
CS5412:

HOW MUCH ORDERING?

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XVI

Ordering

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 The key to consistency turns has turned out to be
delivery ordering (durability is a “separate” thing)

 Given replicas that are initially in the same state…

 … if we apply the same updates (with no gaps or
dups) in the same order, they stay in the same state.

 We’ve seen how the virtual synchrony model uses
this notion of order for

 Delivering membership view events

 Delivery of new update events

But what does “same order” mean?

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 The easy answer is to assume that the “same order”

means just what is says

 Every member gets every message in the identical

sequence

 This was what we called a “synchronous” behavior

 Better term might be

“closely” synchronous

since we aren’t using

synchronous clocks

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution

As an example…

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 Suppose some group manages variables X and Y

 P sends updates to X and Y, and so does Q

 P: X = X-2

 Q: X = 17.3

 Q: Y = Y*2 + X

 T: Y = 99

 The updates “conflict”: order matters

 The model keeps the replicas synchronized

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

But what if items have “leaders”

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Suppose all the updates to X are by P

 All the updates to Y are by Q

 Nobody ever looks at X and Y “simultaneously”

 Could this ever arise?

 Certainly! Many systems keep things like “inventories”

 Updates might be done as we add or remove items

from the stockroom

Does this impact ordering?

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 Now the rule is simpler

 As long as we perform updates in the order the

leader issued them, for each given item, the replicas

of the item remain consistent

 Here we see a “FIFO” ordering: with multiple

leaders we have multiple FIFO streams, but each

one is behaving “like” a 1-n version of TCP

Update the monitoring and

alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen

by end-user would

also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

 If A is the only process to handle updates, a FIFO Send is all

we need to maintain consistency

7

Revisiting our medical scenario

 A B C D

CS5412 Spring 2012 (Cloud Computing: Birman)

From FIFO to causal...

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 A fancier FIFO ordering policy can also arise

 Consider P and Q that both update X but with locks:

 First P obtains the lock before starting to do updates

 Then it sends updates for item X for a while

 Then it releases the lock and Q acquires it

 Then Q sends updates on X, too

 What ordering rule is needed here?

Update the monitoring and

alarms criteria for Mrs. Marsh

as follows…

Confirmed

Response delay seen

by end-user would

also include Internet

latencies
Local response

delay

flush

Send

Send

Send

Execution timeline for an

individual first-tier replica

Soft-state first-tier service

 A B C D

 Notice that the send by C is “after” the send by A

9

Causal ordering “variation”

CS5412 Spring 2012 (Cloud Computing: Birman)

Causal ordering

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 This example illustrates a concept Leslie Lamport
calls “causal ordering”

 A’s release of the lock on X to B “caused” B to issue
updates on X. When B was done, A resumed.

 The update order is A’s, then B’s, then A’s.

 Lamport’s happened-before relation captures this

 If P sends m, and Q sends m’, and m m’,
then we want m delivered before m’

 Called a “causal delivery” rule

Mutual exclusion

 Dark blue when holding the lock

 Lock moving around is like a thread
of control that moves from process to
process

 Our goal is “FIFO along the causal
thread” and the causal order is thus
exactly what we need to enforce

 In effect, causal order is like total
order except that the sender “moves
around” over time

 A B C D E

CS5412 Spring 2012 (Cloud Computing: Birman)

11

Same idea with several locks

 Suppose red defines the lock on X

 Blue is the lock on Y

 The “relative” ordering of X/Y
updates isn’t important because those
events commute: they update
different variables

 Causal order captures this too

p q r s t

CS5412 Spring 2012 (Cloud Computing: Birman)

12

Can we implement causal delivery?

CS5412 Spring 2012 (Cloud Computing: Birman)

13

 Think about how one implements FIFO multicast

 We just put a counter value in each outgoing multicast

 Nodes keep track and deliver in sequence order

 Substitute a vector timestamp

 We put a list of counters on each outgoing multicast

 Nodes deliver multicasts only if they are next in the
causal ordering

 No extra rounds required, just a bit of extra space (one
counter for each possible sender)

Total ordering

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 Multicasts in a single agreed order no matter who

sends them, without locking required

 SafeSend (Paxos) has this property

 Isis2 also provides a faster OrderedSend: total

ordering, but without strong durability

Levels of ordering one can use

CS5412 Spring 2012 (Cloud Computing: Birman)

15

 No ordering or even no reliability (like IP multicast)

 FIFO ordering (requires an integer counter)

 Causal ordering (requires vector timestamps)

 Total ordering (requires a form of lock). Can be

implemented as a “causal and total” order

 Paxos agreed ordering (tied to strong durability)

 Isis2 offers all of these options

Consistent cuts and Total Order

CS5412 Spring 2012 (Cloud Computing: Birman)

16

 Recall our discussion of consistent cuts

 Like an “instant in time” for a distributed system

 Guess what: An event triggered by a totally ordered

message delivery happens on a consistent cut!

