
CS5412:

TWO AND THREE PHASE

COMMIT

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture XI

Continuing our consistency saga

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 Recall from last lecture:

 Cloud-scale performance centers on replication

 Consistency of replication depends on our ability to
talk about notions of time.

 Lets us use terminology like “If B accesses service S after A
does, then B receives a response that is at least as current as
the state on which A’s response was based.”

 Lamport: Don’t use clocks, use logical clocks

 We looked at two forms, logical clocks and vector clocks

 We also explored notion of an “instant in time” and
related it to something called a consistent cut

Next steps?

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 We’ll create a second kind of building block

 Two-phase commit

 It’s cousin, three-phase commit

 These commit protocols (or a similar pattern) arise

often in distributed systems that replicate data

 Closely tied to “consensus” or “agreement” on

events, and event order, and hence replication

The Two-Phase Commit Problem

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 The problem first was encountered in database

systems

 Suppose a database system is updating some

complicated data structures that include parts

residing on more than one machine

 So as they execute a “transaction” is built up in

which participants join as they are contacted

... so what’s the “problem”?

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Suppose that the transaction is interrupted by a crash

before it finishes

 Perhaps, it was initiated by a leader process L

 By now, we’ve done some work at P and Q, but a crash

causes P to reboot and “forget” the work L had started

 Implicitly assumes that P might be keeping the pending work in

memory rather than in a safe place like on disk

 But this is actually very common, to speed things up

 Forced writes to a disk are very slow compared to in-memory

logging of information, and “persistent” RAM memory is costly

 How can Q learn that it needs to back out?

The basic idea

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 We make a rule that P and Q (and other

participants) treat pending work as transient

 You can safely crash and restart and discard it

 If such a sequence occurs, we call it a “forced abort”

 Transactional systems often treat commit and abort

as a special kind of keyword

A transaction

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 L executes:

Begin

{

 Read some stuff, get some locks

 Do some updates at P, Q, R...

}

Commit

 If something goes wrong, executes “Abort”

Transaction...

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 Begins, has some kind of system-assigned id

 Acquires pending state

 Updates it did at various places it visited

 Read and Update or Write locks it acquired

 If something goes horribly wrong, can Abort

 Otherwise if all went well, can request a Commit

 But commit can fail. This is where the 2PC and 3PC

algorithms are used

The Two-Phase Commit (2PC) problem

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Leader L has a set of places { P, Q, ... } it visited

 Each place may have some pending state for this xtn

 Takes form of pending updates or locks held

 L asks “Can you still commit” and P, Q ... must reply

 “No” if something has caused them to discard the state

of this transaction (lost updates, broken locks)

 Usually occurs if a member crashes and then restarts

 No reply treated as “No” (handles failed members)

What about “Yes”?

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 If a member replies “Yes” it moves to a state we call
prepared to commit

 Up to then it could just abort in a unilateral way, i.e. if data
or locks were lost due to a crash/restart (or a timeout)

 But once it says “I’m prepared to commit” it must not lose
locks or data. So it will probably need to force data to
disk at this stage

 Many systems push data to disk in background so all they
need to do is update a single bit on disk: “prepared=true”
but this disk-write is still considered costly event!

 Then can reply “Yes”

Role of leader

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 So.... L sends out “Are you prepared?”

 It waits and eventually has replies from {P, Q, ... }

 “No” if someone replies no, or if a timeout occurs

 “Yes” only if that participant actually replied “yes”and

hence is now in the prepared to commit state

 If all participants are prepared to commit, L can

send a “Commit” message. Else L must send “Abort”

 Notice that L could mistakenly abort. This is ok.

Participant receives a commit/abort

CS5412 Spring 2012 (Cloud Computing: Birman)

12

 If participant is prepared to commit it waits for

outcome to be known

 Learns that leader decided to Commit: It “finalizes” the

state by making updates permanent

 Learns that leader decided to Abort: It discards any

updates

 Then can release locks

Failure cases to consider

CS5412 Spring 2012 (Cloud Computing: Birman)

13

 Two possible worries

 Some participant might fail at some step of the protocol

 The leader might fail at some step of the protocol

 Notice how a participant moves from “participating”

to “prepared to commit” to “commited/aborted”

 Leader moves from “doing work” to “inquiry” to

“commited/aborted”

Can think about cross-product of states

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 This is common in distributed protocols

 We need to look at each member, and each state it

can be in

 The system state is a vector (SL, SP, SQ, ...)

