
CS5412:

CONSENSUS AND THE FLP

IMPOSSIBILITY RESULT

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XII

Generalizing Sam and Jill’s challenge

 Recall from last time: Sam and Jill had difficulty

agreeing where to meet for lunch

 The central issue was that they never knew for sure if email

was delivered... and always ended up in the “default” case

 In general we often see cases in which N processes must

agree upon something

 Often reduced to “agreeing on a bit” (0/1)

 To make this non-trivial, we assume that processes have an

input and must pick some legitimate input value

 Can we implement a fault-tolerant agreement protocol?

CS5412 Spring 2012 (Cloud Computing: Birman)

2

Connection to consistency

 A system behaves consistently if users can’t
distinguish it from a non-distributed system that
supports the same functionality

 Many notions of consistency reduce to agreement on
the events that occurred and their order

 Could imagine that our “bit” represents

 Whether or not a particular event took place

 Whether event A is the “next” event

 Thus fault-tolerant consensus is deeply related to
fault-tolerant consistency

CS5412 Spring 2012 (Cloud Computing: Birman)

3

Consensus Agreement?

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 For CS5412 we treat these as synonyms

 The theoretical distributed systems community has

detailed definitions and for that group, the terms

refer to very similar but not identical problems

 Today we’re “really” focused on Consensus, but

don’t worry about the distinctions

Fischer, Lynch and Patterson

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 A surprising result

 Impossibility of Asynchronous Distributed Consensus with

a Single Faulty Process

 They prove that no asynchronous algorithm for

agreeing on a one-bit value can guarantee that it

will terminate in the presence of crash faults

 And this is true even if no crash actually occurs!

 Proof constructs infinite non-terminating runs

Core of FLP result

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 They start by looking at an asynchronous system of N
processes with inputs that are all the same

 All 0’s must decide 0, all 1’s decides 1

 They are assume we are given a correct consensus
protocol that will “vote” (somehow) to pick one of the
inputs, e.g. perhaps the majority value

 Now they focus on an initial set of inputs with an uncertain
(“bivalent”) outcome (nearly a tie)

 For example: N=5 and with a majority of 0’s the protocol
picks 0, but with a tie, it picks 1. Thus if one of process with
a 0 happens to fail, the outcome is different than if all vote

Core of FLP result

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 Now they will show that from this bivalent state we

can force the system to do some work and yet still

end up in an equivalent bivalent state

 Then they repeat this procedure

 Effect is to force the system into an infinite loop!

 And it works no matter what correct consensus protocol

you started with. This makes the result very general

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state

S0 denotes a decision 0 state

S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

CS5412 Spring 2012 (Cloud Computing: Birman)

8

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that takes

us from a bivalent to a

univalent state: eventually

we’ll “decide” 0

CS5412 Spring 2012 (Cloud Computing: Birman)

9

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show that

there is a situation in which the

system will return to a bivalent

state

S’*

CS5412 Spring 2012 (Cloud Computing: Birman)

10

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’*

In this new state they show that

we can deliver e and that now,

the new state will still be

bivalent!

S’’*

e

CS5412 Spring 2012 (Cloud Computing: Birman)

11

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S’*

Notice that we made the system

do some work and yet it ended

up back in an “uncertain” state.

We can do this again and again

S’’*

e

CS5412 Spring 2012 (Cloud Computing: Birman)

12

Core of FLP result in words

 In an initially bivalent state, they look at some

execution that would lead to a decision state, say “0”

 At some step this run switches from bivalent to univalent,

when some process receives some message m

 They now explore executions in which m is delayed

CS5412 Spring 2012 (Cloud Computing: Birman)

13

Core of FLP result

 So:

 Initially in a bivalent state

 Delivery of m would make us univalent but we delay m

 They show that if the protocol is fault-tolerant there must be a run that
leads to the other univalent state

 And they show that you can deliver m in this run without a decision being
made

 This proves the result: they show that a bivalent system can be
forced to do some work and yet remain in a bivalent state.

 If this is true once, it is true as often as we like

 In effect: we can delay decisions indefinitely

CS5412 Spring 2012 (Cloud Computing: Birman)

14

But how did they “really” do it?

 Our picture just gives the basic idea

 Their proof actually proves that there is a way to

force the execution to follow this tortured path

 But the result is very theoretical…

 … to much so for us in CS5412

 So we’ll skip the real details

CS5412 Spring 2012 (Cloud Computing: Birman)

15

Intuition behind this result?

 Think of a real system trying to agree on something in
which process p plays a key role

 But the system is fault-tolerant: if p crashes it adapts
and moves on

 Their proof “tricks” the system into thinking p failed

 Then they allow p to resume execution, but make the system
believe that perhaps q has failed

 The original protocol can only tolerate1 failure, not 2, so it
needs to somehow let p rejoin in order to achieve progress

 This takes time… and no real progress occurs

CS5412 Spring 2012 (Cloud Computing: Birman)

16

But what did “impossibility” mean?