 For example, it is safe to use a totally ordered query to

check for a deadlock, or to count something

 The answer will be “correct”

 No ghost deadlocks or double counting or undercounting

Isis2 multicast primitives

 RawSend: No guarantees

 Send: FIFO

 CausalSend: Causal order

 OrderedSend: Total order

 SafeSend: Paxos

 Flush: Durability (not needed

for SafeSend)

 In-memory/disk durability

(SafeSend only)

 Ability to specify the number

of acceptors (SafeSend)

17

CS5412 Spring 2012 (Cloud Computing: Birman)

Names for Primitives Additional Options

… all come in P2P and multicast forms, and all can be used as

basis of Query requests

Will people need so many choices?

CS5412 Spring 2012 (Cloud Computing: Birman)

18

 Most developers start by using

 OrderedSend for situations where strong durability isn’t
a key requirement (total order)

 SafeSend if total order plus strong durability is needed

 Then they switch to weaker ordering primitives if

 Application has a structure that permits it

 Performance benefit outweighs the added complexity

 Using the right primitive lets you pay for exactly what
you need

Virtual synchrony recap

19

 Virtual synchrony is a “consistency” model:

 Synchronous runs: indistinguishable from non-replicated object
that saw the same updates (like Paxos)

 Virtually synchronous runs are indistinguishable from
synchronous runs

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

p

q

r

s

t

Time: 0 10 20 30 40 50 60 70

Synchronous execution Virtually synchronous execution

Non-replicated reference execution
A=3 B=7 B = B-A A=A+1

CS5412 Spring 2012 (Cloud Computing: Birman)

Some additional Isis2 features

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 State transfer and logging

 User registers a method that can checkpoint group

state, and methods to load from checkpoint

 Isis2 will move such a checkpoint to a new member,

or store it into a file, at appropriate times

Security

CS5412 Spring 2012 (Cloud Computing: Birman)

21

 Based on 256-bit AES keys

 Two cases: Key for the entire system, and per-group

keys.

 System keys: used to sign messages (not encrypt!)

 Per-group keys: all data sent on the network is

encrypted first

 But where do the keys themselves get stored?

Security

CS5412 Spring 2012 (Cloud Computing: Birman)

22

 One option is to keep the key material outside of Isis2 in
a standard certificate repository

 Application would start up, fetch certificate, find keys inside,
and hand them to Isis2

 This is the recommended approach

 A second option allows Isis2 to create keys itself

 But these will be stored in files under your user-id

 File protection guards these: only you can access them

 If someone were to log in as you, they could find the keys
and decrypt group traffic

Flow control

CS5412 Spring 2012 (Cloud Computing: Birman)

23

 Two forms

 Built-in flow control is automatic and attempts to

avoid overload situations in which senders swamp

(some) receivers with too much traffic, causing them

to fall behind and, eventually, to crash

 This is always in force except when using RawSend

Flow control

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 The other form is user-controlled: You specify a

“leaky bucket” policy, Isis2 implements it

 Tokens flow into a bucket at

a rate you can specify

 They also age out eventually (leak)

 Each multicast “costs” a token

and waits if the bucket is empty

 Fully automated flow control appears to be very

hard and may be impractical

http://www.commonwealthsolar.com/images/RMILeakyBucket.jpg

Dr. Multicast

CS5412 Spring 2012 (Cloud Computing: Birman)

25

 Something else Isis2 does is to manage the choice of

how multicast gets sent

 Several cases

 Isis2 can use IP multicast, if permitted. User controls the

range of port numbers and the maximum number of groups

 Isis2 can send packets over UDP, if UDP is allowed and a

particular group doesn’t have permission to use Dr. Multicast

 Isis2 can “tunnel” over an overlay network of TCP links (a

kind of tree with log(N) branching factor at each level)

Anatomy of a meltdown

 A “blend” of stories (eBay, Amazon, Yahoo):

 Pub-sub message bus very popular. System scaled up.

