=15&um=1&tbnid=KH80U7j7-f5cKM:&tbnh=76&tbnw=127&prev=/images?q=puzzled&hl=en&rls=com.microsoft:en-us:IE-SearchBox&rlz=1I7GGLD&um=1


It takes a “community” 

 Formal methods tempt us to reason about a single instance 
of a single protocol at a time: 

 “Paxos with n members = { x, y, z, ... } and  acceptors...” 

 Yet real systems are complex and concurrent with many 
interacting component parts that must operate in concert 

Isis2 user 

object 

Isis2 user 

object 
Isis2 user 

object 

Isis2 library 

Group instances and multicast protocols 

Flow Control 

Membership Oracle 

Large Group Layer TCP tunnels (overlay) Dr. Multicast Security 

Reliable Sending Fragmentation Security 

Sense Runtime Environment 
Self-stabilizing 

Bootstrap Protocol Socket Mgt/Send/Rcv 

Send 

CausalSend 

OrderedSend 

SafeSend 

Query.... 

Message Library “Wrapped” locks Bounded Buffers 

Oracle Membership 

Group membership 

Report suspected failures 

Views 

Other group 

members 



Layers approach properties in distinct 

ways 

CS5412 Spring 2012 (Cloud Computing: Birman) 

34 

 The lower layers of Isis2 focus on stochastic assurances 
aimed at the datacenter owner 

 For example, the system won’t abuse IP multicast and will 
employ a good flow control method  

 Protocol layers focus on temporal logic properties 

 For example, the Paxos guarantees of agreement on events, 
their order, and of durability for decided events 

 User focuses on a simplified abstraction 

 Virtual synchrony multicast within groups 

 End-user relies upon properties achieved by the 
application, but doesn’t worry about how it was built 



Consider flow control 

 Consider SafeSend (Paxos) within Isis2 

 Basic protocol looks very elegant 

 Not so different from Robbert’s 60 lines of Erlang 

 

 But pragmatic details clutter this elegant solution 

 E.g.:  Need “permission to send” from flow-control module 

 ... later tell flow-control that we’ve finished 

 

 Flow control is needed to prevent overload 

 Illustrates a sense in which Paxos is “underspecified” 

SafeSend (Paxos) 
Flow Control 



Pictoral representation 

 “Paxos” state depends on “flow control state” 

 Modules are concurrent.  “State” spans whole group 

SafeSend (Paxos) Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

This node 

Other nodes 

SafeSend (Paxos) 
Flow Control 



... flow control isn’t local 

 One often thinks of flow control as if the task is a local 
one: “don’t send if my backlog is large” 

 But actual requirement turns out to be distributed 

 “Don’t send if the system as a whole is congested” 

 Permission to initiate a SafeSend obtains a “token” representing a 
unit of backlog at this process 

 Completed SafeSend must return the token 

 Flow Control module tracks backlog states of full set of group 
members, hence needs a rule for reporting state via multicast 

 Must also monitor group membership and unblock senders if a 
failure “frees” enough backlog to enable senders to resume 

 Thus Flow Control is a non-trivial distributed protocol! 

SafeSend (Paxos) 
Flow Control 



This creates a new challenge 

 Previously, could have proved Paxos safe+live in the virtual 
synchrony model 

 Virtual synchrony views play the role of a failure detector  
(an eventually strong one, in the sense of  S) 

 Paxos lives in a simpler world and can be proved fully correct 

 But now we see that Paxos would be “dependent” upon the 
flow control module, and vice versa! 

 Paxos needs permission to send 

 Flow control needs to track  
protocols in progress 

 Group members need to 
track each-other’s states 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

SafeSend (Paxos) 
Flow Control 

Me 

Them (other group members) 



Paxos + Flow Control correctness? 

 Flow control imposed only when a protocol starts 

 Waiting for flow control induces a partial dependency 

ordering 

 If prior protocols are live, some waiting protocol will 

eventually have a chance to run 

 Fairness requires further mechanisms... 



It isn’t quite so simple: Delay Tolerance 

 Recall that Isis2 targets cloud-scale settings 

 Hence aggressively scaled, must “ride out” scheduling delays, long 
message latencies, elasticity events 

 Most work on DTNs focuses on progress “despite” delays 

 But in Isis2 if some nodes get far ahead of other nodes, the flow-
control module we’ve just discussed kicks in!  This defeats DTN logic 

 Given this mix of needs, which the best 2PC implementation? 

 One leader, n members 

 Hierarchical (tree) 

 Tree of rings (Ostrowski: QSM) 

 Hypothetical: Self-stabilization or gossip “emulation” of 2PC 

 ... And whichever we favor also needs to lend itself to an 
implementation we can prove correct! 

? 



Lessons one learns... and challenges 

 Formal models are powerful conceptual tools 

 Impossible to build a system like Isis2 without them 

 And Isis2 in turn enables high-assurance applications 

 

 Yet our science of formal methods remains too 

narrow in its focus 

 Teaches us how to reason about a single protocol 

 But also need to think about communities of protocols, 

concurrency everywhere, cross-process dependencies 



The challenge? 

 Which road leads forward? 

1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system” 

2. Develop new formal tools for dealing with 

complexities of systems built as communities of models 

3. Explore completely new kinds of formal models that 

might let us step entirely out of the box 



The challenge? 

 Which road leads forward? 

1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system” 

2. Develop new formal tools for dealing with 

complexities of systems built as communities of models 

3. Explore completely new kinds of formal models that 

might let us step entirely out of the box 

Doubtful: 

        The resulting formal model would be unwieldy 

        Theorem proving obligations rise more than linearly in model size 



The challenge? 

 Which road leads forward? 

1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system” 

2. Develop new formal tools for dealing with 

complexities of systems built as communities of models 

3. Explore completely new kinds of formal models that 

might let us step entirely out of the box 
Possible, but hard: 

        Need to abstract behaviors of these complex “modules” 

        On the other hand, this is how one debugs platforms like Isis2 



The challenge? 

 Which road leads forward? 

1. Extend our formal execution model to cover all 

elements of the desired solution: a “formal system” 

2. Develop new formal tools for dealing with 

complexities of systems built as communities of models 

3. Explore completely new kinds of formal models that 

might let us step entirely out of the box 

Intriguing: 
        All of this was predicated on a style of deterministic, agreement-based model 

        Could self-stabilizing protocols be composed in ways that permit us to tackle 

             equally complex applications but in an inherently simpler manner?    



Summary 

CS5412 Spring 2012 (Cloud Computing: Birman) 

46 

 We’ve seen several high assurance “stories” 

 Paxos 

 Virtual synchrony 

 Transactions 

 In each case the cloud community  
says “too expensive” and even  
proves theorems like CAP 

 But while “just say no” is easy, results 
are sometimes harmful.   

 Must we accept a low-assurance cloud? 

 And yet things that need high assurance are coming 


