
CS5412:

OTHER DATA CENTER

SERVICES

Ken Birman

1 CS5412 Spring 2012 (Cloud Computing: Birman)

Lecture IX

Tier two and Inner Tiers

CS5412 Spring 2012 (Cloud Computing: Birman)

2

 If tier one faces the user and constructs responses, what
lives in tier two?

 Caching services are very common (many flavors)

 Other kinds of rapidly responsive lightweight services that
are massively scaled

 Inner tier services might still have “online” roles, but
tend to live on smaller numbers of nodes: maybe tens
rather than hundreds or thousands

 Tiers one and two soak up the load

 This reduces load on the inner tiers

 Many inner services accept asynchronous streams of events

Contrast with “Back office”

CS5412 Spring 2012 (Cloud Computing: Birman)

3

 A term often used for services and systems that

don’t play online roles

 In some sense the whole cloud has an outward facing

side, handling users in real-time, and an inward side,

doing “offline” tasks

 Still can have immense numbers of nodes involved but

the programming model has more of a batch feel to it

 For example, MapReduce (Hadoop)

Some interesting services we’ll consider

CS5412 Spring 2012 (Cloud Computing: Birman)

4

 Memcached: In-memory caching subsystem

 Dynamo: Amazon’s shopping cart

 BigTable: A “sparse table” for structured data

 GFS: Google File System

 Chubby: Google’s locking service

 Zookeeper: File system with locking, strong semantics

 Sinfonia: A flexible append-only logging service

 MapReduce: “Functional” computing for big datasets

Memcached

CS5412 Spring 2012 (Cloud Computing: Birman)

5

 Very simple concept:

 High performance distributed in-memory caching
service that manages “objects”

 Key-value API has become an accepted standard

 Many implementations

 Simplest versions: just a library that manages a list
or a dictionary

 Fanciest versions: distributed services implemented
using a cluster of machines

Memcached API

CS5412 Spring 2012 (Cloud Computing: Birman)

6

 Memcached defines a standard API

 Defines the calls the application can issue to the library

or the server (either way, it looks like library)

 In theory, this means an application can be coded and

tested using one version of memcached, then migrated

to a different one

function get_foo(foo_id)

 foo = memcached_get("foo:" . foo_id)

 if foo != null return foo

foo = fetch_foo_from_database(foo_id)

memcached_set("foo:" . foo_id, foo)

return foo end

A single memcached server is easy

CS5412 Spring 2012 (Cloud Computing: Birman)

7

 Today’s tools make it trivial to build a server

 Build a program

 Designate some of its methods as ones that expose
service APIs

 Tools will create stubs: library procedures that
automate binding to the service

 Now run your service at a suitable place and register it
in the local registry

 Applications can do remote procedure calls, and
these code paths are heavily optimized: quite fast

How do they build clusters?

CS5412 Spring 2012 (Cloud Computing: Birman)

8

 Much trickier challenge!

 Trivial approach just hashes the memcached key to
decide which server to send data to

 But this could lead to load imbalances, plus some
objects are probably popular, while others are
probably “cold spots”.

 Would prefer to replicate the hot data to improve capacity

 But this means we need to track popularity (like Beehive!)

 Solutions to this are being offered as products

 We have it as one of the possible cs5412 projects!

Dynamo

CS5412 Spring 2012 (Cloud Computing: Birman)

9

 Amazon’s massive collaborative key-value store

 Built over a version of Chord DHT

 Basic idea is to offer a key-value API, like memcached

 But now we’ll have thousands of service instances

 Used for shopping cart: a very high-load application

 Basic innovation?

 To speed things up (think BASE), Dynamo sometimes puts
data at the “wrong place”

 Idea is that if the right nodes can’t be reached, put the data
somewhere in the DHT, then allow repair mechanisms to
migrate the information to the right place asynchronously

Dynamo in practice

CS5412 Spring 2012 (Cloud Computing: Birman)

10

 Suppose key should map to N56

 Dynamo replicates data

on neighboring nodes

(N1 here)

 Will also save key,value

on subsequent nodes if

targets don’t respond

 Data migrates to correct

location eventually

BigTable

CS5412 Spring 2012 (Cloud Computing: Birman)

11

 Yet another key-value store!