Rolled out a faster ethernet.

 Product uses IPMC to accelerate sending

 All goes well until one day, under heavy load, loss rates

spike, triggering collapse

 Oscillation observed

0

2000

4000

6000

8000

10000

12000

250 400 550 700 850

m
e

ss
a

g
e

s
/s

time (s)

CS5412 Spring 2012 (Cloud Computing: Birman)

26

IPMC aggregation and flow control!

 Recall: IPMC became promiscuous because too many

multicast channels were used

 And this triggered meltdowns

 Why not aggregate (combine) IPMC channels?

 When two channels have similar receiver sets, combine

them into one channel

 Filter (discard) unwanted extra messages

CS5412 Spring 2012 (Cloud Computing: Birman)

27

• Application sees
what looks like a
normal IPMC
interface (socket
library)

• We intercept
requests and map
them to IPMC
groups of our
choice (or even to
UDP)

Dr. Multicast
28

CS5412 Spring 2012 (Cloud Computing: Birman)

Channel Aggregation

 Algorithm by Vigfusson, Tock

 papers: [HotNets 09, LADIS 2008]

 Uses a k-means clustering algorithm

 Generalized problem is NP complete

 But heuristic works well in practice

CS5412 Spring 2012 (Cloud Computing: Birman)

29

Optimization Questions

o Assign IPMC and unicast addresses s.t.
 % receiver filtering (hard)
 Min. network traffic
 # IPMC addresses (hard)

M

• Prefers sender load over receiver load

• Intuitive control knobs as part of the policy

(1)

CS5412 Spring 2012 (Cloud Computing: Birman)

30

MCMD Heuristic

Topics in `user-
interest’ space

FGIF BEER GROUP FREE FOOD

(1,1,1,1,1,0,1,0,1,0,1,1) (0,1,1,1,1,1,1,0,0,1,1,1)

31

CS5412 Spring 2012 (Cloud Computing: Birman)

MCMD Heuristic

Topics in `user-
interest’ space

224.1.2.3

224.1.2.4
224.1.2.5

CS5412 Spring 2012 (Cloud Computing: Birman)

32

MCMD Heuristic

Topics in `user-
interest’ space

Filtering cost:

MAX
Sending cost:

CS5412 Spring 2012 (Cloud Computing: Birman)

33

MCMD Heuristic

Topics in `user-
interest’ space

Filtering cost:

MAX
Sending cost:

Unicast

CS5412 Spring 2012 (Cloud Computing: Birman)

34

MCMD Heuristic

Topics in `user-
interest’ space

Unicast

Unicast

224.1.2.3

224.1.2.4

224.1.2.5

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Using the Solution

Procs L-IPMC

Heuristic

multicast

Procs L-IPMC

• Processes use “logical” IPMC addresses
• Dr. Multicast transparently maps these to

true IPMC addresses or 1:1 UDP sends
CS5412 Spring 2012 (Cloud Computing: Birman)

36

Effectiveness?

 We looked at various group scenarios

 Most of the traffic is
carried by <20% of groups

 For IBM Websphere,
Dr. Multicast achieves
18x reduction in
physical IPMC addresses

 [Dr. Multicast: Rx for Data Center Communication Scalability. Ymir Vigfusson, Hussam Abu-

Libdeh, Mahesh Balakrishnan, Ken Birman, and Yoav Tock. LADIS 2008. November 2008.]

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Dr. Multicast in Isis2

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 System automatically tracks membership, data rates

 Periodically runs an optimization algorithm

 Merges similar groups

 Applies the Dr. Multicast greedy heuristic

 Isis2 protocols “think” they are multicasting, but a

logical to physical mapping will determine whether

messages are sent via IPMC, 1-n UDP or the tree-

tunnelling layer, all automatically

Large groups

CS5412 Spring 2012 (Cloud Computing: Birman)

39

 Isis2 has two styles of acknowledgment protocol

 For “small” groups (up to ~1000 members), direct acks

 Large groups use a tree of token rings: slower, but very

steady (intended for 1000-100,000 members)

 Also supports a scalable way to do queries with

massive parallelism, based on “aggregation”