 In formal proofs, an algorithm is totally correct if

 It computes the right thing

 And it always terminates

 When we say something is possible, we mean “there is a
totally correct algorithm” solving the problem

 FLP proves that any fault-tolerant algorithm solving consensus
has runs that never terminate

 These runs are extremely unlikely (“probability zero”)

 Yet they imply that we can’t find a totally correct solution

 And so “consensus is impossible” (“not always possible”)

CS5412 Spring 2012 (Cloud Computing: Birman)

17

How did they pull this off?

CS5412 Spring 2012 (Cloud Computing: Birman)

18

 A very clever adversarial attack

 They assume they have perfect control over which
messages the system delivers, and when

 They can pick the exact state in which a message
arrives in the protocol

 They use this ultra-precise control to force the
protocol to loop in the manner we’ve described

 In practice, no adversary ever has this much control

In the real world?

CS5412 Spring 2012 (Cloud Computing: Birman)

19

 The FLP scenario “could happen”

 After all, it is a valid scenario.

 ... And any valid scenario can happen

 But step by step they take actions that are incredibly
unlikely. For many to happen in a row is just impossible
in practice

 A “probability zero” sequence of events

 Yet in a temporal logic sense, FLP shows that if we can prove
correctness for a consensus protocol, we’ll be unable to
prove it live in a realistic network setting, like a cloud system

So...

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 Fault-tolerant consensus is...

 Definitely possible (not even all that hard). Just vote!

 And we can prove protocols of this kind correct.

 But we can’t prove that they will terminate

 If our goal is just a probability-one guarantee, we

actually can offer a proof of progress

 But in temporal logic settings we want perfect

guarantees and we can’t achieve that goal

Recap

 We have an asynchronous model with crash failures

 A bit like the real world!

 In this model we know how to do some things

 Tracking “happens before” & making a consistent snapshot

 Later we’ll find ways to do ordered multicast and implement replicated
data and even solve consensus

 But now we also know that there will always be scenarios in
which our solutions can’t make progress

 Often can engineer system to make them extremely unlikely

 Impossibility doesn’t mean these solutions are wrong – only that they live
within this limit

CS5412 Spring 2012 (Cloud Computing: Birman)

21

Tougher failure models

 We’ve focused on crash failures

 In the synchronous model these look like a “farewell cruel

world” message

 Some call it the “failstop model”. A faulty process is viewed

as first saying goodbye, then crashing

 What about tougher kinds of failures?

 Corrupted messages

 Processes that don’t follow the algorithm

 Malicious processes out to cause havoc?

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Here the situation is much harder

 Generally we need at least 3f+1 processes in a

system to tolerate f Byzantine failures

 For example, to tolerate 1 failure we need 4 or more

processes

 We also need f+1 “rounds”

 Let’s see why this happens

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Byzantine scenario

 Generals (N of them) surround a city
 They communicate by courier

 Each has an opinion: “attack” or “wait”
 In fact, an attack would succeed: the city will fall.

 Waiting will succeed too: the city will surrender.

 But if some attack and some wait, disaster ensues

 Some Generals (f of them) are traitors… it doesn’t
matter if they attack or wait, but we must prevent
them from disrupting the battle
 Traitor can’t forge messages from other Generals

CS5412 Spring 2012 (Cloud Computing: Birman)

24

Byzantine scenario

Attack!

Wait…

Attack!

Attack!

No, wait!

Surrender!

Wait…

CS5412 Spring 2012 (Cloud Computing: Birman)

25

A timeline perspective

 Suppose that p and q favor attack, r is a traitor
and s and t favor waiting… assume that in a tie
vote, we attack

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

26

A timeline perspective

 After first round collected votes are:

 {attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

27

What can the traitor do?

 Add a legitimate vote of “attack”

 Anyone with 3 votes to attack knows the outcome

 Add a legitimate vote of “wait”

 Vote now favors “wait”

 Or send different votes to different folks

 Or don’t send a vote, at all, to some

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Outcomes?

 Traitor simply votes:
 Either all see {a,a,a,w,w}

 Or all see {a,a,w,w,w}

 Traitor double-votes
 Some see {a,a,a,w,w} and some {a,a,w,w,w}

 Traitor withholds some vote(s)
 Some see {a,a,w,w}, perhaps others see {a,a,a,w,w,} and still

others see {a,a,w,w,w}

 Notice that traitor can’t manipulate votes of loyal
Generals!

CS5412 Spring 2012 (Cloud Computing: Birman)

29

What can we do?

