Using Gossip for Aggregation
and Monitoring. Astrolabe.

Ken Birman

Cornell University. CS5410 Fall 2008.




Gossip 201

* Last time we saw that gossip spreads in log(system
size) time
* But is this actually “fast™?

=
o

% infected

o
o

Time >



P ———

Gossip in distributed systems

* Log(N) can be a very big number!
e With N=100,000, log(N) would be 12

e So with one gossip round per five seconds, information
needs one minute to spread in a large system!

* Some gossip protocols combine pure gossip with an
accelerator

e For example, Bimodal Multicast and [pbcast are
protocols that use UDP multicast to disseminate data
and then gossip to repair if any loss occurs

e But the repair won'’t occur until the gossip protocol runs



P

A thought question

* What'’s the best way to
e Count the number of nodes in a system?

e Compute the average load, or find the most loaded
nodes, or least loaded nodes?

* Options to consider
e Pure gossip solution

e Construct an overlay tree (via “flooding’, like in our
consistent snapshot algorithm), then count nodes in the
tree, or pull the answer from the leaves to the root...



P ———

... and the answer is

* Gossip isn’'t very good for some of these tasks!

e There are gossip solutions for counting nodes, but they
give approximate answers and run slowly

e Tricky to compute something like an average because of
“re-counting” effect, (best algorithm: Kempe et al)

* On the other hand, gossip works well for finding the ¢
most loaded or least loaded nodes (constant c¢)

* Gossip solutions will usually run in time O(log N) and
generally give probabilistic solutions



P

Yet with flooding... easy!

* Recall how flooding works

> >0
Labels: distance of the node
\94@ from the root

* Basically: we construct a tree by pushing data towards
the leaves and linking a node to its parent when that
node first learns of the flood

* Can do this with a fixed topology or in a gossip style by
picking random next hops



P ———

This is a “spanning tree”

* Once we have a spanning tree

e To count the nodes, just have leaves report 1 to their
parents and inner nodes count the values from their

children

e To compute an average, have the leaves report their value
and the parent compute the sum, then divide by the
count of nodes

e To find the least or most loaded node, inner nodes
compute a min or max...

* Tree should have roughly log(N) depth, but once we
build it, we can reuse it for a while



Not all logs are identical!

* When we say that a gossip protocol needs
time log(N) to run, we mean log(N) rounds

e And a gossip protocol usually sends one message every
five seconds or so, hence with 100,000 nodes, 60 secs

* But our spanning tree protocol is constructed using a
flooding algorithm that runs in a hurry

e Log(N) depth, but each “hop” takes perhaps a
millisecond.

e So with 100,000 nodes we have our tree in 12 ms and
answers in 24ms!



P

Insight?

* Gossip has time complexity O(log N) but the
“constant” can be rather big (5000 times larger in our
example)

* Spanning tree had same time complexity but a tiny
constant in front

* But network load for spanning tree was much higher

e In the last step, we may have reached roughly half the
nodes in the system

e S0 50,000 messages were sent all at the same time!



P

Gossip vs “Urgent”?

* With gossip, we have a slow but steady story
* We know the speed and the cost, and both are low
e A constant, low-key, background cost
e And gossip is also very robust

» Urgent protocols (like our flooding protocol, or 2PC, or
reliable virtually synchronous multicast)

e Are way faster
e But produce load spikes
e And may be fragile, prone to broadcast storms, etc



——,
e

Introducing hierarchy

* One issue with gossip is that the messages fill up
e With constant sized messages...
e ...and constant rate of communication

e ...we'll inevitably reach the limit!

* Can we inroduce hierarchy into gossip systems?



pplications adrift
in a sea of
information

* Structure emerges
from a randomized
gossip protocol

* This approach is _
robust and scalable
even under stress
that cripples
traditional systems

Developed at RNS,
Cornell

* By Robbert van
Renesse, with many
others helping... "

* Today used
extensively within
Amazon.com



swift.cs.cornell.edu

[

"

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

=)

Name Time Load Weblogic? SMTP? Word
Version
falcon 1971 1.5 1 0 4.1
cardinal 2004 4.5 1 0 6.0

Name Time Load Weblogic SMTP? Word
? Version

swift 2003 .67 0 1 6.2

falcon 1976 2.7 1 0 4.1




P

Astrolabe in a single domain

* Each node owns a single tuple, like the management
information base (MIB)

* Nodes discover one-another through a simple
broadcast scheme (“anyone out there?”) and gossip
about membership

* Nodes also keep replicas of one-another’s rows

e Periodically (uniformly at random) merge your state
with some else...



swift.cs.cornell.edu

cardinal.cs.cornell.edu

Name

Time

Load

Weblogic?

SMTP?