 Since each can be in 4 states there are 4N possible

scenarios we need to think about!

 Many protocols are actually written in a state-

diagram form, but we’ll use English today

How the leader handles failures

CS5412 Spring 2012 (Cloud Computing: Birman)

15

 Suppose L stays healthy and only participants fail

 If a participant failed before voting, leader just aborts the
protocol

 The participant might later recover and needs a way to find
out what happened

 If failure causes it to forget the txn, no problem

 For cases where a participant may know about the txn and want to
learn the outcome, we just keep a long log of outcomes and it can
look this txn up by its ID to find out

 Writing to this log is a role of the leader (and slows it down)

What about a failure after vote?

CS5412 Spring 2012 (Cloud Computing: Birman)

16

 The leader also needs to handle a participant that
votes “Yes” and hence is prepared, but then fails

 In this case it won’t receive the Commit/Abort message

 Solved because the leader logs the outcome

 On recovery that participant notices that it has a prepared
txn and consults the log

 Must find the outcome there and must wait if it can’t find the
outcome information

 Implication: Leader must log the outcome before sending
the Commit or Abort outcome message!

Now can think about participants

CS5412 Spring 2012 (Cloud Computing: Birman)

17

 If a participant was involved but never was asked

to vote, it can always unilaterally abort

 But once a participant votes “Yes” it must learn the

outcome and can’t terminate the txn until it does

 E.g. must hold any pending updates, and locks

 Can’t release them without knowing outcome

 It obtains this from L, or from the outcomes log

The bad case

CS5412 Spring 2012 (Cloud Computing: Birman)

18

 Some participant, maybe P, votes “Yes” but then leader
L seems to vanish

 Maybe it died... maybe became disconnected from the
system (partitioning failure)

 P is “stuck”. We say that it is “blocked”

 Can P deduce the state?

 If log reports outcome, P can make progress

 What if the log doesn’t know the outcome? As long as we
follow rule that L logs outcome before telling anyone, safe
to commit in this case

So 2PC makes progress with a log

CS5412 Spring 2012 (Cloud Computing: Birman)

19

 But this assumes we can access either the leader L,

or the log.

 If neither is accessible, we’re stuck

 In any real system that uses 2PC a log is employed

but in many textbooks, 2PC is discussed without a

log service. What do we do in this case?

2PC but no log (or can’t reach it)

CS5412 Spring 2012 (Cloud Computing: Birman)

20

 If P was told the list of participants when L

contacted it for the vote, P could poll them

 E.g. P asks Q, R, S... “what state are you in?”

 Suppose someone says “pending” or even “abort”,

or someone knows outcome was “commit”?

 Now P can just abort or commit!

 But what if N-1 say “pending” and 1 is inaccessible?

P remains blocked in this case

CS5412 Spring 2012 (Cloud Computing: Birman)

21

 L plus one member, perhaps S, might know outcome

 P is unable to determine what L could have done

 Worse possible situation: L is both leader and also

participant and hence a single failure leaves the

other participants blocked!

Skeen & Stonebraker: 3PC

CS5412 Spring 2012 (Cloud Computing: Birman)

22

 Skeen proposed a 3PC protocol, that adds one step
(and omits any log service)

 With 3PC the leader runs 2 rounds:

 “Are you able to commit”? Participants reply “Yes/No”

 “Abort” or “Prepare to commit”. They reply “OK”

 “Commit”

 Notice that Abort happens in round 2 but Commit
only can happen in round 3

State space gets even larger!

CS5412 Spring 2012 (Cloud Computing: Birman)

23

 Now we need to think of 5N states

 But Skeen points out that many can’t occur

 For example we can’t see a mix of processes that are in

the Commit and Abort state

 We could see some in “Running” and some in “Yes”

 We could see some in “Yes” and some in “Prepared”

 We could see some in “Prepared” and some in “Commit”

 But by pushing “Commit” and “Abort” into different

rounds we reduce uncertainly

3PC recovery is complex

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 Skeen shows how, on recovery, we can poll the system
state

 Any (or all) processes can do this

 Can always deduce a safe outcome... provided that we
have an accurate failure detector

 Concludes that 3PC, without any log service, and with
accurate failure detection is non-blocking

Failure detection in a network

CS5412 Spring 2012 (Cloud Computing: Birman)

25

 Many think of Skeen’s 3PC as a practical protocol

 But to really use 3PC we would need a perfect

failure detection service that never makes mistakes

 It always says “P has failed” if, in fact, P has failed

 And it never says “P has failed” if P is actually up

 Is it possible to build such a failure service?

