
CS5412:

OTHER DATA CENTER

SERVICES

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture IX

Tier two and Inner Tiers

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 If tier one faces the user and constructs responses, what
lives in tier two?

 Caching services are very common (many flavors)

 Other kinds of rapidly responsive lightweight services that
are massively scaled

 Inner tier services might still have “online” roles, but
tend to live on smaller numbers of nodes: maybe tens
rather than hundreds or thousands

 Tiers one and two soak up the load

 This reduces load on the inner tiers

 Many inner services accept asynchronous streams of events

Contrast with “Back office”

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 A term often used for services and systems that

don’t play online roles

 In some sense the whole cloud has an outward facing

side, handling users in real-time, and an inward side,

doing “offline” tasks

 Still can have immense numbers of nodes involved but

the programming model has more of a batch feel to it

 For example, MapReduce (Hadoop)

Some interesting services we’ll consider

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 Memcached: In-memory caching subsystem

 Dynamo: Amazon’s shopping cart

 BigTable: A “sparse table” for structured data

 GFS: Google File System

 Chubby: Google’s locking service

 Zookeeper: File system with locking, strong semantics

 Sinfonia: A flexible append-only logging service

 MapReduce: “Functional” computing for big datasets

Memcached

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Very simple concept:

 High performance distributed in-memory caching
service that manages “objects”

 Key-value API has become an accepted standard

 Many implementations

 Simplest versions: just a library that manages a list
or a dictionary

 Fanciest versions: distributed services implemented
using a cluster of machines

Memcached API

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 Memcached defines a standard API

 Defines the calls the application can issue to the library

or the server (either way, it looks like library)

 In theory, this means an application can be coded and

tested using one version of memcached, then migrated

to a different one

function get_foo(foo_id)

 foo = memcached_get("foo:" . foo_id)

 if foo != null return foo

foo = fetch_foo_from_database(foo_id)

memcached_set("foo:" . foo_id, foo)

return foo end

A single memcached server is easy

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 Today’s tools make it trivial to build a server

 Build a program

 Designate some of its methods as ones that expose
service APIs

 Tools will create stubs: library procedures that
automate binding to the service

 Now run your service at a suitable place and register it
in the local registry

 Applications can do remote procedure calls, and
these code paths are heavily optimized: quite fast

How do they build clusters?

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 Much trickier challenge!

 Trivial approach just hashes the memcached key to
decide which server to send data to

 But this could lead to load imbalances, plus some
objects are probably popular, while others are
probably “cold spots”.

 Would prefer to replicate the hot data to improve capacity

 But this means we need to track popularity (like Beehive!)

 Solutions to this are being offered as products

 We have it as one of the possible cs5412 projects!

Dynamo

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Amazon’s massive collaborative key-value store

 Built over a version of Chord DHT

 Basic idea is to offer a key-value API, like memcached

 But now we’ll have thousands of service instances

 Used for shopping cart: a very high-load application

 Basic innovation?

 To speed things up (think BASE), Dynamo sometimes puts
data at the “wrong place”

 Idea is that if the right nodes can’t be reached, put the data
somewhere in the DHT, then allow repair mechanisms to
migrate the information to the right place asynchronously

Dynamo in practice

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 Suppose key should map to N56

 Dynamo replicates data

on neighboring nodes

(N1 here)

 Will also save key,value

on subsequent nodes if

targets don’t respond

 Data migrates to correct

location eventually

BigTable

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 Yet another key-value store!

 Built by Google over their GFS file system and
Chubby lock service

 Idea is to create a flexible kind of table that can
be expanded as needed dynamically

 Slides from a talk the developers gave on it

12

Data model: a big map

 <Row, Column, Timestamp> triple for key Arbitrary “columns”
on a row-by-row basis

 Column family:qualifier. Family is heavyweight, qualifier lightweight

 Column-oriented physical store- rows are sparse!