 Clearly we can’t decide yet; some loyal Generals
might have contradictory data

 In fact if anyone has 3 votes to attack, they can already
“decide”.

 Similarly, anyone with just 4 votes can decide

 But with 3 votes to “wait” a General isn’t sure (one could be
a traitor…)

 So: in round 2, each sends out “witness” messages:
here’s what I saw in round 1

 General Smith send me: “attack(signed) Smith”

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Digital signatures

 These require a cryptographic system

 For example, RSA

 Each player has a secret (private) key K-1 and a public
key K.

 She can publish her public key

 RSA gives us a single “encrypt” function:

 Encrypt(Encrypt(M,K),K-1) = Encrypt(Encrypt(M,K-1),K) = M

 Encrypt a hash of the message to “sign” it

CS5412 Spring 2012 (Cloud Computing: Birman)

31

With such a system

 A can send a message to B that only A could have
sent
 A just encrypts the body with her private key

 … or one that only B can read
 A encrypts it with B’s public key

 Or can sign it as proof she sent it
 B can recompute the signature and decrypt A’s hashed

signature to see if they match

 These capabilities limit what our traitor can do: he
can’t forge or modify a message

CS5412 Spring 2012 (Cloud Computing: Birman)

32

A timeline perspective

 In second round if the traitor didn’t behave
identically for all Generals, we can weed out his
faulty votes

p

q

r

s

t

CS5412 Spring 2012 (Cloud Computing: Birman)

33

A timeline perspective

 We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn! They’re on to me

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Traitor is stymied

 Our loyal generals can deduce that the decision was

to attack

 Traitor can’t disrupt this…

 Either forced to vote legitimately, or is caught

 But costs were steep!

 (f+1)*n2 ,messages!

 Rounds can also be slow….

 “Early stopping” protocols: min(t+2, f+1) rounds; t is true

number of faults

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Recent work with Byzantine model

 Focus is typically on using it to secure particularly
sensitive, ultra-critical services

 For example the “certification authority” that hands out keys
in a domain

 Or a database maintaining top-secret data

 Researchers have suggested that for such purposes, a
“Byzantine Quorum” approach can work well

 They are implementing this in real systems by
simulating rounds using various tricks

CS5412 Spring 2012 (Cloud Computing: Birman)

36

Byzantine Quorums

 Arrange servers into a n x n array

 Idea is that any row or column is a quorum

 Then use Byzantine Agreement to access that quorum, doing

a read or a write

 Separately, Castro and Liskov have tackled a related

problem, using BA to secure a file server

 By keeping BA out of the critical path, can avoid most of the

delay BA normally imposes

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Split secrets

 In fact BA algorithms are just the tip of a broader
“coding theory” iceberg

 One exciting idea is called a “split secret”
 Idea is to spread a secret among n servers so that any k can

reconstruct the secret, but no individual actually has all the
bits

 Protocol lets the client obtain the “shares” without the servers
seeing one-another’s messages

 The servers keep but can’t read the secret!

 Question: In what ways is this better than just
encrypting a secret?

CS5412 Spring 2012 (Cloud Computing: Birman)

38

How split secrets work

 They build on a famous result

 With k+1 distinct points you can uniquely identify an order-

k polynomial

 i.e 2 points determine a line

 3 points determine a unique quadratic

 The polynomial is the “secret”

 And the servers themselves have the points – the “shares”

 With coding theory the shares are made just redundant

enough to overcome n-k faults

CS5412 Spring 2012 (Cloud Computing: Birman)

39

Byzantine Broadcast (BB)

 Many classical research results use Byzantine
Agreement to implement a form of fault-tolerant
multicast

 To send a message I initiate “agreement” on that
message

 We end up agreeing on content and ordering w.r.t.
other messages

 Used as a primitive in many published papers

CS5412 Spring 2012 (Cloud Computing: Birman)

40

Pros and cons to BB

 On the positive side, the primitive is very powerful

 For example this is the core of the Castro and Liskov
technique

 But on the negative side, BB is slow

 We’ll see ways of doing fault-tolerant multicast that run at
150,000 small messages per second

 BB: more like 5 or 10 per second

 The right choice for infrequent, very sensitive
actions… but wrong if performance matters

CS5412 Spring 2012 (Cloud Computing: Birman)

41

Take-aways?

 Fault-tolerance matters in many systems
 But we need to agree on what a “fault” is

 Extreme models lead to high costs!

 Common to reduce fault-tolerance to some form of
data or “state” replication
 In this case fault-tolerance is often provided by some form

of broadcast

 Mechanism for detecting faults is also important in many
systems.
 Timeout is common… but can behave inconsistently

 “View change” notification is used in some systems. They typically
implement a fault agreement protocol.

CS5412 Spring 2012 (Cloud Computing: Birman)

42