 Very likely that as we gain experience, we’ll refine the

way large groups are handled

Example: Parallel search

Replies = g.query(LOOKUP, “Name=*Smith”);

g.callback(myReplyHndlr, Replies, typeof(double));

public void myReplyHndlr(double[] fnd) {

 foreach(double d in fnd)

 avg += d;

 …

}

public void myLookup(string who) {

 divide work into viewSize() chunks

 this replica will search chunk # getMyRank();

 …..

 reply(myAnswer);

}

Group g = new Group(“/amazon/something”);

g.register(LOOKUP, myLookup);

Could overwhelm receiver

CS5412 Spring 2012 (Cloud Computing: Birman)

40

Scalable Aggregation

 Used if group is really big

 Request, updates: still via multicast

 Response is aggregated within a tree

Level 0

Level 1

Level 2
Agg(va vb vc vd)

query

a

a

c a

c

d b

va vb vc vd

Agg(vc vd)
Agg(va vb)

reply

Example: nodes {a,b,c,d}

collaborate to perform a

query

CS5412 Spring 2012 (Cloud Computing: Birman)

41

Aggregated Parallel search

Replies = g.query(LOOKUP, 27, “Name=*Smith”);

g.callback(myReplyHndlr, Replies, typeof(double));

public void myReplyHndlr(double[] fnd) {

 The answer is in fnd[0]….

}

public void myLookup(int rid, string who) {

 divide work into viewSize() chunks

 this replica will search chunk # getMyRank();

 …..

 SetAggregateValue(myAnswer);

}

Group g = new Group(“/amazon/something”);

g.register(LOOKUP, myLookup);

Rval = GetAggregateResult(27);

Reply(Rval/DatabaseSize);

CS5412 Spring 2012 (Cloud Computing: Birman)

42

Large groups

CS5412 Spring 2012 (Cloud Computing: Birman)

43

 They can only be used in a few ways

 All sending is actually done by the rank-0 member.

 If others send, a relaying mechanism forwards the message
via the rank-0 member

 This use of Send does guarantee causal order: in fact it
provides a causal, total ordering

 No support for SafeSend

 Thus most of the fancy features of Isis2 are only for
use in small groups

Recall our “community” slide?

 We’ve seen how many (not all) of this was built!

 The system is very powerful with a wide variety of

possible use styles and cases

Isis2 user

object

Isis2 user

object
Isis2 user

object

Isis2 library

Group instances and multicast protocols

Flow Control

Membership Oracle

Large Group Layer TCP tunnels (overlay) Dr. Multicast Security

Reliable Sending Fragmentation Security

Sense Runtime Environment
Self-stabilizing

Bootstrap Protocol Socket Mgt/Send/Rcv

Send

CausalSend

OrderedSend

SafeSend

Query....

Message Library “Wrapped” locks Bounded Buffers

Oracle Membership

Group membership

Report suspected failures

Views

Other group

members

44

Isis2 offers (too) many choices!

CS5412 Spring 2012 (Cloud Computing: Birman)

45

Primitive FIFO/Total? Causal? Weak/Strong Durability Small/Large

RawSend,

RawP2PSend,

RawQuery

FIFO No Not even reliable Either

Send, etc (same set

of variants)

FIFO if underlying

group is small.

Total order if large.

No Reliable, weak durability

(calling Flush assures

strong durability)

Either

CausalSend FIFO+Causal Yes Reliable, weak Only small

OrderedSend Total No Reliable, weak Only small

SafeSend Total No Reliable, strong Only small

Aggregated Query Total No Reliable, weak Only large

 Also: Secure/insecure, logged/not logged

 For SafeSend: # of acceptors, Disk vs. “in-memory” durability

Choice or simplicity

CS5412 Spring 2012 (Cloud Computing: Birman)

46

 Many developers just use Paxos

 Has the strongest properties, hence a good one-size-
fits-all option. SafeSend with disk durability in Isis2

 But Paxos can be slow and this is one reason CAP is
applied in the first tier of the cloud

 Isis2 has a wide range of options

 Intended to permit experiments, innovative ideas

 Pay for what you need and use… SafeSend if you like

 … flexibility permits higher performance

Recommendation?

CS5412 Spring 2012 (Cloud Computing: Birman)

47

 We urge people to use Isis2 but to initially start with

very simple applications and styles of use

 Fancy features are for fancy use cases that really

need them… many applications won’t!

 Plan is to eventually offer a kind of recipe for

building various standard applications in good

ways… user would “copy” and “evolve” them.