 Does not support a relational model

 No table-wide integrity constraints

 No multirow transactions

CS5412 Spring 2012 (Cloud Computing: Birman)

API

 Metadata operations

 Create/delete tables, column families, change metadata

 Writes (atomic)

 Set(): write cells in a row

 DeleteCells(): delete cells in a row

 DeleteRow(): delete all cells in a row

 Reads

 Scanner: read arbitrary cells in a bigtable

 Each row read is atomic

 Can restrict returned rows to a particular range

 Can ask for just data from 1 row, all rows, etc.

 Can ask for all columns, just certain column families, or specific columns

CS5412 Spring 2012 (Cloud Computing: Birman)

13

Versions

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 Data has associated version numbers

 To perform a transaction, create a set of pages all

using some new version number

 Then can atomically install them

 For reads can let BigTable select the version or can

tell it which one to access

15

SSTable

 Immutable, sorted file of key-value pairs

 Chunks of data plus an index

 Index is of block ranges, not values

Index

64K

block

64K

block

64K

block

SSTable

CS5412 Spring 2012 (Cloud Computing: Birman)

16

Tablet

 Contains some range of rows of the table

 Built out of multiple SSTables

Index

64K

block

64K

block

64K

block

SSTable

Index

64K

block

64K

block

64K

block

SSTable

Tablet Start:aardvark End:apple

CS5412 Spring 2012 (Cloud Computing: Birman)

17

Table

 Multiple tablets make up the table

 SSTables can be shared

 Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

CS5412 Spring 2012 (Cloud Computing: Birman)

18

Finding a tablet

 Stores: Key: table id + end row, Data: location

 Cached at clients, which may detect data to be incorrect

 in which case, lookup on hierarchy performed

 Also prefetched (for range queries)

CS5412 Spring 2012 (Cloud Computing: Birman)

19

Servers

 Tablet servers manage tablets, multiple tablets per
server. Each tablet is 100-200 MB

 Each tablet lives at only one server

 Tablet server splits tablets that get too big

 Master responsible for load balancing and fault
tolerance

CS5412 Spring 2012 (Cloud Computing: Birman)

20

Master’s Tasks

 Use Chubby to monitor health of tablet servers,
restart failed servers

 Tablet server registers itself by getting a lock in a specific
directory chubby

 Chubby gives “lease” on lock, must be renewed periodically

 Server loses lock if it gets disconnected

 Master monitors this directory to find which servers
exist/are alive

 If server not contactable/has lost lock, master grabs lock and
reassigns tablets

 GFS replicates data. Prefer to start tablet server on same machine
that the data is already at

CS5412 Spring 2012 (Cloud Computing: Birman)

21

Master’s Tasks (Cont)

 When (new) master starts

 grabs master lock on chubby

 Ensures only one master at a time

 Finds live servers (scan chubby directory)

 Communicates with servers to find assigned tablets

 Scans metadata table to find all tablets

 Keeps track of unassigned tablets, assigns them

 Metadata root from chubby, other metadata tablets

assigned before scanning.

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Metadata Management

 Master handles

 table creation, and merging of tablet

 Tablet servers directly update metadata on tablet

split, then notify master

 lost notification may be detected lazily by master

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Editing a table

 Mutations are logged, then applied to an in-memory memtable

 May contain “deletion” entries to handle updates

 Group commit on log: collect multiple updates before log flush

SSTable SSTable

Tablet

apple_two_E boat

Insert

Insert

Delete

Insert

Delete

Insert

Memtable

ta
b
le

t
lo

g

GFS

Memory

CS5412 Spring 2012 (Cloud Computing: Birman)

Programming model

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 Application reads information

 Uses it to create a group of updates

 Then uses group commit to install them atomically

 Conflicts? One “wins” and the other “fails”, or perhaps

both attempts fail

 But this ensures that data moves in a predictable

manner version by version: a form of the ACID model!