Notions of failure

CS5412 Spring 2012 (Cloud Computing: Birman)

26

 This leads us to think about failure “models”

 Many things can fail in a distributed system

 Network can drop packets, or the O/S can do so

 Links can break causing a network partition that isolates one or
more nodes

 Processes can fail by halting suddenly

 A clock could malfunction, causing timers to fire incorrectly

 A machine could freeze up for a while, then resume

 Processes can corrupt their memory and behave badly without
actually crashing

 A process could be taken over by a virus and might behave in a
malicious way that deliberately disrupts our system

Worst: Byzantine

Best: “Fail-stop” with trusted notifications

“Real” systems?

CS5412 Spring 2012 (Cloud Computing: Birman)

27

 Linux and Windows use timers for failure detection

 These can fire even if the remote side is healthy

 So we get “inaccurate” failure detections

 Of course many kinds of crashes can be sensed

accurately so for those, we get trusted notifications

 Some applications depend on TCP, but TCP itself

uses timers and so has the same problem

Byzantine case

CS5412 Spring 2012 (Cloud Computing: Birman)

28

 Much debate around this

 Since programs are buggy (always), it can be

appealing to just use a Byzantine model. A bug

gives random corrupt behavior... like a mild attack

 But Byzantine model is hard to work with and can

be costly (you often must “outvote” the bad process)

Failure detection in a network

CS5412 Spring 2012 (Cloud Computing: Birman)

29

 Return to our use case

 2PC and 3PC are normally used in standard Linux
or Windows systems with timers to detect failure

 Hence we get inaccurate failure sensing with possible
mistakes (e.g. P thinks L is faulty but L is fine)

 3PC is also blocking in this case, although less likely to
block than 2PC

 Can prove that any commit protocol would have
blocking states with inaccurate failure detection

Vogels: World-Wide Failure Sensing

CS5412 Spring 2012 (Cloud Computing: Birman)

30

 Vogels wrote a paper in which he argued that we

really could do much better

 In a cloud computing setting, the cloud management

system often “forces” slow nodes to crash and restart

 Used as a kind of all-around fixer-upper

 Also helpful for elasticity and automated management

 So in the cloud, management layer is a fairly

trustworthy partner, if we were to make use of it

 We don’t make use of it, however, today

The Postman Always Rings Twice

CS5412 Spring 2012 (Cloud Computing: Birman)

31

 Suppose the mailman wants a signature

 He rings and waits a few seconds

 Nobody comes to the door... should he assume you’ve

died?

 Hopefully not

 Vogels suggests that there are many reasons a

machine might timeout and yet not be faulty

Causes of delay in the cloud

CS5412 Spring 2012 (Cloud Computing: Birman)

32

 Scheduling can be sluggish

 A node might get a burst of messages that overflow its
input sockets and triggers message loss, or network
could have some kind of malfunction in its routers/links

 A machine might become overloaded and slow because
too many virtual machines were mapped on it

 An application might run wild and page heavily

Vogels suggests?

CS5412 Spring 2012 (Cloud Computing: Birman)

33

 He recommended that we add some kind of failure

monitoring service as a standard network component

 Instead of relying on timeout, even protocols like remote

procedure call (RPC) and TCP would ask the service

and it would tell them

 It could do a bit of sleuthing first... e.g. ask the O/S on

that machine for information... check the network...

Why clouds don’t do this

CS5412 Spring 2012 (Cloud Computing: Birman)

34

 In the cloud our focus tends to be on keeping the
“majority” of the system running

 No matter what the excuse it might have, if some node is
slow it makes more sense to move on

 Keeping the cloud up, as a whole, is way more valuable
than waiting for some slow node to catch up

 End-user experience is what counts!

 So the cloud is casual about killing things

 ... and avoids services like “failure sensing” since they
could become bottlenecks

Also, most software is buggy!

