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Generalizing Sam and Jill’s challenge 

 Recall from last time: Sam and Jill had difficulty 

agreeing where to meet for lunch 

 The central issue was that they never knew for sure if email 

was delivered... and always ended up in the “default” case 

 In general we often see cases in which N processes must 

agree upon something 

 Often reduced to “agreeing on a bit” (0/1) 

 To make this non-trivial, we assume that processes have an 

input and must pick some legitimate input value 

 Can we implement a fault-tolerant agreement protocol? 
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Connection to consistency 

 A system behaves consistently if users can’t 
distinguish it from a non-distributed system that 
supports the same functionality 

 Many notions of consistency reduce to agreement on 
the events that occurred and their order 

 Could imagine that our “bit” represents 

 Whether or not a particular event took place 

 Whether event A is the “next” event 

 Thus fault-tolerant consensus is deeply related to 
fault-tolerant consistency 
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Consensus  Agreement? 
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 For CS5412 we treat these as synonyms 

 

 The theoretical distributed systems community has 

detailed definitions and for that group, the terms 

refer to very similar but not identical problems 

 

 Today we’re “really” focused on Consensus, but 

don’t worry about the distinctions 



Fischer, Lynch and Patterson  
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 A surprising result 

 Impossibility of Asynchronous Distributed Consensus with 

a Single Faulty Process 

 They prove that no asynchronous algorithm for 

agreeing on a one-bit value can guarantee that it 

will terminate in the presence of crash faults 

 And this is true even if no crash actually occurs! 

 Proof constructs infinite non-terminating runs 



Core of FLP result 
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 They start by looking at an asynchronous system of N 
processes with inputs that are all the same 

 All 0’s must decide 0, all 1’s decides 1 

 They are assume we are given a correct consensus 
protocol that will “vote” (somehow) to pick one of the 
inputs, e.g. perhaps the majority value 

 Now they focus on an initial set of inputs with an uncertain 
(“bivalent”) outcome (nearly a tie) 

 For example: N=5 and with a majority of 0’s the protocol 
picks 0, but with a tie, it picks 1.  Thus if one of process with 
a 0 happens to fail, the outcome is different than if all vote 



Core of FLP result 
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 Now they will show that from this bivalent state we 

can force the system to do some work and yet still 

end up in an equivalent bivalent state 

 

 Then they repeat this procedure 

 

 Effect is to force the system into an infinite loop! 

 And it works no matter what correct consensus protocol 

you started with.  This makes the result very general 



Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S* denotes bivalent state 

S0 denotes a decision 0 state 

S1 denotes a decision 1 state 

Sooner or later all executions 
decide 0 

Sooner or later all executions 
decide 1 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

e 

e is a critical event that takes 

us from a bivalent to a 

univalent state: eventually 

we’ll “decide” 0 

CS5412 Spring 2012 (Cloud Computing: Birman) 

9 



Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

They delay e and show that 

there is a situation in which the 

system will return to a bivalent 

state 

S’* 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S’* 

In this new state they show that 

we can deliver e and that now, 

the new state will still be 

bivalent! 

S’’* 

e 
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Bivalent state 

System 
starts in S* 

Events can 
take it to 
state S1 

Events can 
take it to 
state S0 

S’* 

Notice that we made the system 

do some work and yet it ended 

up back in an “uncertain” state.  

We can do this again and again 

S’’* 

e 
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Core of FLP result in words 

 In an initially bivalent state, they look at some 

execution that would lead to a decision state, say “0” 

 At some step this run switches from bivalent to univalent, 

when some process receives some message m 

 They now explore executions in which m is delayed 
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Core of FLP result 

 So: 

 Initially in a bivalent state 

 Delivery of m would make us univalent but we delay m 

 They show that if the protocol is fault-tolerant there must be a run that 
leads to the other univalent state 

 And they show that you can deliver m in this run without a decision being 
made 

 This proves the result: they show that a bivalent system can be 
forced to do some work and yet remain in a bivalent state. 

 If this is true once, it is true as often as we like 

 In effect: we can delay decisions indefinitely 
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But how did they “really” do it? 

 Our picture just gives the basic idea 

 Their proof actually proves that there is a way to 

force the execution to follow this tortured path 

 But the result is very theoretical… 

 … to much so for us in CS5412 

 So we’ll skip the real details 
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Intuition behind this result? 

 Think of a real system trying to agree on something in 
which process p plays a key role 

 But the system is fault-tolerant: if p crashes it adapts 
and moves on 

 Their proof “tricks” the system into thinking p failed 

 Then they allow p to resume execution, but make the system 
believe that perhaps q has failed 

 The original protocol can only tolerate1 failure, not 2, so it 
needs to somehow let p rejoin in order to achieve progress 

 This takes time… and no real progress occurs 
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But what did “impossibility” mean? 