 Built by Google over their GFS file system and
Chubby lock service

 Idea is to create a flexible kind of table that can
be expanded as needed dynamically

 Slides from a talk the developers gave on it

12

Data model: a big map

 <Row, Column, Timestamp> triple for key Arbitrary “columns”
on a row-by-row basis

 Column family:qualifier. Family is heavyweight, qualifier lightweight

 Column-oriented physical store- rows are sparse!

 Does not support a relational model

 No table-wide integrity constraints

 No multirow transactions

CS5412 Spring 2012 (Cloud Computing: Birman)

API

 Metadata operations

 Create/delete tables, column families, change metadata

 Writes (atomic)

 Set(): write cells in a row

 DeleteCells(): delete cells in a row

 DeleteRow(): delete all cells in a row

 Reads

 Scanner: read arbitrary cells in a bigtable

 Each row read is atomic

 Can restrict returned rows to a particular range

 Can ask for just data from 1 row, all rows, etc.

 Can ask for all columns, just certain column families, or specific columns

CS5412 Spring 2012 (Cloud Computing: Birman)

13

Versions

CS5412 Spring 2012 (Cloud Computing: Birman)

14

 Data has associated version numbers

 To perform a transaction, create a set of pages all

using some new version number

 Then can atomically install them

 For reads can let BigTable select the version or can

tell it which one to access

15

SSTable

 Immutable, sorted file of key-value pairs

 Chunks of data plus an index

 Index is of block ranges, not values

Index

64K

block

64K

block

64K

block

SSTable

CS5412 Spring 2012 (Cloud Computing: Birman)

16

Tablet

 Contains some range of rows of the table

 Built out of multiple SSTables

Index

64K

block

64K

block

64K

block

SSTable

Index

64K

block

64K

block

64K

block

SSTable

Tablet Start:aardvark End:apple

CS5412 Spring 2012 (Cloud Computing: Birman)

17

Table

 Multiple tablets make up the table

 SSTables can be shared

 Tablets do not overlap, SSTables can overlap

SSTable SSTable SSTable SSTable

Tablet

aardvark apple

Tablet

apple_two_E boat

CS5412 Spring 2012 (Cloud Computing: Birman)

18

Finding a tablet

 Stores: Key: table id + end row, Data: location

 Cached at clients, which may detect data to be incorrect

 in which case, lookup on hierarchy performed

 Also prefetched (for range queries)

CS5412 Spring 2012 (Cloud Computing: Birman)

19

Servers

 Tablet servers manage tablets, multiple tablets per
server. Each tablet is 100-200 MB

 Each tablet lives at only one server

 Tablet server splits tablets that get too big

 Master responsible for load balancing and fault
tolerance

CS5412 Spring 2012 (Cloud Computing: Birman)

20

Master’s Tasks

 Use Chubby to monitor health of tablet servers,
restart failed servers

 Tablet server registers itself by getting a lock in a specific
directory chubby

 Chubby gives “lease” on lock, must be renewed periodically

 Server loses lock if it gets disconnected

 Master monitors this directory to find which servers
exist/are alive

 If server not contactable/has lost lock, master grabs lock and
reassigns tablets

 GFS replicates data. Prefer to start tablet server on same machine
that the data is already at

CS5412 Spring 2012 (Cloud Computing: Birman)

21

Master’s Tasks (Cont)

 When (new) master starts

 grabs master lock on chubby

 Ensures only one master at a time

 Finds live servers (scan chubby directory)

 Communicates with servers to find assigned tablets

 Scans metadata table to find all tablets

 Keeps track of unassigned tablets, assigns them

 Metadata root from chubby, other metadata tablets

assigned before scanning.

CS5412 Spring 2012 (Cloud Computing: Birman)

22

Metadata Management

 Master handles

 table creation, and merging of tablet

 Tablet servers directly update metadata on tablet

split, then notify master

 lost notification may be detected lazily by master

CS5412 Spring 2012 (Cloud Computing: Birman)

23

Editing a table

 Mutations are logged, then applied to an in-memory memtable

 May contain “deletion” entries to handle updates

 Group commit on log: collect multiple updates before log flush

SSTable SSTable

Tablet

apple_two_E boat

Insert

Insert

Delete

Insert

Delete

Insert

Memtable

ta
b
le

t
lo

g

GFS

Memory

CS5412 Spring 2012 (Cloud Computing: Birman)

Programming model

CS5412 Spring 2012 (Cloud Computing: Birman)

24

 Application reads information

 Uses it to create a group of updates

 Then uses group commit to install them atomically

 Conflicts? One “wins” and the other “fails”, or perhaps

both attempts fail

 But this ensures that data moves in a predictable

manner version by version: a form of the ACID model!

