
CS5412:

BIMODAL MULTICAST

ASTROLABE

Ken Birman

Gossip-Based Networking Workshop 1

Lecture XIX Leiden; Dec 06

Gossip 201

 Recall from early in the semester that gossip

spreads in log(system size) time

 But is this actually “fast”?

%
 i
n
fe

ct
e
d

0.0

1.0

Time
Leiden; Dec 06 Gossip-Based Networking Workshop

2

Gossip in distributed systems

 Log(N) can be a very big number!

 With N=100,000, log(N) would be 12

 So with one gossip round per five seconds, information

needs one minute to spread in a large system!

 Some gossip protocols combine pure gossip with an

accelerator

 A good way to get the word out quickly

Leiden; Dec 06 Gossip-Based Networking Workshop

3

Bimodal Multicast

Gossip-Based Networking Workshop

4

 To send a message, this protocol uses IP multicast

 We just transmit it without delay and we don’t

expect any form of responses

 Not reliable, no acks

 No flow control (this can be an issue)

 In data centers that lack IP multicast, can simulate by

sending UDP packets 1:1 without acks

Leiden; Dec 06

What’s the cost of an IP multicast?

Gossip-Based Networking Workshop

5

 In principle, each Bimodal Multicast packet traverses

the relevant data center links and routers just once

per message

 So this is extremely cheap... but how do we deal

with systems that didn’t receive the multicast?

Leiden; Dec 06

Making Bimodal Multicast reliable

Gossip-Based Networking Workshop

6

 We can use gossip!

 Every node tracks the membership of the target

group (using gossip, just like with Kelips, the DHT we

studied early in the semester)

 Bootstrap by learning “some node addresses” from

some kind of a server or web page

 But then exchange of gossip used to improve accuracy

Leiden; Dec 06

Making Bimodal Multicast reliable

Gossip-Based Networking Workshop

7

 Now, layer in a gossip mechanism that gossips

about multicasts each node knows about

 Rather than sending the multicasts themselves, the gossip

messages just talk about “digests”, which are lists

 Node A might send node B

 I have messages 1-18 from sender X

 I have message 11 from sender Y

 I have messages 14, 16 and 22-71 from sender Z

 Compactly represented...

 This is a form of “push” gossip

Leiden; Dec 06

Making Bimodal Multicast reliable

Gossip-Based Networking Workshop

8

 On receiving such a gossip message, the recipient
checks to see which messages it has that the gossip
sender lacks, and vice versa

 Then it responds

 I have copies of messages M, M’and M’’ that you seem
to lack

 I would like a copy of messages N, N’ and N’’ please

 An exchange of the actual messages follows

Leiden; Dec 06

Optimizations

Gossip-Based Networking Workshop

9

 Bimodal Multicast resends using IP multicast if there

is “evidence” that a few nodes may be missing the

same thing

 E.g. if two nodes ask for the same retransmission

 Or if a retransmission shows up from a very remote

node (IP multicast doesn’t always work in WANs)

 It also prioritizes recent messages over old ones

 Reliability has a “bimodal” probability curve: either

nobody gets a message or nearly everyone does

Leiden; Dec 06

lpbcast variation

Gossip-Based Networking Workshop

10

 In this variation on Bimodal Multicast instead of

gossiping with every node in a system, we modify

the Bimodal Multicast protocol

 It maintains a “peer overlay”: each member only

gossips with a smaller set of peers picked to be

reachable with low round-trip times, plus a second small

set of remote peers picked to ensure that the graph is

very highly connected and has a small diameter

 Called a “small worlds” structure by Jon Kleinberg

 Lpbcast is often faster, but equally reliable!

Leiden; Dec 06

Speculation... about speed

Gossip-Based Networking Workshop

11

 When we combine IP multicast with gossip we try to

match the tool we’re using with the need

 Try to get the messages through fast... but if loss

occurs, try to have a very predictable recovery cost

 Gossip has a totally predictable worst-case load

 This is appealing at large scales

 How can we generalize this concept?

Leiden; Dec 06

A thought question

 What’s the best way to

 Count the number of nodes in a system?

 Compute the average load, or find the most loaded
nodes, or least loaded nodes?

 Options to consider

 Pure gossip solution

 Construct an overlay tree (via “flooding”, like in our
consistent snapshot algorithm), then count nodes in the
tree, or pull the answer from the leaves to the root…

Leiden; Dec 06 Gossip-Based Networking Workshop

12

… and the answer is

 Gossip isn’t very good for some of these tasks!

 There are gossip solutions for counting nodes, but they
give approximate answers and run slowly

 Tricky to compute something like an average because
of “re-counting” effect, (best algorithm: Kempe et al)

 On the other hand, gossip works well for finding the
c most loaded or least loaded nodes (constant c)

 Gossip solutions will usually run in time O(log N)
and generally give probabilistic solutions

Leiden; Dec 06 Gossip-Based Networking Workshop

13

Yet with flooding… easy!