 Thus BigTable offers strong consistency

25

Compactions

 Minor compaction – convert the memtable into an
SSTable

 Reduce memory usage

 Reduce log traffic on restart

 Merging compaction

 Reduce number of SSTables

 Good place to apply policy “keep only N versions”

 Major compaction

 Merging compaction that results in only one SSTable

 No deletion records, only live data

CS5412 Spring 2012 (Cloud Computing: Birman)

26

Locality Groups

 Group column families together into an SSTable

 Avoid mingling data, e.g. page contents and page metadata

 Can keep some groups all in memory

 Can compress locality groups

 Bloom Filters on SSTables in a locality group

 bitmap on keyvalue hash, used to overestimate which records exist

 avoid searching SSTable if bit not set

 Tablet movement

 Major compaction (with concurrent updates)

 Minor compaction (to catch up with updates) without any concurrent
updates

 Load on new server without requiring any recovery action

CS5412 Spring 2012 (Cloud Computing: Birman)

27

Log Handling

 Commit log is per server, not per tablet (why?)

 complicates tablet movement

 when server fails, tablets divided among multiple servers

 can cause heavy scan load by each such server

 optimization to avoid multiple separate scans: sort log by (table,

rowname, LSN), so logs for a tablet are clustered, then distribute

 GFS delay spikes can mess up log write (time critical)

 solution: two separate logs, one active at a time

 can have duplicates between these two

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Immutability

 SSTables are immutable

 simplifies caching, sharing across GFS etc

 no need for concurrency control

 SSTables of a tablet recorded in METADATA table

 Garbage collection of SSTables done by master

 On tablet split, split tables can start off quickly on shared

SSTables, splitting them lazily

 Only memtable has reads and updates concurrent

 copy on write rows, allow concurrent read/write

CS5412 Spring 2012 (Cloud Computing: Birman)

29

Microbenchmarks

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Performance

CS5412 Spring 2012 (Cloud Computing: Birman)

31

Application at Google

CS5412 Spring 2012 (Cloud Computing: Birman)

GFS and Chubby

CS5412 Spring 2012 (Cloud Computing: Birman)

32

 GFS file system used under the surface for storage

 Has a master and a set of chunk servers

 To access a file, ask master… it directs you to some

chunk server and provides a capability

 That server sends you the data

 Chubby lock server

 Implements locks with varying levels of durability

 Implemented over Paxos, a protocol we’ll look at a few

lectures from now

GFS Architecture

CS5412 Spring 2012 (Cloud Computing: Birman)

33

Write Algorithm is trickier

1. Application originates write request.

2. GFS client translates request from (filename, data) ->

(filename, chunk index), and sends it to master.

3. Master responds with chunk handle and (primary +

secondary) replica locations.

4. Client pushes write data to all locations. Data is stored in

chunkservers’ internal buffers.

5. Client sends write command to primary.

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Write Algorithm is trickier

6. Primary determines serial order for data instances stored in
its buffer and writes the instances in that order to the chunk.

7. Primary sends serial order to the secondaries and tells them
to perform the write.

8. Secondaries respond to the primary.

9. Primary responds back to client.

 Note: If write fails at one of chunkservers, client is informed and retries
the write.

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Write Algorithm is trickier

CS5412 Spring 2012 (Cloud Computing: Birman)

36

Write Algorithm is trickier

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Zookeeper

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 Created at Yahoo!