 Thus BigTable offers strong consistency

25

Compactions

 Minor compaction – convert the memtable into an
SSTable

 Reduce memory usage

 Reduce log traffic on restart

 Merging compaction

 Reduce number of SSTables

 Good place to apply policy “keep only N versions”

 Major compaction

 Merging compaction that results in only one SSTable

 No deletion records, only live data

CS5412 Spring 2012 (Cloud Computing: Birman)

26

Locality Groups

 Group column families together into an SSTable

 Avoid mingling data, e.g. page contents and page metadata

 Can keep some groups all in memory

 Can compress locality groups

 Bloom Filters on SSTables in a locality group

 bitmap on keyvalue hash, used to overestimate which records exist

 avoid searching SSTable if bit not set

 Tablet movement

 Major compaction (with concurrent updates)

 Minor compaction (to catch up with updates) without any concurrent
updates

 Load on new server without requiring any recovery action

CS5412 Spring 2012 (Cloud Computing: Birman)

27

Log Handling

 Commit log is per server, not per tablet (why?)

 complicates tablet movement

 when server fails, tablets divided among multiple servers

 can cause heavy scan load by each such server

 optimization to avoid multiple separate scans: sort log by (table,

rowname, LSN), so logs for a tablet are clustered, then distribute

 GFS delay spikes can mess up log write (time critical)

 solution: two separate logs, one active at a time

 can have duplicates between these two

CS5412 Spring 2012 (Cloud Computing: Birman)

28

Immutability

 SSTables are immutable

 simplifies caching, sharing across GFS etc

 no need for concurrency control

 SSTables of a tablet recorded in METADATA table

 Garbage collection of SSTables done by master

 On tablet split, split tables can start off quickly on shared

SSTables, splitting them lazily

 Only memtable has reads and updates concurrent

 copy on write rows, allow concurrent read/write

CS5412 Spring 2012 (Cloud Computing: Birman)

29

Microbenchmarks

CS5412 Spring 2012 (Cloud Computing: Birman)

30

Performance

CS5412 Spring 2012 (Cloud Computing: Birman)

31

Application at Google

CS5412 Spring 2012 (Cloud Computing: Birman)

GFS and Chubby

CS5412 Spring 2012 (Cloud Computing: Birman)

32

 GFS file system used under the surface for storage

 Has a master and a set of chunk servers

 To access a file, ask master… it directs you to some

chunk server and provides a capability

 That server sends you the data

 Chubby lock server

 Implements locks with varying levels of durability

 Implemented over Paxos, a protocol we’ll look at a few

lectures from now

GFS Architecture

CS5412 Spring 2012 (Cloud Computing: Birman)

33

Write Algorithm is trickier

1. Application originates write request.

2. GFS client translates request from (filename, data) ->

(filename, chunk index), and sends it to master.

3. Master responds with chunk handle and (primary +

secondary) replica locations.

4. Client pushes write data to all locations. Data is stored in

chunkservers’ internal buffers.

5. Client sends write command to primary.

CS5412 Spring 2012 (Cloud Computing: Birman)

34

Write Algorithm is trickier

6. Primary determines serial order for data instances stored in
its buffer and writes the instances in that order to the chunk.

7. Primary sends serial order to the secondaries and tells them
to perform the write.

8. Secondaries respond to the primary.

9. Primary responds back to client.

 Note: If write fails at one of chunkservers, client is informed and retries
the write.

CS5412 Spring 2012 (Cloud Computing: Birman)

35

Write Algorithm is trickier

CS5412 Spring 2012 (Cloud Computing: Birman)

36

Write Algorithm is trickier

CS5412 Spring 2012 (Cloud Computing: Birman)

37

Zookeeper

CS5412 Spring 2012 (Cloud Computing: Birman)

38

 Created at Yahoo!