Word
Version

falcon 1971 1.5 1 0 4.1
cardinal 2004 4.5 1 0 6.0
Name Time Load Weblogic SMTP? Word
? Version
swift 2003 .67 0 1 6.2
falcon 1976 2.7 1 0 4.1




State Merge: Core of Astrolabe epidemic

o

"

swift.cs.cornell.edu
\j\\
4>

o

cardinal.cs.cornell.edu

Name Time Load Weblogic? SMTP? Word
Version
falcon 1971 1.5 1 0 4.1
cardinal 2004 4.5 1 0 6.0
Name Time Load Weblogic SMTP? Word
? Version
swift 2003 .67 0 1 6.2
falcon 1976 2.7 1 0 4.1




Weblogic? SMTP? Word
Version

&"/i

m falcon 1 0 4.1
\A cardinal 1 0 6.0
swift.cs.cornell.edu
Name Weblogic SMTP? Word
? Version
0 1 6.2
4.1

% f:z:l
\j\\

cardinal.cs.cornell.edu



P

Observations

* Merge protocol has constant cost
e One message sent, received (on avg) per unit time.

e The data changes slowly, so no need to run it quickly -
we usually run it every five seconds or so

 Information spreads in O(log N) time
* But this assumes bounded region size
e In Astrolabe, we limit them to 50-100 rows



Big system:s...

* A big system could have many regions
e Looks like a pile of spreadsheets

e A node only replicates data from its neighbors within its
own region



Scaling up... and up...

* With a stack of domains, we don’t want every system to
“see” every domain

e Cost would be huge
* So instead, we'll see a summary

Word
Version

6.2

"

4.1

cardinal.cs.cornell.edu



Astrolabe builds a hierarchy using a P2P protocol that
“assembles the puzzle” without any servers

Dynamically changing
guery output is visible

Syste m 'Wi d e Name Avg WL contact SMTP contact S Q L q u e ry

Load

“summarizes”
data

14.66.71.8 14.66.71.12

San Francisco New Jersey



P

Large scale: “fake” regions

® These are

e Computed by queries that summarize a whole region as
a single row

e Gossiped in a read-only manner within a leaf region

* But who runs the gossip?

e Each region elects “k” members to run gossip at the next
level up.

e Can play with selection criteria and “k”



Hiera rChy IS Virtu a| da' Yellow leaf node “sees” its neighbors and

the domains on the path to the root.

)-)' f" ‘ ) “
Ao

v

Name Avg
Load

Name Load
Version

San Francisco

Falcon runs level 2 epidemic
because it has lowest load

WL contact

SMTP contact

Word
Version

.. y
i s
¥ a4
4 .
-
o
a

New Jersey



Hierar

Weblogic? SMTP? Word Weblogic? SMTP? Word
Version Version

San Francisco



P

Worst case load?

* A small number of nodes end up participating in
O(logg,,,N) epidemics
e Here the fanout is something like 50

 In each epidemic, a message is sent and received roughly
every 5 seconds

* We limit message size so even during periods of
turbulence, no message can become huge.



Who uses Astrolabe?

* Amazon uses Astrolabe throughout their big data
centers!

e For them, Astrolabe helps them track overall state of
their system to diagnose performance issues

e They can also use it to automate reaction to temporary
overloads



P

Example of overload handling

* Some service S is getting slow...
 Astrolabe triggers a “system wide warning”
* Everyone sees the picture
e “Oops, S is getting overloaded and slow!”

e So everyone tries to reduce their frequency of requests
against service S

* What about overload in Astrolabe itself?
e Could everyone do a fair share of inner aggregation?



e
—

A

B — -,

A fair (but dreadful) aggregation tree

AL

I KT M<N OP

ATB C7D B G H

Leiden; Dec 06 Gossip-Based Networking Workshop 28



What went wrong?

* In this horrendous tree, each node has equal “work to
do” but the information-space diameter is larger!

* Astrolabe benefits from “instant” knowledge because
the epidemic at each level is run by someone elected
from the level below

Leiden; Dec 06 Gossip-Based Networking Workshop 29



Insight: Two kinds of shape

* We've focused on the aggregation tree

e But in fact should also think about the information
flow tree

Leiden; Dec 06 Gossip-Based Networking Workshop 30



Information space perspective

* Bad aggregation graph: diameter O(n)

H-G-E-F-B-A-C-D-L-K—-1-J-N-M-0O-P

* Astrolabe version: diameter O(log(n))

Leiden; Dec 06 Gossip-Based Networking Workshop 31



P ———

Summary

* We looked at ways of using Gossip for aggregation

e Pure gossip isn't ideal for this... and competes poorly
with flooding and other urgent protocols

e But Astrolabe introduces hierarchy and is an interesting
option that gets used in at least one real cloud platform

* Power: make a system more robust, self-adaptive, with
a technology that won’t make things worse

* But performance can still be sluggish