CS5412 Spring 2012 (Cloud Computing: Birman)

35

 A mix of “Bohrbugs” and “Heisenbugs”

 Bohrbugs: Boring and easy to fix. Like Bohr model of
the atom

 Heisenbugs: They seem to hide when you try to pin them
down (caused by concurrency and problems that
corrupt a data structure that won’t be visited for a
while). Hard to fix because crash seems unrelated to
bug

 Studies show that pretty much all programs retain
bugs over their full lifetime.

 So if something is acting strange, it may be failing!

Worst of all... timing is flakey

CS5412 Spring 2012 (Cloud Computing: Birman)

36

 At cloud scale, with millions of nodes, we can trust

timers at all

 Too many things can cause problems that manifest

as timing faults or timeouts

 Again, there are some famous models... and again,

none is ideal for describing real clouds

Synchronous and Asynchronous

Executions

p q r p q r

…processes share a

synchronized clock

In the synchronous model

messages arrive on time

… and failures are easily

detected

None of these properties

holds in an asynchronous

model

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Reality: neither one

 Real distributed systems aren’t synchronous

 Although a flight control computer can come close

 Nor are they asynchronous

 Software often treats them as asynchronous

 In reality, clocks work well… so in practice we often use time cautiously
and can even put limits on message delays

 For our purposes we usually start with an asynchronous model

 Subsequently enrich it with sources of time when useful.

 We sometimes assume a “public key” system. This lets us sign or encrypt
data where need arises

CS5412 Spring 2012 (Cloud Computing: Birman)

38

Thought problem

 Jill and Sam will meet for lunch. They’ll eat in the
cafeteria unless both are sure that the weather is
good

 Jill’s cubicle is inside, so Sam will send email

 Both have lots of meetings, and might not read email. So
she’ll acknowledge his message.

 They’ll meet inside if one or the other is away from their
desk and misses the email.

 Sam sees sun. Sends email. Jill acks’s. Can they
meet outside?

CS5412 Spring 2012 (Cloud Computing: Birman)

39

Sam and Jill

Sam Jill

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

CS5412 Spring 2012 (Cloud Computing: Birman)

40

They eat inside! Sam reasons:

 “Jill sent an acknowledgement but doesn’t know if I

read it

 “If I didn’t get her acknowledgement I’ll assume she

didn’t get my email

 “In that case I’ll go to the cafeteria

 “She’s uncertain, so she’ll meet me there

CS5412 Spring 2012 (Cloud Computing: Birman)

41

Sam had better send an Ack

Sam Jill

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

Great! See yah…

CS5412 Spring 2012 (Cloud Computing: Birman)

42

Why didn’t this help?

 Jill got the ack… but she realizes that Sam won’t be

sure she got it

 Being unsure, he’s in the same state as before

 So he’ll go to the cafeteria, being dull and logical.

And so she meets him there.

CS5412 Spring 2012 (Cloud Computing: Birman)

43

New and improved protocol

 Jill sends an ack. Sam acks the ack. Jill acks the

ack of the ack….

 Suppose that noon arrives and Jill has sent her

117’th ack.

 Should she assume that lunch is outside in the sun, or

inside in the cafeteria?

CS5412 Spring 2012 (Cloud Computing: Birman)

44

How Sam and Jill’s romance ended

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t seen the sun
in weeks!

Great! See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .

CS5412 Spring 2012 (Cloud Computing: Birman)

45

Things we just can’t do

 We can’t detect failures in a trustworthy, consistent

manner

 We can’t reach a state of “common knowledge”

concerning something not agreed upon in the first

place

 We can’t guarantee agreement on things (election of

a leader, update to a replicated variable) in a way

certain to tolerate failures

CS5412 Spring 2012 (Cloud Computing: Birman)

46

Back to 2PC and 3PC

CS5412 Spring 2012 (Cloud Computing: Birman)

47

 Summary of the state of the world?

 3PC would be better than 2PC in a perfect world

 In the real world, 3PC is more costly (extra round) but blocks
just the same (inaccurate failure detection)

 Failure detection tools could genuinely help but the cloud
trend is sort of in the opposite direction

 Cloud transactional standard requires an active, healthy
logging service. If it goes down, the cloud xtn subsystem
hangs until it restarts

 We’ll be using both 2PC and 3PC as a building block
but not necessarily to terminate transactions.