 Integrates locking and storage into a file system

 Files play the role of locks

 Also has a way to create unique version or sequence

numbers

 But basic API is just like a Linux file system

 Implemented using virtual synchrony protocols (we’ll

study those too, when we talk about Paxos)

 Extremely popular, widely used

Sinfonia

CS5412 Spring 2012 (Cloud Computing: Birman)

39

 Created at HP Labs

 Core construct: durable append-only log replicated for high
availability and fast load-balanced reads

 Concept of a “mini-transaction” that appends to the state

 Then “specialized” by a series of plug-in modules

 Can support a file system

 Lock service

 Event notification service

 Message queuing system

 Database system…

 Like Chubby, uses Paxos at the core

Sinfonia
40

 To assist developer in
gaining more speed,
application can precompute
transaction using cached data

 At transaction execution time
we check validity of the data
read during precomputation

 Thus the transation can just
do a series of writes at high
speed, without delay to think

CS5412 Spring 2012 (Cloud Computing: Birman)

Key idea in Sinfonia

CS5412 Spring 2012 (Cloud Computing: Birman)

41

 A persistent, append-oriented durable log offers

 Strong guarantees of consistency

 Very effective fault-tolerance, if implemented properly

 A kind of version-history model

 We can generalize from this to implement all those

other applications by using Sinfonia as a version

store or a data history

 Seen this way, very much like the BigTable “story”!

Second idea

CS5412 Spring 2012 (Cloud Computing: Birman)

42

 Precomputation allows us to create lots of read-only

data replicas that can be used for offline computation

 Sometimes it can be very slow to compute a database

operation, like a big join

 So we do this “offline” permitting massive speedups

 By validating that the data didn’t change we can then

apply just the updates in a very fast transaction after

we’ve figured out the answer

 Note that if we “re-ran” the whole computation we would

get the same answers, since inputs are unchanged!

MapReduce

CS5412 Spring 2012 (Cloud Computing: Birman)

43

 Used for functional style of computing with
massive numbers of machines and huge data sets

 Works in a series of stages

 Map takes some operations and “maps” it on a set of
servers so that each does some part

 The operations are functional: they don’t modify the data
they read and can be reissued if needed

 Result: a large number of partial results, each from running
the function on some part of the data

 Reduce combines these partial results to obtain a smaller set
of result files (perhaps just one, perhaps a few)

 Often iterates with further map/reduce stages

Hadoop

CS5412 Spring 2012 (Cloud Computing: Birman)

44

 Open source MapReduce

 Has many refinements and improvements

 Widely popular and used even at Google!

 Challenges

 Dealing with variable sets of worker nodes

 Computation is functional; hard to accommodate

adaptive events such as changing parameter values

based on rate of convergence of a computation

Classic MapReduce examples

CS5412 Spring 2012 (Cloud Computing: Birman)

45

 Make a list of terms appearing in some set of web
pages, counting the frequency

 Find common misspellings for a word

 Sort a very large data set via a partitioning merge
sort

 Nice features:

 Relatively easy to program

 Automates parallelism, failure handling, data
management tasks

MapReduce debate

CS5412 Spring 2012 (Cloud Computing: Birman)

46

 The database community dislikes MapReduce

 Databases can do the same things

 In fact can do far more things

 And database queries can be compiled automatically
into MapReduce patterns; this is done in big parallel
database products all the time!

 Counter-argument:

 Easy to customize MapReduce for a new application

 Hadoop is free, parallel databases not so much…

Summary

CS5412 Spring 2012 (Cloud Computing: Birman)

47

 We’ve touched upon a series of examples of cloud
computing infrastructure components

 Each really could have had a whole lecture

 They aren’t simple systems and many were very hard to
implement!

 Hard to design… hard to build… hard to optimize for
stable and high quality operation at scale

 Major teams and huge resource investments

 Design decisions that may sound simple often required very
careful thought and much debate and experimentation!

Summary

CS5412 Spring 2012 (Cloud Computing: Birman)

48

 Some recurring themes

 Data replication using (key,value) tuples

 Anticipated update rates, sizes, scalability drive design

 Use of multicast mechanisms: Paxos, virtual synchrony

 Need to plan adaptive behaviors if nodes come and go, or
crash, while system is running

 High value for “latency tolerant” solutions

 Extremely asynchronous structures

 Parallel: work gets done “out there”

 Many offer strong consistency guarantees, “overcoming”
the CAP theorem in various ways