 In formal proofs, an algorithm is totally correct if 

 It computes the right thing 

 And it always terminates 

 When we say something is possible, we mean “there is a 
totally correct algorithm” solving the problem 

 FLP proves that any fault-tolerant algorithm solving consensus 
has runs that never terminate 

 These runs are extremely unlikely (“probability zero”) 

 Yet they imply that we can’t find a totally correct solution 

 And so “consensus is impossible” ( “not always possible”) 
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How did they pull this off? 
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 A very clever adversarial attack 

 They assume they have perfect control over which 
messages the system delivers, and when 

 They can pick the exact state in which a message 
arrives in the protocol 

 

 They use this ultra-precise control to force the 
protocol to loop in the manner we’ve described 

 

 In practice, no adversary ever has this much control 



In the real world? 
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 The FLP scenario “could happen” 

 After all, it is a valid scenario.   

 ... And any valid scenario can happen 

 

 But step by step they take actions that are incredibly 
unlikely.  For many to happen in a row is just impossible 
in practice 

 A “probability zero” sequence of events 

 Yet in a temporal logic sense, FLP shows that if we can prove 
correctness for a consensus protocol, we’ll be unable to 
prove it live in a realistic network setting, like a cloud system 

 

 



So... 
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 Fault-tolerant consensus is... 

 Definitely possible (not even all that hard).  Just vote! 

 And we can prove protocols of this kind correct. 

 

 But we can’t prove that they will terminate 

 If our goal is just a probability-one guarantee, we 

actually can offer a proof of progress 

 But in temporal logic settings we want perfect 

guarantees and we can’t achieve that goal 



Recap 

 We have an asynchronous model with crash failures 

 A bit like the real world! 

 In this model we know how to do some things 

 Tracking “happens before” & making a consistent snapshot 

 Later we’ll find ways to do ordered multicast and implement replicated 
data and even solve consensus 

 But now we also know that there will always be scenarios in 
which our solutions can’t make progress 

 Often can engineer system to make them extremely unlikely 

 Impossibility doesn’t mean these solutions are wrong – only that they live 
within this limit   
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Tougher failure models 

 We’ve focused on crash failures 

 In the synchronous model these look like a “farewell cruel 

world” message 

 Some call it the “failstop model”.  A faulty process is viewed 

as first saying goodbye, then crashing 

 What about tougher kinds of failures? 

 Corrupted messages 

 Processes that don’t follow the algorithm 

 Malicious processes out to cause havoc? 
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Here the situation is much harder 

 Generally we need at least 3f+1 processes in a 

system to tolerate f Byzantine failures 

 For example, to tolerate 1 failure we need 4 or more 

processes 

 We also need f+1 “rounds” 

 Let’s see why this happens 
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Byzantine scenario 

 Generals (N of them) surround a city 
 They communicate by courier 

 Each has an opinion: “attack” or “wait” 
 In fact, an attack would succeed: the city will fall. 

 Waiting will succeed too: the city will surrender.   

 But if some attack and some wait, disaster ensues 

 Some Generals (f of them) are traitors… it doesn’t 
matter if they attack or wait, but we must prevent 
them from disrupting the battle 
 Traitor can’t forge messages from other Generals 
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Byzantine scenario 

Attack! 

Wait… 

Attack! 

Attack!  

No, wait!  

Surrender! 

Wait… 
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A timeline perspective 

 

 

 

 

 

 Suppose that p and q favor attack, r is a traitor 
and s and t favor waiting… assume that in a tie 
vote, we attack 

p 

q 

r 

s 

t 
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A timeline perspective 

 

 

 

 

 

 After first round collected votes are: 

 {attack, attack, wait, wait, traitor’s-vote} 

p 

q 

r 

s 

t 

CS5412 Spring 2012 (Cloud Computing: Birman) 

27 



What can the traitor do? 

 Add a legitimate vote of “attack” 

 Anyone with 3 votes to attack knows the outcome 

 Add a legitimate vote of “wait” 

 Vote now favors “wait” 

 Or send different votes to different folks 

 Or don’t send a vote, at all, to some 
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Outcomes? 

 Traitor simply votes: 
 Either all see {a,a,a,w,w} 

 Or all see {a,a,w,w,w} 

 Traitor double-votes 
 Some see {a,a,a,w,w} and some {a,a,w,w,w} 

 Traitor withholds some vote(s) 
 Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still 

others see {a,a,w,w,w} 

 Notice that traitor can’t manipulate votes of loyal 
Generals! 
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What can we do? 