 Integrates locking and storage into a file system

 Files play the role of locks

 Also has a way to create unique version or sequence

numbers

 But basic API is just like a Linux file system

 Implemented using virtual synchrony protocols (we’ll

study those too, when we talk about Paxos)

 Extremely popular, widely used

Sinfonia

CS5412 Spring 2012 (Cloud Computing: Birman)

39

 Created at HP Labs

 Core construct: durable append-only log replicated for high
availability and fast load-balanced reads

 Concept of a “mini-transaction” that appends to the state

 Then “specialized” by a series of plug-in modules

 Can support a file system

 Lock service

 Event notification service

 Message queuing system

 Database system…

 Like Chubby, uses Paxos at the core

Sinfonia
40

 To assist developer in
gaining more speed,
application can precompute
transaction using cached data

 At transaction execution time
we check validity of the data
read during precomputation

 Thus the transation can just
do a series of writes at high
speed, without delay to think

CS5412 Spring 2012 (Cloud Computing: Birman)

Key idea in Sinfonia

CS5412 Spring 2012 (Cloud Computing: Birman)

41

 A persistent, append-oriented durable log offers

 Strong guarantees of consistency

 Very effective fault-tolerance, if implemented properly

 A kind of version-history model

 We can generalize from this to implement all those

other applications by using Sinfonia as a version

store or a data history

 Seen this way, very much like the BigTable “story”!

Second idea

CS5412 Spring 2012 (Cloud Computing: Birman)

42

 Precomputation allows us to create lots of read-only

data replicas that can be used for offline computation

 Sometimes it can be very slow to compute a database

operation, like a big join

 So we do this “offline” permitting massive speedups

 By validating that the data didn’t change we can then

apply just the updates in a very fast transaction after

we’ve figured out the answer

 Note that if we “re-ran” the whole computation we would

get the same answers, since inputs are unchanged!

MapReduce

CS5412 Spring 2012 (Cloud Computing: Birman)

43

 Used for functional style of computing with
massive numbers of machines and huge data sets

 Works in a series of stages

 Map takes some operations and “maps” it on a set of
servers so that each does some part

 The operations are functional: they don’t modify the data
they read and can be reissued if needed

 Result: a large number of partial results, each from running
the function on some part of the data

 Reduce combines these partial results to obtain a smaller set
of result files (perhaps just one, perhaps a few)

 Often iterates with further map/reduce stages

Hadoop

CS5412 Spring 2012 (Cloud Computing: Birman)

44

 Open source MapReduce

 Has many refinements and improvements

 Widely popular and used even at Google!

 Challenges

 Dealing with variable sets of worker nodes

 Computation is functional; hard to accommodate

adaptive events such as changing parameter values

based on rate of convergence of a computation

Classic MapReduce examples

CS5412 Spring 2012 (Cloud Computing: Birman)

45

 Make a list of terms appearing in some set of web
pages, counting the frequency

 Find common misspellings for a word

 Sort a very large data set via a partitioning merge
sort

 Nice features:

 Relatively easy to program

 Automates parallelism, failure handling, data
management tasks

MapReduce debate

CS5412 Spring 2012 (Cloud Computing: Birman)

46

 The database community dislikes MapReduce

 Databases can do the same things

 In fact can do far more things

 And database queries can be compiled automatically
into MapReduce patterns; this is done in big parallel
database products all the time!

 Counter-argument:

 Easy to customize MapReduce for a new application

 Hadoop is free, parallel databases not so much…

Summary

CS5412 Spring 2012 (Cloud Computing: Birman)

47

 We’ve touched upon a series of examples of cloud
computing infrastructure components

 Each really could have had a whole lecture

 They aren’t simple systems and many were very hard to
implement!

 Hard to design… hard to build… hard to optimize for
stable and high quality operation at scale

 Major teams and huge resource investments

 Design decisions that may sound simple often required very
careful thought and much debate and experimentation!

Summary

CS5412 Spring 2012 (Cloud Computing: Birman)

48

 Some recurring themes

 Data replication using (key,value) tuples

 Anticipated update rates, sizes, scalability drive design

 Use of multicast mechanisms: Paxos, virtual synchrony

 Need to plan adaptive behaviors if nodes come and go, or
crash, while system is running

 High value for “latency tolerant” solutions

 Extremely asynchronous structures

 Parallel: work gets done “out there”

 Many offer strong consistency guarantees, “overcoming”
the CAP theorem in various ways