 Recall how flooding works

 Basically: we construct a tree by pushing data towards
the leaves and linking a node to its parent when that
node first learns of the flood

 Can do this with a fixed topology or in a gossip style
by picking random next hops

1

3

3

3

2

2

Labels: distance of the node from

the root

Leiden; Dec 06 Gossip-Based Networking Workshop

14

This is a “spanning tree”

 Once we have a spanning tree

 To count the nodes, just have leaves report 1 to their
parents and inner nodes count the values from their
children

 To compute an average, have the leaves report their
value and the parent compute the sum, then divide by
the count of nodes

 To find the least or most loaded node, inner nodes
compute a min or max…

 Tree should have roughly log(N) depth, but once we
build it, we can reuse it for a while

Leiden; Dec 06 Gossip-Based Networking Workshop

15

Not all logs are identical!

 When we say that a gossip protocol needs
time log(N) to run, we mean log(N) rounds

 And a gossip protocol usually sends one message every
five seconds or so, hence with 100,000 nodes, 60 secs

 But our spanning tree protocol is constructed using a
flooding algorithm that runs in a hurry

 Log(N) depth, but each “hop” takes perhaps a
millisecond.

 So with 100,000 nodes we have our tree in 12 ms and
answers in 24ms!

Leiden; Dec 06 Gossip-Based Networking Workshop

16

Insight?

 Gossip has time complexity O(log N) but the
“constant” can be rather big (5000 times larger in
our example)

 Spanning tree had same time complexity but a tiny
constant in front

 But network load for spanning tree was much higher

 In the last step, we may have reached roughly half the
nodes in the system

 So 50,000 messages were sent all at the same time!

Leiden; Dec 06 Gossip-Based Networking Workshop

17

Gossip vs “Urgent”?

 With gossip, we have a slow but steady story

 We know the speed and the cost, and both are low

 A constant, low-key, background cost

 And gossip is also very robust

 Urgent protocols (like our flooding protocol, or 2PC,
or reliable virtually synchronous multicast)

 Are way faster

 But produce load spikes

 And may be fragile, prone to broadcast storms, etc

Leiden; Dec 06 Gossip-Based Networking Workshop

18

Introducing hierarchy

 One issue with gossip is that the messages fill up

 With constant sized messages…

 … and constant rate of communication

 … we’ll inevitably reach the limit!

 Can we inroduce hierarchy into gossip systems?

Leiden; Dec 06 Gossip-Based Networking Workshop

19

Astrolabe
 Intended as help for

applications adrift in a
sea of information

 Structure emerges from
a randomized gossip
protocol

 This approach is robust
and scalable even under
stress that cripples
traditional systems

Developed at RNS, Cornell

 By Robbert van Renesse,
with many others
helping…

 Today used extensively
within Amazon.com

Leiden; Dec 06 Gossip-Based Networking Workshop

20

Astrolabe is a flexible monitoring overlay

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

Name Time Load Weblogic? SMTP? Word
Version

swift 2271 1.8 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2231 1.7 1 1 6.0

Leiden; Dec 06 Gossip-Based Networking Workshop

21

Astrolabe in a single domain

 Each node owns a single tuple, like the management
information base (MIB)

 Nodes discover one-another through a simple
broadcast scheme (“anyone out there?”) and gossip
about membership

 Nodes also keep replicas of one-another’s rows

 Periodically (uniformly at random) merge your state
with some else…

Leiden; Dec 06 Gossip-Based Networking Workshop

22

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu Leiden; Dec 06 Gossip-Based Networking Workshop

23

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2004 4.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu

swift 2011 2.0

cardinal 2201 3.5

Leiden; Dec 06 Gossip-Based Networking Workshop

24

State Merge: Core of Astrolabe epidemic

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic? SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1971 1.5 1 0 4.1

cardinal 2201 3.5 1 0 6.0

swift.cs.cornell.edu

cardinal.cs.cornell.edu Leiden; Dec 06 Gossip-Based Networking Workshop

25

Observations

 Merge protocol has constant cost

 One message sent, received (on avg) per unit time.

 The data changes slowly, so no need to run it quickly –
we usually run it every five seconds or so

 Information spreads in O(log N) time

 But this assumes bounded region size

 In Astrolabe, we limit them to 50-100 rows

Leiden; Dec 06 Gossip-Based Networking Workshop

26

Big systems…

 A big system could have many regions

 Looks like a pile of spreadsheets

 A node only replicates data from its neighbors within its

own region

Leiden; Dec 06 Gossip-Based Networking Workshop

27

Scaling up… and up…

 With a stack of domains, we don’t want every

system to “see” every domain

 Cost would be huge

 So instead, we’ll see a summary

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

cardinal.cs.cornell.edu

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Name Time Load Weblogic
?