 Clearly we can’t decide yet; some loyal Generals 
might have contradictory data 

 In fact if anyone has 3 votes to attack, they can already 
“decide”. 

 Similarly, anyone with just 4 votes can decide 

 But with 3 votes to “wait” a General isn’t sure (one could be 
a traitor…) 

 So: in round 2, each sends out “witness” messages: 
here’s what I saw in round 1 

 General Smith send me: “attack(signed) Smith” 
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Digital signatures 

 These require a cryptographic system 

 For example, RSA 

 Each player has a secret (private) key K-1 and a public 
key K.   

 She can publish her public key 

 RSA gives us a single “encrypt” function: 

 Encrypt(Encrypt(M,K),K-1) = Encrypt(Encrypt(M,K-1),K) = M 

 Encrypt a hash of the message to “sign” it 
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With such a system 

 A can send a message to B that only A could have 
sent 
 A just encrypts the body with her private key 

 … or one that only B can read 
 A encrypts it with B’s public key 

 Or can sign it as proof she sent it 
 B can recompute the signature and decrypt A’s hashed 

signature to see if they match 

 These capabilities limit what our traitor can do: he 
can’t forge or modify a message 
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A timeline perspective 

 

 

 

 

 

 In second round if the traitor didn’t behave 
identically for all Generals, we can weed out his 
faulty votes 

p 

q 

r 

s 

t 
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A timeline perspective 

 

 

 

 

 

 We attack! 

p 

q 

r 

s 

t 

Attack!! 

Attack!! 

Attack!! 

Attack!! 

Damn!  They’re on to me 
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Traitor is stymied 

 Our loyal generals can deduce that the decision was 

to attack 

 Traitor can’t disrupt this… 

 Either forced to vote legitimately, or is caught 

 But costs were steep! 

 (f+1)*n2 ,messages! 

 Rounds can also be slow…. 

 “Early stopping” protocols: min(t+2, f+1) rounds; t is true 

number of faults 
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Recent work with Byzantine model 

 Focus is typically on using it to secure particularly 
sensitive, ultra-critical services 

 For example the “certification authority” that hands out keys 
in a domain 

 Or a database maintaining top-secret data 

 Researchers have suggested that for such purposes, a 
“Byzantine Quorum” approach can work well 

 They are implementing this in real systems by 
simulating rounds using various tricks 
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Byzantine Quorums 

 Arrange servers into a  n x n array 

 Idea is that any row or column is a quorum 

 Then use Byzantine Agreement to access that quorum, doing 

a read or a write 

 Separately, Castro and Liskov have tackled a related 

problem, using BA to secure a file server 

 By keeping BA out of the critical path, can avoid most of the 

delay BA normally imposes 
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Split secrets 

 In fact BA algorithms are just the tip of a broader 
“coding theory” iceberg 

 One exciting idea is called a “split secret” 
 Idea is to spread a secret among n servers so that any k can 

reconstruct the secret, but no individual actually has all the 
bits 

 Protocol lets the client obtain the “shares” without the servers 
seeing one-another’s messages 

 The servers keep but can’t read the secret!  

 Question: In what ways is this better than just 
encrypting a secret? 
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How split secrets work 

 They build on a famous result 

 With k+1 distinct points you can uniquely identify an order-

k polynomial 

 i.e 2 points determine a line 

 3 points determine a unique quadratic 

 The polynomial is the “secret” 

 And the servers themselves have the points – the “shares” 

 With coding theory the shares are made just redundant 

enough to overcome n-k faults 
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Byzantine Broadcast (BB) 

 Many classical research results use Byzantine 
Agreement to implement a form of fault-tolerant 
multicast 

 To send a message I initiate “agreement” on that 
message 

 We end up agreeing on content and ordering w.r.t. 
other messages 

 Used as a primitive in many published papers 
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Pros and cons to BB 

 On the positive side, the primitive is very powerful 

 For example this is the core of the Castro and Liskov 
technique 

 But on the negative side, BB is slow 

 We’ll see ways of doing fault-tolerant multicast that run at 
150,000 small messages per second 

 BB: more like 5 or 10 per second 

 The right choice for infrequent, very sensitive 
actions… but wrong if performance matters 
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Take-aways? 

 Fault-tolerance matters in many systems 
 But we need to agree on what a “fault” is 

 Extreme models lead to high costs! 

 Common to reduce fault-tolerance to some form of 
data or “state” replication 
 In this case fault-tolerance is often provided by some form 

of broadcast 

 Mechanism for detecting faults is also important in many 
systems.   
 Timeout is common… but can behave inconsistently   

 “View change” notification is used in some systems.  They typically 
implement a fault agreement protocol. 
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