SMTP? Word
Version

swift 2011 2.0 0 1 6.2

falcon 1976 2.7 1 0 4.1

cardinal 2201 3.5 1 1 6.0

Leiden; Dec 06 Gossip-Based Networking Workshop

28

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

Astrolabe builds a hierarchy using a P2P protocol that

“assembles the puzzle” without any servers

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

SQL query

“summarizes”

data

Dynamically changing query

output is visible system-wide

Name Load Weblogic? SMTP? Word
Version

…

swift 1.7 0 1 6.2

falcon 2.1 1 0 4.1

cardinal 3.9 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 4.1 0 0 4.5

zebra 0.9 0 1 6.2

gnu 2.2 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.2 123.45.61.3 123.45.61.17

NJ 1.6 127.16.77.6 127.16.77.11

Paris 2.7 14.66.71.8 14.66.71.12

Leiden; Dec 06 Gossip-Based Networking Workshop

29

Large scale: “fake” regions

 These are

 Computed by queries that summarize a whole region as
a single row

 Gossiped in a read-only manner within a leaf region

 But who runs the gossip?

 Each region elects “k” members to run gossip at the
next level up.

 Can play with selection criteria and “k”

Leiden; Dec 06 Gossip-Based Networking Workshop

30

Hierarchy is virtual… data is replicated

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Yellow leaf node “sees” its neighbors and the

domains on the path to the root.

Falcon runs level 2 epidemic

because it has lowest load

Gnu runs level 2 epidemic because

it has lowest load

Leiden; Dec 06 Gossip-Based Networking Workshop

31

Hierarchy is virtual… data is replicated

Name Load Weblogic? SMTP? Word
Version

…

swift 2.0 0 1 6.2

falcon 1.5 1 0 4.1

cardinal 4.5 1 0 6.0

Name Load Weblogic? SMTP? Word
Version

…

gazelle 1.7 0 0 4.5

zebra 3.2 0 1 6.2

gnu .5 1 0 6.2

Name Avg
Load

WL contact SMTP contact

SF 2.6 123.45.61.3 123.45.61.17

NJ 1.8 127.16.77.6 127.16.77.11

Paris 3.1 14.66.71.8 14.66.71.12

San Francisco New Jersey

Green node sees different leaf domain but has

a consistent view of the inner domain

Leiden; Dec 06 Gossip-Based Networking Workshop

32

Worst case load?

 A small number of nodes end up participating in

O(logfanoutN) epidemics

 Here the fanout is something like 50

 In each epidemic, a message is sent and received

roughly every 5 seconds

 We limit message size so even during periods of

turbulence, no message can become huge.

Leiden; Dec 06 Gossip-Based Networking Workshop

33

Who uses Astrolabe?

 Amazon uses Astrolabe throughout their big data

centers!

 For them, Astrolabe helps them track overall state of

their system to diagnose performance issues

 They can also use it to automate reaction to temporary

overloads

Leiden; Dec 06 Gossip-Based Networking Workshop

34

Example of overload handling

 Some service S is getting slow…

 Astrolabe triggers a “system wide warning”

 Everyone sees the picture

 “Oops, S is getting overloaded and slow!”

 So everyone tries to reduce their frequency of requests

against service S

 What about overload in Astrolabe itself?

 Could everyone do a fair share of inner aggregation?

Leiden; Dec 06 Gossip-Based Networking Workshop

35

Leiden; Dec 06 Gossip-Based Networking Workshop

36
A fair (but dreadful) aggregation tree

 A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L

An event e occurs

at H

P learns O(N)

time units later!
G gossips with H

and learns e

Leiden; Dec 06 Gossip-Based Networking Workshop

37

What went wrong?

 In this horrendous tree, each node has equal “work

to do” but the information-space diameter is larger!

 Astrolabe benefits from “instant” knowledge

because the epidemic at each level is run by

someone elected from the level below

Leiden; Dec 06 Gossip-Based Networking Workshop

38

Insight: Two kinds of shape

 We’ve focused on the aggregation tree

 But in fact should also think about the information

flow tree

Leiden; Dec 06 Gossip-Based Networking Workshop

39

Information space perspective

 Bad aggregation graph: diameter O(n)

 Astrolabe version: diameterO(log(n))

H – G – E – F – B – A – C – D – L – K – I – J – N – M – O – P

A B C D E F G H I J K L M N O P

A C E G I K M O

A E I M

A I

A
 –

 B

C
 –

 D

E
 –

 F

G
 –

 H
 I

–
 J

K
 –

 L

 M
 –

 N

O
 –

 P

A B C D E F G H I J K L M N O P

A C E G I K M O

B F J N

D L

Summary

 First we saw a way of using Gossip in a reliable
multicast (although the reliability is probabilistic)

 Then looked at using Gossip for aggregation

 Pure gossip isn’t ideal for this… and competes poorly
with flooding and other urgent protocols

 But Astrolabe introduces hierarchy and is an interesting
option that gets used in at least one real cloud platform

 Power: make a system more robust, self-adaptive,
with a technology that won’t make things worse

 But performance can still be sluggish

Leiden; Dec 06 Gossip-Based Networking Workshop

40

